Synthesis of a chiral amino acid with bicyclo[1.1.1]pentane moiety and its incorporation into linear and cyclic antimicrobial peptides

Stephan Pritz, *a Michael Pätzel, *b Günter Szeimies, b Margitta Dathe a and Michael Bienert a

^aLeibniz-Institute of Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.

Email: pritz@fmp-berlin.de

^bHumboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany.

E-mail: michael.paetzel@rz.hu-berlin.de

Peptide Synthesis and Purification

Synthesis of the peptides was performed manually by the solid-phase method using standard Fmoc chemistry. TentaGel SRAM resin (Rapp, 0.22 mmol g⁻¹) or 2-Chlorotrityl resin (Novabiochem, 1.23 mmol g⁻¹) were used for the linear peptides or for the linear precursors of the cyclic peptides, respectively. Couplings were carried out with 3 or 4 equiv of Fmoc-amino acid derivatives, 3-4 equiv of HBTU and 6-8 equiv of DIEA at ambient temperature. After final cleavage with 10% phenol in TFA crude linear peptides were purified by preparative HPLC on a PolyEncap A300 column, 10 μ m, 250 × 20 mm i.d. (Bischoff Analysentechnik GmbH, Leonberg), using a LDC Analytical System: mobile phase A, 0.1% TFA/water: mobile phase B, 80% acetonitrile/water-0.1% TFA (v/v/v); linear gradient 20-60% B in 70 min, at a flow rate of 10 ml/min. Cyclisation of crude peptides was achieved by activation with 1.1 equiv. HAPyU in DMF (1.0 mM). Purification was done as described above.

HPLC analyses were carried out on a PolyEncap A300 column using an acetonitrile/water/TFA solvent system (eluent A: 0.1% TFA, eluent B: 80% acetonitrile/0.1% TFA, linear gradient 5-95% B in 40 min). Peptides were characterised by matrix-assisted laser desorption/ionisation mass spectrometry which gave the expected [M+H]⁺ mass peaks.

Name	Sequence	mw calcd.	mw found	HPLC
		$[M+H]^+$	$[M+H]^+$	purity
10a	Ac-RRWWRF-NH ₂	1047.58	1047.53	>99% ^a
11a	Ac-RRW1RF-NH ₂	1040.63	1040.66	>99% ^a
12a	Ac-RR11RF-NH ₂	1033.68	1033.60	96% ^a
	H-RRWWRF-OH	1006.54	1006.45	97% ^a
	H-RRW1RF-OH	999.59	999.60	70%
	H-RR11RF-OH	992.64	992.65	53%
10b	cyclo(RRWWRF)	988.54	988.47	97% ^a
11b	cyclo(RRW1RF)	981.59	981.39	85% ^a
12b	cyclo(RR11RF)	974.64	974.46	90% ^a

^a Purified product.