Boc–Ser(Fmoc–Val)–OBzl (43). 43 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-valine derivative **82**. Yield: 93%; HPLC analysis at 230 nm: purity was higher than 96% ($t_R = 36.4$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.70-7.61 (m, 2H), 7.42-7.22 (m, 9H), 5.22-5.04 (m, 2H), 4.55-4.29 (m, 5H), 4.22 (t, J = 6.4 Hz, 1H), 4.06-3.98 (m, 1H), 2.14-1.96 (m, 1H), 1.40 (s, 9H), 0.97-0.84 (m, 6H); HRMS (FAB): calcd. for C₃₅H₄₀N₂O₈Na (M+Na)⁺: 639.2682, found: 639.2685.

Boc–Ser(Fmoc–D-Val)–OBzl (82). 82 was synthesized in the similar manner to **42**. Yield: 85%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 36.9$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.4 Hz, 2H), 7.70-7.61 (m, 2H), 7.40-7.27 (m, 9H), 5.24-5.11 (m, 2H), 4.54-4.43 (m, 2H), 4.42-4.29 (m, 3H), 4.24-4.20 (m, 1H), 4.06-3.98 (m, 1H), 2.12-1.96 (m, 1H), 1.40 (s, 9H), 0.93-0.82 (m, 6H); HRMS (FAB): calcd. for C₃₅H₄₀N₂O₈Na (M+Na)⁺: 639.2682, found: 639.2678.

Boc–Ser(Fmoc–Val)–OH (3). 3 was synthesized in the similar manner to **1**. Yield: 82%; HPLC analysis at 230 nm: purity was 94% ($t_R = 32.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.1 Hz, 2H), 7.72-7.65 (m, 2H), 7.43-7.27 (m, 4H), 4.55-4.42 (m, 1H), 4.42-4.30 (m, 2H), 4.28-4.15 (m, 2H), 4.09 (d, J = 6.0 Hz, 1H), 2.25-2.06 (m, 1H), 1.40 (s, 9H), 0.93 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H); HRMS (FAB): calcd. for C₂₈H₃₄N₂O₈Na (M+Na)⁺: 549.2213, found: 549.2217.

Boc–Ser(Fmoc–Ile)–OBzl (45). 45 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized *D-allo*-isoleucine derivative **84**. Yield: 84%; HPLC analysis at 230 nm: purity was 89% ($t_R = 38.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 6.6 Hz, 2H), 7.40-7.27 (m, 9H), 5.18 (d, J = 12.3 Hz, 1H), 5.11 (d, J = 12.3 Hz, 1H), 4.51-4.36 (m, 5H), 4.24-4.19 (m, 1H), 4.09 (d, J = 6.2 Hz, 1H), 1.88-1.75 (m, 1H), 1.39 (s, 9H), 1.28-1.15 (m, 2H), 0.97-0.87 (m, 6H); HRMS (FAB): calcd. for C₃₆H₄₂N₂O₈Na (M+Na)⁺: 653.2839, found: 653.2835.

Boc–Ser(Fmoc–D*allo–***Ile)**–**OBzl (84)**. **84** was synthesized in the similar manner to **42**. Yield: 97%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 38.5 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.68-7.65 (m, 2H), 7.40-7.27 (m, 9H), 5.19 (d, J = 12.3 Hz, 1H), 5.14 (d, J = 12.3 Hz, 1H), 4.51-4.47 (m, 2H), 4.39-4.36 (m, 3H), 4.26-4.20 (m, 2H), 1.92-1.78 (m, 1H), 1.40 (s, 9H), 1.36-1.12 (m, 2H), 0.94-0.83 (m, 6H); HRMS (FAB): calcd. for C₃₆H₄₂N₂O₈Na (M+Na)⁺: 653.2839, found: 653.2835.

Boc–Ser(Fmoc–IIe)–OH (5). 5 was synthesized in the similar manner to **1**. Yield: >99%; HPLC analysis at 230 nm: purity was 89% ($t_R = 33.1 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.69-7.66 (m, 2H), 7.40-7.27 (m, 4H), 4.51-4.48 (m, 1H), 4.14-4.31 (m, 3H), 4.24-4.13 (m, 3H), 1.93-1.86 (m, 1H), 1.40 (s, 9H), 1.28-1.16 (m, 2H), 0.99-0.90 (m, 6H); HRMS (FAB): calcd. for C₂₉H₃₆N₂O₈Na (M+Na)⁺: 563.2369, found: 563.2373.

Boc–Ser(Fmoc–Thr(*t***Bu))–OBzl (47). 47** was synthesized in the similar manner to 42. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-*allo*-threonine derivative 86. Yield: >99%; HPLC analysis at 230 nm: purity was 92% (t_R = 39.8 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.4 Hz, 2H), 7.69-7.64 (m, 2H), 7.40-7.30 (m, 9H), 5.20 (d, J = 12.5 Hz, 1H), 5.12 (d, J = 12.3 Hz, 1H), 4.55-4.35 (m, 5H), 4.25-4.16 (m, 3H), 1.40 (s, 9H), 1.15-1.08 (m, 12H); HRMS (FAB): calcd. for C₃₈H₄₆N₂O₉Na (M+Na)⁺: 697.3101, found: 697.3096.

Boc–Ser(Fmoc–D*allo***-Thr**(*t***Bu**))–**OBzl** (86). 86 was synthesized in the similar manner to 42. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 39.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.40-7.28 (m, 9H), 5.22-5.11 (m, 2H), 4.54-4.20 (m, 7H), 4.06-4.00 (m, 1H), 1.40 (s, 9H), 1.16 (s, 9H), 1.11 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₃₈H₄₆N₂O₉Na (M+Na)⁺: 697.3101, found: 697.3096.

Boc–Ser(Fmoc–Thr(*t***Bu))–OH (7). 7** was synthesized in the similar manner to **1**. Yield: 89%; HPLC analysis at 230 nm: purity was 89% ($t_{\rm R} = 34.4 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.70-7.66 (m, 2H), 7.41-7.28 (m, 4H), 4.46-4.20 (m, 8H), 1.42 (s, 9H), 1.16-1.12 (m, 12H); HRMS (FAB): calcd. for C₃₁H₄₀N₂O₉Na (M+Na)⁺: 607.2632, found: 607.2639.

Boc–Ser(Fmoc–Met)–OBzl (49). 49 was synthesized in the similar manner to **42**. Whether epimerization was occurred could not be determined because mixture of L-methionine derivative **49** and independently synthesized D-methionine derivative **88** was able to separate by neither RP-HPLC nor chiral HPLC. Yield: 89%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 38.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d,

J = 7.5 Hz, 2H), 7.71-7.61 (m, 2H), 7.43-7.23 (m, 9H), 5.16 (d, J = 12.4 Hz, 1H), 5.09 (d, J = 12.4 Hz, 1H), 4.56-4.17 (m, 7H), 2.62-2.40 (m, 2H), 2.14-1.98 (m, 4H), 1.97-1.82 (m, 1H), 1.39 (s, 9H); HRMS (FAB): calcd. for $C_{35}H_{40}N_2O_8SNa$ (M+Na)⁺: 671.2403, found: 671.2407.

Boc–Ser(Fmoc–D-Met)–OBzl (88). **88** was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 92% ($t_{\rm R}$ = 37.6 min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.1 Hz, 2H), 7.73-7.58 (m, 2H), 7.46-7.24 (m, 9H), 5.20 (d, J = 12.5 Hz, 1H), 5.12 (d, J = 12.5 Hz, 1H), 4.55-4.17 (m, 7H), 2.60-2.38 (m, 2H), 2.12-1.98 (m, 4H), 1.93-1.79 (m, 1H), 1.39 (s, 9H); HRMS (FAB): calcd. for C₃₅H₄₀N₂O₈SNa (M+Na)⁺: 671.2403, found: 671.2410.

Boc–Ser(Fmoc–Met)–OH (9). 9 was synthesized in a similar manner to **8**. Yield: 70%; HPLC analysis at 230 nm: purity was 94% ($t_R = 32.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.73-7.58 (m, 2H), 7.46-7.26 (m, 4H), 4.61-4.50 (m, 1H), 4.48-4.29 (m, 5H), 4.28-4.19 (m, 1H), 2.63-2.42 (m, 2H), 2.18-2.03 (m, 4H), 2.01-1.88 (m, 1H), 1.42 (s, 9H); HRMS (FAB): calcd. for C₂₈H₃₄N₂O₈SNa (M+Na)⁺: 581.1934, found: 581.1927.

Boc–Ser(Fmoc–Pro)–OBzl (50). 50 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-proline derivative **89**. Yield: 98%; HPLC analysis at 230 nm: purity was 95% ($t_{\rm R}$ = 38.5 min); ¹H NMR (CD₃OD, 300MHz) δ 7.81-7.76 (m, 2H), 7.64-7.52 (m, 2H), 7.39-7.29 (m, 9H), 5.21 (d, J = 12.3 Hz, 1H), 5.06 (d, J = 12.3 Hz, 1H), 4.62-4.14 (m, 7H), 3.44-3.39 (m, 2H), 2.23-2.12 (m, 1H), 1.98-180 (m, 3H), 1.36 (d, J = 3.1 Hz, 9H); HRMS (FAB): calcd. for C₃₅H₃₈N₂O₈Na (M+Na)⁺: 637.2526, found: 637.2531.

Boc–Ser(Fmoc–D-Pro)–OBzl (89). 89 was synthesized in the similar manner to **42**. Yield: 89%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 38.4 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.80-7.75 (m, 2H), 7.63-7.53 (m, 2H), 7.41-7.28 (m, 9H), 5.21-5.10 (m, 2H), 4.48-4.33 (m, 4H), 4.26-4.11 (m, 3H), 3.47-3.37 (m, 2H), 2.16-2.09 (m, 1H), 1.88-1.80 (m, 3H), 1.38 (d, J = 4.8 Hz, 9H); HRMS (FAB): calcd. for C₃₅H₃₈N₂O₈Na (M+Na)⁺: 637.2526, found: 637.2531.

Boc–Ser(Fmoc–Pro)–OH (10). 10 was synthesized in the similar manner to **1**. Yield: >99%; HPLC analysis at 230 nm: purity was 95% ($t_R = 32.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.80-7.77 (m, 2H), 7.65 (t, J = 7.3 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.41-7.31 (m, 4H), 4.67-4.58 (m, 1H), 4.45-4.16 (m, 6H), 3.59-3.51 (m, 1H), 3.45-3.37(M, 1H), 2.26-1.89 (m, 5H), 1.36 (d, J = 7.9 Hz, 9H); HRMS (FAB): calcd. for C₂₈H₃₂N₂O₈Na (M+Na)⁺: 547.2056, found: 547.2061.

Boc–Ser(Fmoc–Asp(OtBu))–OBzl (51). 51 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-aspartic acid derivative **109**. Yield: >99%; HPLC analysis at 230 nm: purity was 88% ($t_R = 38.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.4 Hz, 2H), 7.66-7.63 (m, 2H), 7.40-7.27 (m, 9H), 5.19-5.09 (m, 2H), 4.52-4.34 (m, 5H), 4.24-4.21 (m, 2H), 2.80-2.72 (m, 1H), 2.67-2.59 (m, 1H), 1.44 (s, 9H), 1.40 (s, 9H); HRMS (FAB): calcd. for C₃₈H₄₄N₂O₁₀Na (M+Na)⁺: 711.2894, found: 711.2889.

Boc–Ser(Fmoc–D-Asp(OtBu))–OBzl (90). 90 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 95% ($t_{\rm R}$ = 38.2 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.65-7.60 (m, 2H), 7.40-7.27 (m, 9H), 5.20 (d, J = 12.3 Hz, 1H), 5.11 (d, J = 12.9 Hz, 1H), 4.52-4.47 (m, 3H), 4.36-4.34 (m, 2H), 4.24-4.20 (m, 2H), 2.80-2.72 (m, 1H), 2.65-2.57 (m, 1H), 1.44 (s, 9H), 1.39 (s, 9H); HRMS (FAB): calcd. for C₃₈H₄₄N₂O₁₀Na (M+Na)⁺: 711.2894, found: 711.2900.

Boc–Ser(Fmoc–Asp(OtBu))–OH (11). 11 was synthesized in the similar manner to 1. Yield: >99%; HPLC analysis at 230 nm: purity was 92% ($t_{\rm R} = 33.3 \text{ min}$); ¹H NMR (DMSO- d_6 , 300MHz) δ 7.78 (d, J = 7.7 Hz, 2H), 7.68 –7.64 (m, 2H), 7.38 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 4.60-4.54 (m, 2H), 4.34-4.29 (m, 3H), 4.25-4.20 (m, 2H), 2.88-2.81 (m, 1H), 2.74-2.65 (m, 1H), 1.44 (s, 9H), 1.42 (s, 9H); HRMS (FAB): calcd. for C₃₁H₃₈N₂O₁₀Na (M+Na)⁺: 621.2424, found: 621. 2420.

Boc–Ser(Fmoc–Asn(Trt))–OBzl (52). 52 was synthesized in the similar manner to 42. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-asparagine derivative 90. Yield: >99%; HPLC analysis at 230 nm: purity was 95% ($t_R = 40.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79-7.77 (m, 2H), 7.66-7.62 (m, 2H), 7.39-7.17 (m, 24H), 5.11 (d, J = 1.3 Hz, 2H), 4.47-4.29 (m, 6H), 4.22-4.18 (m, 1H), 2.82 (d, J = 5.9 Hz, 2H), 1.37 (s, 9H); HRMS (FAB): calcd. for C₅₃H₅₁N₃O₉Na (M+Na)⁺: 896.3523, found: 896.3528.

Boc–Ser(Fmoc–D-Asn(Trt))–OBzl (90). 90 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 41.0 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.1 Hz, 2H), 7.65-7.63 (m, 2H), 7.39-7.19 (m, 24H), 5.17 (d, J = 11.5 Hz, 1H), 5.09 (d, J = 11.5 Hz, 1H), 4.50-4.28 (m, 6H), 4.24-4.17 (m, 1H), 2.81-2.79 (m, 2H), 1.36 (s, 9H); HRMS (FAB): calcd. for C₅₃H₅₁N₃O₉Na (M+Na)⁺: 896.3523, found: 896.3528.

Boc–Ser(Fmoc–Asn(Trt))–OH (12). 12 was synthesized in the similar manner to **1**. Yield: 96%; HPLC analysis at 230 nm: purity was 92% ($t_R = 36.9 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.95-7.85 (m, 2H), 7.74-7.65 (m, 2H), 7.45-7.38 (m, 2H), 7.34-7.14 (m, 17H), 4.51-4.47 (m, 1H), 4.42-4.36 (m, 1H), 4.29-4.25 (m, 5H), 2.80-2.76 (m, 2H), 1.36 (s, 9H); HRMS (FAB): calcd. for C₄₆H₄₅N₃O₉Na (M+Na)⁺: 806.3054, found: 806.3058.

Boc–Ser(Fmoc–Glu(OtBu))–OBzl (53). 53 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-glutamic acid derivative **92**. Yield: 98%; HPLC analysis at 230 nm: purity was 95% ($t_R = 38.9 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.68-7.64 (m, 2H), 7.40-7.27 (m, 9H), 5.17 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 4.50-4.43 (m, 3H), 4.36 (d, J = 6.6 Hz, 2H), 4.24-4.16 (m, 2H), 2.30 (t, J = 7.1 Hz, 2H), 2.13-2.02 (m, 1H), 1.92-1.81 (m, 1H), 1.44 (s, 9H), 1.40 (s, 9H); HRMS (FAB): calcd. for C₃₉H₄₆N₂O₁₀Na (M+Na)⁺: 725.3050, found: 725.3044.

Boc–Ser(Fmoc–D-Glu(*Ot***Bu**))–**OBzl (92**). **92** was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 94% ($t_{\rm R} = 38.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.73-7.60 (m, 2H), 7.40-7.28 (m, 9H), 5.20 (d, J = 12.3 Hz, 1H), 5.13 (d, J = 12.3 Hz, 1H), 4.24-4.16 (m, 2H), 1.44 (s, 9H), 1.39 (s, 9H); HRMS (FAB): calcd. for C₃₉H₄₆N₂O₁₀Na (M+Na)⁺: 725.3050, found: 725.3057.

Boc–Ser(Fmoc–Glu(OtBu))–OH (13). 13 was synthesized in the similar manner to **1**. Yield: 99%; HPLC analysis at 230 nm: purity was 90% ($t_{\rm R} = 33.4 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.8 Hz, 2H), 7.41-7.29 (m, 4H), 7.45-7.48 (m, 1H), 4.38-4.33 (m, 4H), 4.28-4.20 (m, 2H), 2.32 (t, J = 7.2 Hz 2H), 2.20-2.06 (m, 1H), 1.45 (s, 9H), 1.41 (s, 9H); HRMS (FAB): calcd. for C₃₂H₄₀N₂O₁₀Na (M+Na)⁺: 636.2581, found: 636.2585.

Boc–Ser(Fmoc–Gln(Trt))–OBzl (54). 54 was synthesized in the similar manner to 42. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-glutamine derivative 93. Yield: 85%; HPLC analysis at 230 nm: purity was higher than 95% (t_R = 40.6 min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.70-7.63 (m, 4H), 7.37 (t, J = 7.2 Hz, 4H), 7.28-7.18 (m, 18H), 5.13 (d, J = 12.5 Hz, 1H), 5.01 (d, J = 12.5 Hz, 1H), 4.47-4.36 (m, 4H), 4.22-4.08 (m, 3H), 2.41-2.39 (m, 2H), 2.12-1.95 (m, 1H), 1.90-1.76 (m, 1H), 1.38 (s, 9H); HRMS (FAB): calcd. for C₅₄H₅₃N₃O₉Na (M+Na)⁺: 910.3680, found: 910.3673.

Boc–Ser(Fmoc–D-Gln(Trt))–OBzl (93). 93 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 93% ($t_{\rm R} = 40.9 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.9 Hz, 2H), 7.67-7.60 (m, 4H), 7.37 (t, J = 7.1 Hz, 4H), 7.29-7.18 (m, 18H), 5.16-5.04 (m, 2H), 4.56-4.43 (m, 2H), 4.38-4.32 (m, 3H), 4.25-4.12 (m, 2H), 2.46-2.28 (m, 2H), 2.10-1.95 (m, 1H), 1.88-1.70 (m, 1H), 1.37 (s, 9H); HRMS (FAB): calcd. for C₅₄H₅₃N₃O₉Na (M+Na)⁺: 910.3680, found: 910.3677.

Boc–Ser(Fmoc–Gln(Trt))–OH (14). 14 was synthesized in the similar manner to **1**. Yield: 89%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 36.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.4 Hz, 2H), 7.66 (d, J = 7.3 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.31-7.16 (m, 17H), 4.53-4.31 (m, 4H), 4.27-4.18 (m, 3H), 2.49-2.35 (m, 2H), 2.16-2.01 (m, 1H), 1.94-1.80 (m, 1H), 1.38 (s, 9H); HRMS (FAB): calcd. for C₄₇H₄₇N₃O₉Na (M+Na)⁺: 820.3210, found: 820.3204.

Boc–Ser(Fmoc–His(Trt))–OBzl (55). 55 was synthesized in the same manner to 42. Whether epimerization was occurred could not be determined because mixture of L-histidine derivative 55 and independently synthesized D-histidine derivative 94 was able to separate by neither RP-HPLC nor chiral HPLC. Yield: 78%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 35.2 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.81-7.68 (m, 2H), 7.64-7.56 (m, 2H), 7.42-7.17 (m, 20H), 7.14-6.95 (m, 6H), 5.17 (d, J = 12.3 Hz, 1H), 5.11 (d, J = 12.3 Hz, 1H), 4.61-4.34 (m, 4H), 4.32-4.20 (m, 2H), 4.17-4.04 (m, 1H), 3.20-2.81 (m, 2H), 1.32 (s, 9H); HRMS (FAB): calcd. for C₅₅H₅₂N₄O₈Na (M+Na)⁺: 919.3683, found: 919.3688.

Boc–Ser(Fmoc–D-His(Trt))–OBzl (94). 94 was synthesized in the same manner to 42. Yield: 97%; HPLC analysis at 230 nm: purity was 88% ($t_{\rm R} = 34.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.80 (d, J = 7.7 Hz, 2H), 7.63-7.54 (m, 2H), 7.50-7.07 (m, 26H), 5.17 (d, J = 12.4 Hz, 1H), 5.09 (d, J = 12.4 Hz, 1H), 4.56-4.45 (m, 3H),

4.45-4.32 (m, 2H), 4.28-4.19 (m, 1H), 4.18-4.10 (m, 1H), 3.24-3.09 (m, 1H), 3.01-2.89 (m, 1H), 1.37 (s, 9H); HRMS (FAB): calcd. for C₅₅H₅₂N₄O₈Na (M+Na)⁺: 919.3683, found: 919.3688.

Boc–Ser(Fmoc–His(Trt))–OH (15). 15 was synthesized in the same manner to **1**. Yield: 81%; HPLC analysis at 230 nm: purity was 89% ($t_{\rm R} = 31.9 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.43-7.18 (m, 15H), 7.14-7.00 (m, 6H), 4.56-4.44 (m, 2H), 4.41-4.19 (m, 4H), 4.16-4.07 (m, 1H), 3.17-3.04 (m, 1H), 3.01-2.83 (m, 1H), 1.34 (s, 9H); HRMS (FAB): calcd. for C₄₈H₄₆N₄O₈Na (M+Na)⁺: 829.3213, found: 829.3208.

Boc–Ser(Fmoc–Lys(Boc))–OBzl (56). 56 was synthesized in the similar manner to 42. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-lysine derivative 95. Yield: >99%; HPLC analysis at 230 nm: purity was 95% (t_R = 38.0 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.1 Hz, 2H), 7.66 (t, J = 6.8 Hz, 2H), 7.42-7.26 (m, 9H), 5.17 (d, J = 12.1 Hz, 1H), 5.10 (d, J = 12.3 Hz, 1H), 4.49-4.35 (m, 5H), 4.21 (t, J = 7.0 Hz, 1H), 4.13-4.08 (m, 1H), 3.04-3.00 (m, 2H), 1.78-1.61 (m, 2H), 1.51-1.46 (m, 2H), 1.42 (s, 9H), 1.40 (s, 9H), 1.28 (s, 2H); HRMS (FAB): calcd. for C₄₁H₅₁N₃O₁₀Na (M+Na)⁺: 768.3472, found: 768.3468.

Boc–Ser(Fmoc–D-Lys(Boc))–OBzl (95). **95** was synthesized in the similar manner to **42**. Yield: 93%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 38.0$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.68-7.64 (m, 2H), 7.40-7.27 (m, 9H), 5.20 (d, J = 12.1 Hz, 1H), 5.13 (d, J = 12.1 Hz, 1H), 4.50-4.35 (m, 5H), 4.24-4.19 (m, 1H), 4.12-4.08 (m, 1H), 3.01 (t, J = 6.6 Hz, 2H), 1.75-1.59 (m, 2H), 1.50-1.44 (m, 2H), 1.41 (s, 9H), 1.39 (s, 9H), 1.29 (s, 2H); HRMS (FAB): calcd. for C₄₁H₅₁N₃O₁₀Na (M+Na)⁺: 768.3472, found: 768.3480.

Boc–Ser(Fmoc–Lys(Boc))–OH (16). **16** was synthesized in the similar manner to **1**. Yield: 99%; HPLC analysis at 230 nm: purity was 91% ($t_{\rm R}$ = 33.1 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.70-7.66 (m, 2H), 7.41-7.28 (m, 4H), 4.58-4.49 (m, 1H), 4.36-4.30 (m, 3H), 4.24-4.14 (m, 3H), 3.05 (t, J = 6.5 Hz, 2H), 1.85-1.66 (m, 2H), 1.45-1.37 (m, 20H), 1.29-1.28 (m, 2H); HRMS (FAB): calcd. for C₃₄H₄₅N₃O₁₀Na (M+Na)⁺: 678.3003, found: 678.2997.

Boc–Ser(Fmoc–Arg(Pmc))–OBzl (57). 57 was synthesized in the similar manner to 42. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-arginine derivative 96. Yield: 94%; HPLC analysis at 230 nm: purity was 97% ($t_R = 38.8 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.66-7.62 (m, 2H), 7.39-7.26 (m, 9H), 5.15 (d, J = 12.1 Hz, 1H), 5.07 (d, J = 12.1 Hz, 1H), 4.48-4.35 (m, 5H), 4.22-4.17 (m, 1H), 4.10-4.05 (m, 1H), 3.15-3.11 (m, 2H), 2.64-2.60 (m, 2H), 2.56 (s, 3H), 2.55 (s, 3H), 2.08 (s, 3H), 1.80-1.70 (m, 3H), 1.60-1.42 (m, 3H), 1.38 (s, 9H), 1.27 (s, 6H); HRMS (FAB): calcd. for C₅₀H₆₁N₅O₁₁SNa (M+Na)⁺: 962.3986, found: 962.3978.

Boc–Ser(Fmoc–D-Arg(Pmc))–OBzl (96). 96 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 38.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.7 Hz, 2H), 7.65-7.62 (m, 2H), 7.39-7.26 (m, 9H), 5.16 (d, J = 12.3 Hz, 1 H), 5.08 (d, J = 12.7 Hz, 1H), 4.47-4.35 (m, 5H), 4.22-4.17 (m, 1H), 4.11-4.04 (m, 1H), 3.14-3.10 (m, 2H), 2.61 (t, J = 6.9 Hz, 2H), 2.56 (s, 3H), 2.55 (s, 3H), 2.07 (s, 3H), 1.79-1.68 (m, 3H), 1.59-1.43 (m, 3H), 1.38 (s, 9H), 1.26 (s, 6H); HRMS (FAB): calcd. for C₅₀H₆₁N₅O₁₁SNa (M+Na)⁺: 962.3986, found: 962.3978.

Boc–Ser(Fmoc–Arg(Pmc))–OH (17). 17 was synthesized in the similar manner to **1**. Yield: 88%; HPLC analysis at 230 nm: purity was 89% (t_R = 34.5 min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.67-7.63 (m, 2H), 7.39-7.26 (m, 4H), 4.50-4.44 (m, 1H), 4.36-4.34 (m, 3 H), 4.22-4.12 (m, 3H), 3.19-3.15 (m, 2H), 2.62 (t, J = 6.5 Hz, 2H), 2.57 (s, 3H), 2.55 (s, 3H), 2.08 (s, 3H), 1.78 (t, J = 6.8 Hz, 2H), 1.67-1.44 (m, 4H), 1.38 (s, 9H), 1.27 (s, 6H); HRMS (FAB): calcd. for C₄₃H₅₅N₅O₁₁SNa (M+Na)⁺: 872.3516, found: 872.3525.

Boc–Ser(Fmoc–Phe)–OBzl (58). **58** was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-phenylalanine derivative **97**. Yield: >99%; HPLC analysis at 230 nm: purity was 95% ($t_R = 37.9$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.77 (d, J = 7.3 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.39-7.17 (m, 14H), 5.17 (d, J = 12.3 Hz, 1H), 5.11 (d, J = 12.3 Hz, 1H), 4.49-4.47 (m, 1H), 4.43-4.37 (m, 3H), 4.32-4.20 (m, 2H), 4.14 (t, J = 7.0 Hz, 1H), 3.13-3.06 (m, 1H), 2.93-2.85 (m, 1H), 1.40 (s, 9H); HRMS (FAB): calcd. for C₃₉H₄₀N₂O₈Na (M+Na)⁺: 687.2682, found: 687.2678.

Boc–Ser(Fmoc–D-Phe))–OBzl (97). 97 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 94% (t_R = 38.3 min); ¹H NMR (CD₃OD, 300MHz) δ 7.77 (d, J = 7.3 Hz, 2H), 7.57 (d, J = 7.4 Hz, 2H), 7.39-7.16 (m, 14H), 5.19 (d, J = 12.2 Hz, 1H), 5.12 (d, J = 12.2 Hz, 1H), 4.51-4.37 (m,

4H), 4.33-4.21 (m, 2H), 4.16-4.11 (m, 1H), 3.11-3.05 (m, 1H), 2.88-2.81 (m, 1H), 1.40 (s, 9H); HRMS (FAB): calcd. for $C_{39}H_{40}N_2O_8Na$ (M+Na)⁺: 687.2682, found: 687.2678.

Boc–Ser(Fmoc–Phe)–OH (18). 18 was synthesized in the similar manner to **1**. Yield: >99%; HPLC analysis at 230 nm: purity was 90% ($t_{\rm R} = 32.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.77 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.31-7.16 (m, 7H), 4.51-4.43 (m, 2H), 4.39-4.11 (m, 5H), 3.26-3.16 (m, 1H), 2.99-2.88 (m, 1H), 1.41 (s, 9H); HRMS (FAB): calcd. for C₃₂H₃₄N₂O₈Na (M+Na)⁺: 597.2213, found: 597.2220.

Boc–Ser(Fmoc–Tyr(*t***Bu))–OBzl (59). 59** was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-tyrosine derivative **98**. Yield: 91%; HPLC analysis at 230 nm: purity was 92% ($t_R = 40.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.77 (d, J = 7.0 Hz, 2 H), 7.62-7.58 (m, 2 H), 7.40-7.28 (m, 9 H), 7.09 (d, J = 8.2 Hz, 2 H), 6.87-6.84 (m, 2 H), 5.20-5.09 (m, 2H), 4.82-4.81 (m, 1 H), 4.50-4.08 (m, 5H), 3.10-3.04 (m, 1H), 2.87-2.80 (m, 1H), 1.41 (s, 9H), 1.25 (s, 9H); HRMS (FAB): calcd. for C₄₃H₄₈N₂O₉Na (M+Na)⁺: 759.3258, found: 759.3262.

Boc–Ser(Fmoc–D-Tyr(fBu))–OBzl (98). **98** was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 38.9$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 2H), 7.40-7.25 (m, 9H), 7.07 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 5.20 (d, J = 12.3 Hz, 1H), 5.12 (d, J = 12.5 Hz, 1H), 4.53-4.49 (m, 1H), 4.46-4.35 (m, 3H), 4.32-4.19 (m, 2H), 4.15-4.10 (m, 1H), 3.07-3.01 (m, 1H) 2.84-2.76 (m, 1H), 1.40 (s, 9H), 1.25 (s, 9H); HRMS (FAB): calcd. for C₄₃H₄₈N₂O₉Na (M+Na)⁺: 759.3258, found: 759.3262.

Boc-Ser(Fmoc-Tyr(tBu))-OH (19).^{2k}

For details of synthesis and characterization of compound 19, see ref. 2k.

Boc–Ser(Fmoc–Trp(Boc))–OBzl (60). **60** was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-tryptophan derivative **99**. Yield: >99%; HPLC analysis at 230 nm: purity was 94% ($t_R = 41.2 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 8.09 (d, J = 8.0 Hz, 1H), 7.80-7.69 (m, 2H), 7.64-7.46 (m, 3H), 7.43-7.13 (m, 11H), 5.16 (d, J = 12.4 Hz, 1H), 5.10 (d, J = 12.4 Hz, 1H), 4.59-4.49 (m, 2H), 4.48-4.41 (m, 2H), 4.36-4.06 (m, 3H), 3.29-3.15 (m, 1H), 3.13-3.00 (m, 1H), 1.58 (s, 9H), 1.40 (s, 9H); HRMS (FAB): calcd. for C₄₆H₄₉N₃O₁₀Na (M+Na)⁺: 826.3316, found: 826.3321.

Boc–Ser(Fmoc–D-Trp(Boc))–OBzl (99). 99 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 91% ($t_{\rm R} = 41.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 8.15-8.05 (m, 1H), 7.81-7.68 (m, 2H), 7.67-7.59 (m, 1H), 7.58-7.45 (m, 3H), 7.43-7.14 (m, 11H), 5.21-5.02 (m, 2H), 4.62-4.43 (m, 4H), 4.36-4.05 (m, 3H), 3.28-3.13 (m, 1H), 3.11-3.05 (m, 1H), 1.58 (s, 9H), 1.39 (s, 9H); HRMS (FAB): calcd. for C₄₆H₄₉N₃O₁₀Na (M+Na)⁺: 826.3316, found: 826.3311.

Boc–Ser(Fmoc–Trp(Boc))–OH (20). 20 was synthesized in the similar manner to **1**. Yield: 91%; HPLC analysis at 230 nm: purity was 94% ($t_{\rm R}$ = 37.5 min); ¹H NMR (CD₃OD, 300MHz) δ 8.07 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.64 (d, J = 7.7 Hz, 1H), 7.56-7.45 (m, 3H), 7.39-7.12 (m, 6H), 4.63-4.50 (m, 2H), 4.44-4.34 (m, 1H), 4.33-4.23 (m, 2H), 4.19-4.09 (m, 2H), 3.26-3.01 (m, 2H), 1.57 (s, 9H), 1.40 (s, 9H); HRMS (FAB): calcd. for C₃₉H₄₃N₃O₁₀Na (M+Na)⁺: 736.2846, found: 736.2840.

Boc–Thr(Fmoc–Gly)–OBzl (61). 61 was synthesized in a similar manner to **41**. Yield: 99%; HPLC analysis at 230 nm: purity was 87% ($t_{\rm R} = 35.8 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.40-7.27 (m, 9H), 5.45-5.42 (m, 1H), 5.17 (d, J = 12.3 Hz, 1H), 5.09 (d, J = 12.3 Hz, 1H), 4.41 (d, J = 2.7 Hz, 1H), 4.35 (d, J = 7.5 Hz, 2H), 4.23 (t, J = 7.1 Hz, 1H), 3.79 (d, J = 17.7 Hz, 1H), 3.71 (d, J = 17.7 Hz, 1H), 1.42 (s, 9H), 1.27 (d, J = 6.3 Hz, 3H); HRMS (FAB): calcd. for C₃₃H₃₆N₂O₈Na (M+Na)⁺: 611.2369, found: 611.2375.

Boc–Thr(Fmoc–Gly)–OH (21). 21 was synthesized in a similar manner to **1**. Yield: 95%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 30.8 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.2 Hz, 2H), 7.67 (d, J = 7.2 Hz, 2H), 7.40-7.28 (m, 4H), 5.44-5.41 (m, 1H), 4.34 (d, J = 6.6 Hz, 2H), 4.25-4.19 (m, 2H), 3.85 (s, 2H), 1.43 (s, 9H), 1.28 (d, J = 6.3 Hz, 3H); HRMS (FAB): calcd. for C₂₆H₃₀N₂O₈Na (M+Na)⁺: 521.1900, found: 521.1904.

Boc-Thr(Fmoc-Ala)-OBzl (62).^{4b} **62** was synthesized in a similar manner to **44**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-alanine derivative **100**. Yield: 81%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 36.1 \text{ min}$); ¹H NMR (CD₃OD,

400MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.64 (dd, J = 13.6, 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.32-7.23 (m, 7H), 5.46-5.42 (m, 1H), 5.14, 5.06 (2d, J = 12.3 Hz, 2H), 4.42 (d, J = 2.9 Hz, 1H), 4.37, 4.28 (2dd, J = 10.4 Hz, 7.0, 6.8 Hz, 2H), 4.20 (t, J = 6.8 Hz, 1H), 4.15 (q, J = 7.3 Hz, 1H), 1.43 (s, 9H), 1.30 (d, J = 7.3 Hz, 3H), 1.24 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₃₄H₃₉N₂O₈ (M+H)⁺: 603.2706, found: 603.2703.

Boc–Thr(Fmoc–D-Ala)–OBzl (100). **100** was synthesized in the similar manner to **44**. Yield: 86%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 36.0 \text{ min}$); ¹H NMR (CD₃OD, 400MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.4 Hz, 2H), 7.40-7.28 (m, 9H), 5.43-5.39 (m, 1H), 5.16, 5.09 (2d, J = 12.2 Hz, 2H), 4.41 (d, J = 2.7 Hz, 1H), 4.39, 4.31 (2dd, J = 10.4 Hz, 7.2, 7.0 Hz, 2H), 4.24-4.20 (m, 1H), 4.12 (q, J = 7.3 Hz, 1H), 1.41 (s, 9H), 1.26 (d, J = 6.4 Hz, 3H), 1.24 (d, J = 7.5 Hz, 3H); HRMS (FAB): calcd. for C₃₄H₃₈N₂O₈Na (M+Na)⁺: 625.2526, found: 625.2522.

Boc–Thr(Fmoc–Ala)–OH (22).^{4b} **22** was synthesized in the similar manner to **1**. Yield: 98%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 30.5 min); ¹H NMR (CD₃OD, 400MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 8.4 Hz, 2H), 7.38 (t, J = 7.2 Hz, 2H), 7.33-7.29 (m, 2H), 5.42-5.39 (m, 1H), 4.39, 4.29 (2dd, J = 13.3 Hz, 7.2, 7.0 Hz, 2H), 4.24-4.18 (m, 3H), 1.41 (s, 9H), 1.35 (d, J = 7.3 Hz, 3H), 1.24 (d, J = 6.2 Hz, 3H); HRMS (FAB): calcd. for C₂₇H₃₂N₂O₈Na (M+Na)⁺: 535.2056, found: 535.2051.

Boc–Thr(Fmoc–Val)–OBzl (63). 63 was synthesized in the similar manner to **44**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-valine derivative **101**. Yield: 94%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 39.2 min); ¹H NMR (CD₃OD, 400MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.66-7.62 (m, 2H), 7.37 (dt, J = 7.5 Hz, 0.5 Hz, 2H), 7.32-7.23 (m, 7H), 5.50-5.45 (m, 1H), 5.11, 5.04 (2d, J = 12.3 Hz, 2H), 4.43 (d, J = 2.8 Hz, 1H), 4.39-4.35 (m, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.98 (d, J = 7.0 Hz, 1H), 2.07-1.96 (m, 1H), 1.44 (s, 9 H), 1.24 (d, J = 6.4 Hz, 3H), 0.90, 0.89 (2d, J = 6.8, 6.6 Hz, 6H); HRMS (FAB): calcd. for C₃₆H₄₂N₂O₈Na (M+Na)⁺: 653.2839, found: 653.2833.

Boc–Thr(Fmoc–D-Val)–OBzl (101). 101 was synthesized in the similar manner to **44**. Yield: 89%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 38.4 \text{ min}$); ¹H NMR (CD₃OD, 400MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.67 (t, J = 7.1 Hz, 2H), 7.38 (dt, J = 7.5 Hz, 0.5 Hz, 2H), 7.32-7.25 (m, 7H), 5.46-5.41 (m, 1 H), 5.14, 5.08 (2d, J = 12.3 Hz, 2H), 4.43 (d, J = 2.7 Hz, 1H), 4.37 (d, J = 6.9 Hz, 2H), 4.23 (t, J = 6.9 Hz, 1H), 4.00 (d, J = 6.2 Hz, 1H), 2.09-2.00 (m, 1H), 1.43 (s, 9H), 1.27 (d, J = 6.4 Hz, 3H), 0.88, 0.87 (2d, J = 6.8, 6.6 Hz, 6H); HRMS (FAB): calcd. for C₃₆H₄₂N₂O₈Na (M+Na)⁺: 653.2839, found: 653.2845.

Boc-Thr(Fmoc-Val)-OH (23).^{2h}

For details of synthesis and characterization of compound 23, see ref. 2h.

Boc–Thr(Fmoc–Leu)–OBzl (64). 64 was synthesized in the similar manner to 44. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-leucine derivative **102.** Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 39.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.2 Hz, 2H), 7.67-7.61 (m, 2H), 7.40-7.27 (m, 9H), 5.46-5.43 (m, 1H), 5.12 (d, J = 12.3 Hz, 1H), 5.04 (d, J = 12.6 Hz, 1H), 4.41-4.30 (m, 3H), 4.23-4.15 (m, 2H), 1.63-1.60 (m, 1H), 1.53-1.48 (m, 2H), 1.43 (s, 9H), 1.23 (d, J = 6.0 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.3 Hz, 3H); HRMS (FAB): calcd. for $C_{37}H_{44}N_2O_8Na$ (M+Na)⁺: 667.2995, found: 667.2999.

Boc–Thr(Fmoc–D-Leu)–OBzl (102). **102** was synthesized in the similar manner to **44**. Yield: 96%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 39.1 min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.2 Hz, 2 H), 7.66 (t, J = 6.6 Hz, 2H), 7.40-7.27 (m, 9H), 5.42-5.40 (m, 1H), 5.16 (d, J = 12.3 Hz, 1H), 5.08 (d, J = 12.6 Hz, 1H), 4.41-4.33 (m, 3H), 4.25-4.12 (m, 2H), 1.66-1.59 (m, 1H), 1.51-1.46 (m, 2H), 1.41 (s, 9H), 1.26 (d, J = 6.3 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H); HRMS (FAB): calcd. for C₃₇H₄₄N₂O₈Na (M+Na)⁺: 667.2995, found: 667.2991.

Boc–Thr(Fmoc–Leu)–OH (24). 24 was synthesized in the similar manner to **1**. Yield: 96%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 34.3 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 6.9 Hz, 2H), 7.41-7.29 (m, 4H), 5.39-5.35 (m, 1H), 4.43-4.32 (m, 2H), 4.25-4.15 (m, 3H), 1.66-1.52 (m, 3H), 1.41 (s, 9H), 1.23 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3 H); HRMS (FAB): calcd. for C₃₀H₃₈N₂O₈Na (M+Na)⁺: 577.2526, found: 577.2520.

Boc–Thr(Fmoc–Ile)–OBzl (65). 65 was synthesized in the similar manner to **44**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized *D-allo*-isoleucine derivative **103**. Yield: 92%; HPLC analysis at 230 nm: purity was 94% ($t_R = 39.1 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.31-7.26 (m, 7H),

5.48-5.46 (m, 1H), 5.10 (d, J = 12.3 Hz, 1H), 5.04 (d, J = 12.3 Hz, 1H), 4.42 (d, J = 2.7 Hz, 1H), 4.35 (d, J = 7.0 Hz, 2H), 4.20 (t, J = 6.8 Hz, 1H), 4.03 (d, J = 7.3 Hz, 1H), 1.82-1.72 (m, 1H), 1.44 (s, 9H), 1.24 (d, J = 6.1 Hz, 3H), 1.18-1.11 (m, 2H), 0.89 (d, J = 7.4 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H); HRMS (FAB): calcd. for C₃₇H₄₄N₂O₈Na (M+Na)⁺: 667.2995, found: 667.2991.

Boc–Thr(Fmoc–D-*allo***–Ile)–OBzl (103)**. **103** was synthesized in the similar manner to **42.** Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 39.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.1 Hz, 2H), 7.69-7.65 (m, 2H), 7.40-7.27 (m, 9H), 5.44-5.41 (m, 1H), 5.15 (d, J = 11.9 Hz, 1H), 5.09 (d, J = 12.3 Hz, 1 H), 4.43-4.37 (m, 3H), 4.25-4.20 (m, 2H), 1.91-1.83 (m, 1H), 1.42 (s, 9H), 1.27 (d, J = 6.2 Hz, 3H), 1.20-1.11 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H), 0.82 (d, J = 6.8 Hz, 3H); HRMS (FAB): calcd. for C₃₇H₄₄N₂O₈Na (M+Na)⁺: 667.2995, found: 667.2991.

Boc–Thr(Fmoc–Ile)–OH (25). **25** was synthesized in the similar manner to **1**. Yield: 94%; HPLC analysis at 230 nm: purity was 93% ($t_R = 33.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2 H), 7.69-7.63 (m, 2 H), 7.41-7.28 (m, 4H), 5.41-5.37 (m, 1H), 4.38 (d, J = 7.0 Hz, 2H), 4.23 (t, J = 6.8 Hz, 1H), 4.15 (d, J = 2.7 Hz, 1H), 4.08 (d, J = 6.6 Hz, 1H), 1.89-1.76 (m, 1H), 1.42 (s, 9H), 1.24 (d, J = 6.4 Hz, 3 H), 1.19-1.12 (m, 2H), 0.91 (d, J = 7.3 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 3 H); HRMS (FAB): calcd. for C₃₀H₃₈N₂O₈Na (M+Na)⁺: 577.2526, found: 577.2520.

Boc–Thr(Fmoc–Ser(*t***Bu))–OBzl (66). 66** was synthesized in the similar manner to 44. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-serine derivative 104. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% (t_R = 39.4 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.65 (t, J = 6.8 Hz, 2H), 7.41-7.23 (m, 9H), 5.48-5.45 (m, 1H), 5.17 (d, J = 12.0 Hz, 1H), 5.07 (d, J = 12.0 Hz, 1H), 4.42-4,21 (m, 5H), 3.75-3.71 (m, 1H), 3.59-3.54 (m, 1H), 1.43 (s, 9H), 1.27 (d, J = 5.1 Hz, 3H), 1.16 (s, 9H); HRMS (FAB): calcd. for C₃₈H₄₆N₂O₉Na (M+Na)⁺: 697.3101, found: 697.3107.

Boc–Thr(Fmoc–D-Ser(tBu))–OBzl (104). **104** was synthesized in the similar manner to **44**. Yield: 89%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 39.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.69-7.65 (m, 2H), 7.41-7.28 (m, 9H), 5.45-5.42 (m, 1H), 5.19 (d, J = 12.0 Hz, 1H), 5.09 (d, J = 12.0 Hz, 1H), 4.41-4.22 (m, 5H), 3.69-3.64 (m, 1H), 3.59-3.55 (m, 1H), 1.41 (s, 9H), 1.28 (d, J = 6.0 Hz, 3H), 1.16 (s, 9H); HRMS (FAB): calcd. for C₃₈H₄₆N₂O₉Na (M+Na)⁺: 697.3101, found: 697.3105.

Boc–Thr(Fmoc–Ser(tBu))–OH (26). **26** was synthesized in the similar manner to **1**. Yield: 93%; HPLC analysis at 230 nm: purity was 92% ($t_R = 34.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.68-7.67 (m, 2H), 7.41-7.28 (m, 4H), 5.43-5.40 (m, 1H), 4.37-4.18 (m, 5H), 3.81-3.76 (m, 1H), 3.59-3.55 (m, 1H), 1.43 (s, 9H), 1.27 (d, J = 6.2 Hz, 3H), 1.57 (s, 9H); HRMS (FAB): calcd. for C₃₁H₄₀N₂O₉Na (M+Na)⁺: 607.2632, found: 607.2624.

Boc–Thr(Fmoc–Thr(tBu))–OBzl (67). 67 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-*allo*-threonine derivative **105**. Yield: 86%; HPLC analysis at 230 nm: purity was 90% ($t_R = 40.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 6.8 Hz, 2H), 7.68-7.62 (m, 2H), 7.40-7.23 (m, 9H), 5.47-5.32 (m, 1H), 5.14-4.99 (m, 2H), 4.42-4.35 (m, 3H), 4.26-4.17 (m, 1H), 4.14-4.06 (m, 2H), 1.43 (s, 9H), 1.29 (d, J = 6.2 Hz, 3H), 1.16 (s, 9H), 1.14 (d, J = 5.1 Hz, 3H); HRMS (FAB): calcd. for C₃₉H₄₈N₂O₉Na (M+Na)⁺: 711.3258, found: 711.3252.

Boc–Thr(Fmoc–D*allo***-Thr**(*t***Bu**))–**OBzl** (105). 105 was synthesized in the similar manner to 42. Yield: 65%; HPLC analysis at 230 nm: purity was 88% ($t_{\rm R} = 40.0$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2 H), 7.68 (d, J = 7.3 Hz, 2 H), 7.41-7.28 (m, 9 H), 5.42-5.38 (m, 1 H), 5.17 (d, J = 12.5 Hz, 1 H), 5.09 (d, J = 12.3 Hz, 1 H), 4.41-4.37 (m, 3 H), 4.29-4.22 (m, 2 H), 4.03-4.00 (m, 1 H), 1.43 (s, 9 H), 1.30-1.28 (m, 3 H), 1.18 (s, 9 H), 1.09 (d, J = 6.4 Hz, 3 H); HRMS (FAB): calcd. for C₃₉H₄₈N₂O₉Na (M+Na)⁺:711.3258, found: 711.3253.

Boc–Thr(Fmoc–Thr(tBu))–OH (27). 27 was synthesized in the similar manner to **1**. Yield: 83%; HPLC analysis at 230 nm: purity was 91% ($t_{\rm R} = 35.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.7 Hz, 2H), 7.70-7.66 (m, 2H), 7.41-7.29 (m, 4H), 5.39-5.28 (m, 1H), 4.41-4.38 (m, 3H), 4.26-4.22 (m, 1H), 4.17-4.12 (m, 2H), 1.42 (s, 9H), 1.29 (d, J = 6.0 Hz, 3H). 1.17 (s, 9H), 1.13 (d, J = 6.2 Hz, 3H); HRMS (FAB): calcd. for C₃₂H₄₂N₂O₉Na (M+Na)⁺: 621.2788, found: 621.2792.

Boc–Thr(Fmoc–Met)–OBzl (69). 69 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-methionine derivative **107**. Yield: >99%; HPLC analysis at 230 nm: purity was 91% ($t_R = 37.2 \text{ min}$); ¹H NMR (CD₃OD,

300MHz) δ 7.78 (d, J = 7.1 Hz, 2 H), 7.64 (t, J = 7.7 Hz, 2 H), 7.40-7.26 (m, 9 H), 5.51-5.37 (m, 1 H), 5.13 (d, J = 11.9 Hz, 1 H), 5.05 (d, J = 12.3 Hz, 1 H), 4.44-4.36 (m, 3 H), 4.30-4.16 (m, 2 H), 2.53-2.37 (m, 2 H), 2.06 (s, 3 H), 2.02-1.80 (m, 2 H), 1.42 (s, 9 H), 1.28-1.21 (m, 3 H); HRMS (FAB): calcd. for C₃₆H₄₂N₂O₈SNa (M+Na)⁺: 685.2560, found: 685.2555.

Boc–Thr(Fmoc–D-Met)–OBzl (107). 107 was synthesized in the similar manner to 42. Yield: >99%; HPLC analysis at 230 nm: purity was 91% ($t_{\rm R}$ = 36.6 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2 H), 7.71-7.60 (m, 2 H), 7.40-7.28 (m, 9 H), 5.46-5.36 (m, 1 H), 5.18 (d, J = 12.3 Hz, 1 H), 5.09 (d, J = 12.3 Hz, 1 H), 4.44-4.33 (m, 3 H), 4.28-4.20 (m, 2 H), 2.50-2.38 (m, 2 H), 2.05 (s, 3 H), 2.01-1.89 (m, 1 H), 1.87-1.72 (m, 1 H), 1.40 (s, 9 H), 1.28-1.23 (m, 3 H); HRMS (FAB): calcd. for C₃₆H₄₂N₂O₈SNa (M+Na)⁺: 685.2560, found: 685.2554.

Boc–Thr(Fmoc–Met)–OH (29). **29** was synthesized in a similar manner to **8**. Yield: 73%; HPLC analysis at 230 nm: purity was 95% ($t_{\rm R}$ = 33.5 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.68 (t, J = 6.8 Hz, 2H), 7.41-7.29 (m, 4H), 5.43-5.32 (m, 1H), 4.44-4.32 (m, 3H), 4.23 (t, J = 6.7 Hz, 2H), 2.54-2.41 (m, 2 H), 2.07 (s, 3H), 2.05-1.82 (m, 2H), 1.40 (s, 9H), 1.33-1.23 (m, 3 H); HRMS (FAB): calcd. for C₂₉H₃₆N₂O₈SNa (M+Na)⁺: 595.2090, found: 595.2097.

Boc–Thr(Fmoc–Pro)–OBzl (70). **70** was synthesized in the similar manner to **44**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-proline derivative **108**. Yield: 86%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 37.8 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.1 Hz, 2H), 7.63-7.52 (m, 2H), 7.40-7.25 (m, 9H), 5.43-5.34 (m, 1H), 5.17-5.06 (m, 2H), 4.41-4.21 (m, 5H), 3.55-3.42 (m, 2H), 2.28-2.13 (m, 1H), 1.95-1.83 (m, 3H), 1.37 (s, 9H), 1.24-1.17 (m, 3H); HRMS (FAB): calcd. for C₃₆H₄₀N₂O₈Na (M+Na)⁺: 651.2682, found: 651.2688.

Boc–Thr(Fmoc–D-Pro)–OBzl (108). 108 was synthesized in the similar manner to **44**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 37.7$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.80 (d, J = 7.5 Hz, 2H), 7.70-7.56 (m, 2H), 7.41-7.29 (m, 9H), 5.44-5.35 (m, 1H), 5.19-5.09 (m, 2H), 4.43-4.14 (m, 5H), 3.46-3.34 (m, 2H), 2.13-2.07 (m, 1H), 1.85-1.76 (m, 3H), 1.41 (s, 9H), 1.29-1.18 (m, 3H); HRMS (FAB): calcd. for C₃₆H₄₀N₂O₈Na (M+Na)⁺: 651.2682, found: 651.2676.

Boc–Thr(Fmoc–Pro)–OH (30). **30** was synthesized in the similar manner to **1**. Yield: 96%; HPLC analysis at 230 nm: purity was 90% ($t_{\rm R} = 31.6 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.81-7.77 (m, 2H), 7.68-7.56 (m, 2H), 7.41-7.29 (m, 4H), 5.38-5.27 (m, 1H), 4.44-4.11 (m, 5H), 3.61-3.54 (m, 1H), 3.45-3.37 (m, 1H), 2.30-2.18 (m, 1H), 2.05-1.88 (m, 3H), 1.36 (s, 9H), 1.23-1.12 (m, 3H); HRMS (FAB): calcd. for C₂₉H₃₄N₂O₈Na (M+Na)⁺: 561.2213, found: 561.2220.

Boc–Thr(Fmoc–Asp(OtBu))–OBzl (71). 71 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-aspartic acid derivative **109**. Yield: >99%; HPLC analysis at 230 nm: purity was 92% ($t_R = 40.2 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.1 Hz, 2H), 7.67-7.60 (m, 2H), 7.40-7.26 (m, 9H), 5.47-5.39 (m, 1H), 5.15-5.04 (m, 2H), 4.46-4.35 (m, 4H), 4.25-4.20 (m, 1H), 2.78-2.62 (m, 2H), 1.44 (s, 9H), 1.42 (s, 9H), 1.28-1.21 (m, 3H); HRMS (FAB): calcd. for C₃₉H₄₆N₂O₁₀Na (M+Na)⁺: 725.3050, found: 725.3057.

Boc–Thr(Fmoc–D-Asp(OtBu))–OBzl (109). **109** was synthesized in the similar manner to **44**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 38.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.64 (d, J = 7.5 Hz, 2H), 7.40-7.27 (m, 9H), 5.45-5.39 (m, 1H), 5.17 (d, J = 12.3 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 4.49-4.33 (m, 4H), 4.23 (t, J = 6.9 Hz, 1H), 2.78-2.70 (m, 1H), 2.59-2.50 (m, 1 H), 1.44 (s, 9H), 1.40 (s, 9H), 1.27-1.20 (m, 3H); HRMS (FAB): calcd. for C₃₉H₄₆N₂O₁₀Na (M+Na)⁺: 725.3050, found: 725.3046.

Boc–Thr(Fmoc–Asp(OtBu))–OH (31). 31 was synthesized in the similar manner to **1**. Yield: 94%; HPLC analysis at 230 nm: purity was 92% ($t_{\rm R} = 35.1 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.68 -7.64 (m, 2H), 7.40-7.27 (m, 4H), 5.44-5.36 (m, 1H), 4.56-4.52 (m, 1H), 4.36-4.32 (m, 2H), 4.25-4.20 (m, 1H), 4.12-4.09 (m, 1H), 2.76-2.74 (m, 2H), 1.44 (s, 9H), 1.42 (s, 9H), 1.28-1.24 (m, 3H); HRMS (FAB): calcd. for C₃₂H₄₀N₂O₁₀Na (M+Na)⁺: 635.2581, found: 635.2585.

Boc-Thr(Fmoc-Asn(Trt))–OBzl (72). 72 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-asparagine derivative **110**. Yield: >99%; HPLC analysis at 230 nm: purity was 92% ($t_{\rm R}$ = 39.7 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.9 Hz, 2H), 7.70-7.60 (m, 2H), 7.42-7.14 (m, 24H), 5.45-5.38 (m, 1H), 5.09-4.98 (m,

2H), 4.43-4.31 (m, 3H), 4.28-4.19 (m, 2H), 2.83-2.80 (m, 2H), 1.40 (s, 9H), 1.19 (d, J = 6.2 Hz, 3H); HRMS (FAB): calcd. for $C_{54}H_{53}N_3O_9Na$ (M+Na)⁺: 910.3680, found: 910.3675.

Boc–Thr(Fmoc–D-Asn(Trt))–OBzl (110). 110 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 40.2 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 6.4 Hz, 2H), 7.42-7.15 (m, 24H), 5.46-5.34 (m, 1H), 5.13-5.02 (m, 2H), 4.43-4.39 (m, 3H), 4.33-4.23 (m, 2H), 2.72 (d, J = 6.0 Hz, 2H), 1.37 (s, 9H), 1.21 (d, J = 6.2 Hz, 3H); HRMS (FAB): calcd. for C₅₄H₅₃N₃O₉Na (M+Na)⁺: 910.3680, found: 910.3675.

Boc–Thr(Fmoc–Asn(Trt))–OH (32). **32** was synthesized in the similar manner to **1**. Yield: 78%; HPLC analysis at 230 nm: purity was 94% ($t_{\rm R} = 36.1 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.80 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 7.7 Hz, 2H), 7.42-7.15 (m, 19H), 5.45-5.33 (m, 1H), 4.53-4.41 (m, 2H), 4.31-4.23 (m, 2H), 4.16-4.11 (m, 1H), 2.89-2.74 (m, 2H), 1.40 (s, 9H), 1.20 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₄₇H₄₇N₃O₉Na (M+Na)⁺: 820.3210, found: 820.3205.

Boc–Thr(Fmoc–Glu(OtBu))–OBzl (73). **73** was synthesized in the similar manner to **44**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-glutamic acid derivative **111**. Yield: 74%; HPLC analysis at 230 nm: purity was 94% ($t_R = 38.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.65 (t, J = 7.5 Hz, 2H), 7.40-7.25 (m, 9H), 5.50-5.41 (m, 1H), 5.13 (d, J = 12.3 Hz, 1H), 5.05 (d, J = 12.3 Hz, 1H) 4.42-4.31 (m, 3H), 4.24-4.13 (m, 2H), 2.28 (t, J = 7.2 Hz, 2H), 2.07-1.94 (m, 1H), 1.90-1.76 (m, 1H), 1.45 (s, 9H), 1.43 (s, 9H), 1.30-1.23 (m, 3H); HRMS (FAB): calcd.. for C₄₀H₄₈N₂O₁₀Na (M+Na)⁺: 739.3207, found: 739.3214.

Boc–Thr(Fmoc–D-Glu(OtBu))–OBzl (111). **111** was synthesized in the similar manner to **44**. Yield: 88%; HPLC analysis at 230 nm: purity was 94% ($t_R = 39.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.80 (d, J = 7.5 Hz, 2H), 7.70-7.64 (m, 2H), 7.41-7.28 (m, 9H), 5.48-5.40 (m, 1H), 5.18 (d, J = 12.2 Hz, 1H), 5.10 (d, J = 12.2 Hz, 1H) 4.45-4.33 (m, 3H), 4.23 (t, J = 7.1 Hz, 1H), 4.18-4.11 (m, 1H), 2.27 (t, J = 7.6 Hz, 2 H), 2.07-1.94 (m, 1H), 1.81-1.69 (m, 1H), 1.44 (s, 9H), 1.41 (s, 9H), 1.28-1.24 (m, 3H); HRMS (FAB): calcd. for C₄₀H₄₈N₂O₁₀Na (M+Na)⁺: 739.3207, found: 739.3201.

Boc–Thr(Fmoc–Glu(OtBu))–OH (33). 33 was synthesized in the similar manner to **1**. Yield: 90%; HPLC analysis at 230 nm: purity was 88% ($t_R = 33.9 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2H), 7.68 (t, J = 6.0 Hz, 2H), 7.41-7.29 (m, 4H), 5.47-5.34 (m, 1H), 4.38-4.31 (m, 2H), 4.25-4.21 (m, 2H), 4.15-4.10 (m, 1H), 2.30 (t, J = 7.3 Hz, 2H), 2.13-2.00 (m, 1H), 1.92-1.87 (m, 1H), 1.44 (s, 9H), 1.41 (s, 9H), 1.25 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₃₃H₄₂N₂O₁₀Na (M+Na)⁺: 649.2737, found: 649.2728.

Boc–Thr(Fmoc–Gln(Trt))–OBzl (74). 74 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-glutamine derivative **112**. Yield: >99%; HPLC analysis at 230 nm: purity was 95% ($t_R = 41.9$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.66-7.61 (m, 2H), 7.39-7.16 (m, 24H), 5.48-5.44 (m, 1H), 5.11 (d, J = 12.5 Hz, 1H), 5.02 (d, J = 12.5 Hz, 1H), 4.41-4.35 (m, 2H), 4.23-4.08 (m, 3H), 2.45-2.28 (m, 2H), 2.05-1.95 (m, 1H), 1.82-1.72 (m, 1H), 1.41 (s, 9H), 1.28-1.21 (m, 3 H); HRMS (FAB): calcd. for C₅₅H₅₅N₃O₉Na (M+Na)⁺: 924.3836, found: 924.3830.

Boc–Thr(Fmoc–D-Gln(Trt))–OBzl (112). 112 was synthesized in the similar manner to **42**. Yield: >99%; HPLC analysis at 230 nm: purity was 93% ($t_{\rm R} = 40.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.67-7.65 (m, 2H), 7.39-7.18 (m, 24H), 5.46-5.43 (m, 1H), 5.10 (d, J = 12.3 Hz, 1H), 5.03 (d, J = 12.1 Hz, 1H), 4.42-4.37 (m, 2 H), 4.25-4.20 (m, 1H), 4.16-4.05 (m, 2H), 2.47-2.45 (m, 2H), 2.04-1.92 (m, 1H), 1.72-1.64 (m, 2H), 1.39 (s, 9H), 1.28-1.20 (m, 3H); HRMS (FAB): calcd. for C₅₅H₅₅N₃O₉Na (M+Na)⁺: 924.3836, found: 924.3830.

Boc–Thr(Fmoc–Gln(Trt))–OH (34). **34** was synthesized in the similar manner to **1**. Yield: 89%; HPLC analysis at 230 nm: purity was 94% ($t_{\rm R}$ = 36.9 min); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.68-7.65 (m, 2H), 7.39-7.16 (m, 19H), 5.47-5.41 (m, 1H), 4.40-4.31 (m, 2H), 4.24-4.19 (m, 2H), 4.12-4.11 (m, 1H), 2.45-2.29 (m, 2H), 2.06-1.97 (m, 1H), 1.89-1.79 (m, 1H), 1.39 (s, 9H), 1.23 (d, J = 6.0 Hz, 3H); HRMS (FAB): calcd. for C₄₈H₄₉N₃O₉Na (M+Na)⁺: 834.3367, found: 834.3362.

Boc–Thr(Fmoc–His(Trt))–OBzl (75). 75 was synthesized in the similar manner to **42**. Preparative HPLC with a 0.1% aqueous TFA–CH₃CN system was used for purification. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-histidine derivative **113**. Yield: 72%; HPLC analysis at 230 nm: purity was 93% ($t_R = 35.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.7 Hz, 2H), 7.59 (t, J = 6.7 Hz, 2H), 7.41-7.18 (m, 18H), 7.12-7.03 (m, 8H), 5.48-5.35 (m, 1H), 5.09 (d, J = 12.3 Hz,

1H), 5.02 (d, J = 12.3 Hz, 1H), 4.45-4.35 (m, 2H), 4.31-4.19 (m, 2H), 4.16-4.09 (m, 1H), 3.03-2.90 (m, 1H), 2.87-2.75 (m, 1H), 1.41 (s, 9H), 1.18 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₅₆H₅₄N₄O₈Na (M+Na)⁺: 933.3839, found: 933.3836.

Boc–Thr(Fmoc–D-His(Trt))–OBzl (113). **113** was synthesized in the similar manner to **42**. Preparative HPLC with a 0.1% aqueous TFA–CH₃CN system was used for purification. Yield: >99%; HPLC analysis at 230 nm: purity was 93% ($t_R = 35.3 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.80 (d, J = 7.3 Hz, 2H), 7.64-7.54 (m, 2H), 7.45-7.20 (m, 18H), 7.17-7.09 (m, 8H), 5.47-5.37 (m, 1H), 5.14-5.01 (m, 2H), 4.50-4.35 (m, 3H), 4.30-4.22 (m, 1H), 4.21-4.11 (m, 1H), 3.02-2.89 (m, 1H), 2.86-2.74 (m, 1H), 1.41 (s, 9H), 1.31-1.20 (m, 3H); HRMS (FAB): calcd. for C₅₆H₅₄N₄O₈Na (M+Na)⁺: 933.3839, found: 933.3836.

Boc–Thr(Fmoc–His(Trt))–OH (35). 35 was synthesized in the similar manner to **1**. Preparative HPLC with a 0.1% aqueous TFA–CH₃CN system was used for purification. Yield: 77%; HPLC analysis at 230 nm: purity was 87% ($t_{\rm R} = 31.7$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2H), 7.65-7.58 (m, 2H), 7.42-7.19 (m, 15H), 7.13-7.02 (m, 6H), 5.41-5.30 (m, 1H), 4.52-4.44 (m, 1H), 4.34-4.05 (m, 4H), 3.11-3.01 (m, 1H), 2.91-2.77 (m, 1H), 1.38 (s, 9H), 1.20 (d, J = 6.2 Hz, 3H); HRMS (FAB): calcd. for C₄₉H₄₈N₄O₈Na (M+Na)⁺: 843.3370, found: 843.3374.

Boc–Thr(Fmoc–Lys(Boc))–OBzl (76). 76 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-lysine derivative **114**. Yield: 98%; HPLC analysis at 230 nm: purity was 92% ($t_{\rm R} = 37.8$ min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.5 Hz, 2 H), 7.67-7.62 (m, 2 H), 7.04-7.25 (m, 9 H), 5.47-5.43 (m, 1H), 5.13 (d, J = 12.3 Hz, 1 H), 5.05 (d, J = 12.6 Hz, 1 H), 4.41-4.29 (m, 3H), 4.23-4.19 (m, 1H), 4.13-4.06 (m, 1H), 3.04-3.00 (m, 2H), 1.74-1.58 (m, 2H), 1.51-1.18 (m, 7H), 1.43 (s, 9H), 1.42 (s, 9H); HRMS (FAB): calcd. for C₄₂H₅₃N₃O₁₀Na (M+Na)⁺: 782.3629, found: 782.3624.

Boc–Thr(Fmoc–D-Lys(Boc))–OBzl (114). **114** was synthesized in the similar manner to **44**. Yield: >99%; HPLC analysis at 230 nm: purity was 94% ($t_{\rm R}$ = 37.8 min); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.3 Hz, 2 H), 7.69-7.65 (m, 2 H), 7.41-7.28 (m, 9 H), 5.43-5.41 (m, 1H), 5.17 (d, J = 12.5 Hz, 1 H), 5.09 (d, J = 12.1 Hz, 1 H), 4.44-4.31 (m, 3H), 4.25-4.20 (m, 1H), 4.11-4.04 (m, 1H), 3.03-3.00 (m, 2H), 1.71-1.50 (m, 1H), 1.45-1.21 (m, 5H), 1.42 (s, 9H), 1.41 (s, 9H), 1.27 (d, J = 6.4 Hz, 3 H); HRMS (FAB): calcd. for C₄₂H₅₃N₃O₁₀Na (M+Na)⁺: 782.3629, found: 782.3634.

Boc–Thr(Fmoc–Lys(Boc))–OH (36). **36** was synthesized in the similar manner to **1**. Yield: 96%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 35.1 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79 (d, J = 7.4 Hz, 2 H), 7.70-7.66 (m, 2 H), 7.41-7.29 (m, 4 H), 5.39-5.37 (m, 1H), 4.42-4.30 (m, 2H), 4.25-4.11 (m, 3H), 3.03 (t, J = 6.6 Hz, 2H), 1.81-1.63 (m, 1H), 1.52-1.28 (m, 5H), 1.42 (s, 9H), 1.41 (s, 9H), 1.24 (d, J = 6.4 Hz, 3 H); HRMS (FAB): calcd. for C₃₅H₄₇N₃O₁₀Na (M+Na)⁺: 692.3159, found: 692.3154.

Boc–Thr(Fmoc–Phe)–OBzl (78). **78** was synthesized in the similar manner to **44**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-phenylalanine derivative **116**. Yield: 94%; HPLC analysis at 230 nm: purity was higher than 95% (t_R = 39.3 min); ¹H NMR (CD₃OD, 400MHz) δ 7.77 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.4 Hz, 2H), 7.39-7.35 (m, 2H), 7.31-7.18 (m, 12H), 5.45-5.39 (m, 1H), 5.13, 5.05 (2d, J = 12.3 Hz, 2H), 4.39 (d, J = 2.6 Hz, 1H), 4.36 (dd, J = 9.1, 6.2 Hz, 1H), 4.27-4.25 (m, 2H), 4.14 (t, J = 6.9 Hz, 1H), 3.02, 2.88 (2dd, J = 13.8 Hz, 9.2, 6.2 Hz, 2H), 1.44 (s, 9H), 1.14 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₄₀H₄₃N₂O₈ (M+H)⁺: 679.3019, found: 679.3015.

Boc–Thr(Fmoc–D-Phe)–OBzl (116). 116 was synthesized in the similar manner to **44**. Yield: 97%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R}$ = 38.6 min); ¹H NMR (CD₃OD, 400MHz) δ 7.77 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 7.5 Hz, 2H), 7.39-7.17 (m, 14H), 5.48-5.42 (m, 1H), 5.15, 5.07 (2d, J = 12.3 Hz, 2H), 4.43 (d, J = 2.7 Hz, 1H), 4.37 (dd, J = 9.9, 4.7 Hz, 1H), 4.30-4.21 (m, 2H), 4.14 (t, J = 7.0 Hz, 1H), 3.06, 2.75 (2dd, J = 13.9 Hz, 10.1, 4.7 Hz, 2H), 1.41 (s, 9H), 1.26 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₄₀H₄₂N₂O₈Na (M+Na)⁺: 701.2839, found: 701.2843.

Boc–Thr(Fmoc–Phe)–OH (38). **38** was synthesized in the similar manner to **1**. Yield: 96%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 33.5 \text{ min}$); ¹H NMR (CD₃OD, 400MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.61-7.58 (m, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.31-7.16 (m, 7H), 5.41-5.439 (m, 1H), 4.42 (dd, J = 9.4, 5.7 Hz, 1H), 4.30-4.20 (m, 3H), 4.14 (t, J = 7.0 Hz, 1H) 3.10, 2.90 (2 dd, J = 13.7 Hz, 9.5, 5.7 Hz, 2H), 1.44 (s, 9H), 1.18 (d, J = 7.3 Hz, 3H); HRMS (FAB): calcd. for $C_{33}H_{36}N_2O_8Na$ (M+Na)⁺: 611.2369, found: 611.2375.

Boc-Thr(Fmoc-Tyr(tBu))-OBzl (79). 79 was synthesized in the similar manner to 42. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-tyrosine derivative 117. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 40.8 \text{ min}$); ¹H NMR

(CD₃OD, 300MHz) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.61-7.57 (m, 2H), 7.40-7.25 (m, 9H), 7.11 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 2H), 5.45-5.41 (m, 1H), 5.15 (d, *J* = 12.2 Hz, 1H), 5.04 (d, *J* = 12.2 Hz, 1H), 4.41-4.30 (m, 2H), 4.28-4.19 (m, 2H), 4.15-4.08 (m, 1H), 3.03-2.96 (m, 1H), 2.86-2.79 (m, 1H), 1.44 (s, 9H), 1.30-1.20 (m, 12H), 1.15 (d, *J* = 6.2 Hz, 3H); HRMS (FAB): calcd. for C₄₄H₅₀N₂O₉Na (M+Na)⁺: 773.3414, found: 773.3418.

Boc–Thr(Fmoc–D-Tyr(*t***Bu))–OBzl (117). 117** was synthesized in the similar manner to **44**. Yield: >99%; HPLC analysis at 230 nm: purity was higher than 95% ($t_R = 39.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.78 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.1 Hz, 2H), 7.40-7.25 (m, 9H), 7.10 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 5.46-5.43 (m, 1H), 5.16 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.44-4.13 (m, 5H), 3.05-3.00 (m, 1H), 2.74-2.65 (m, 1H), 1.42 (s, 9H), 1.27 (d, J = 5.9 Hz, 3H), 1.24 (s, 9H); HRMS (FAB): calcd. for C₄₄H₅₀N₂O₉Na (M+Na)⁺: 773.3414, found: 773.3420.

Boc–Thr(Fmoc–Tyr(tBu))–OH (39). **39** was synthesized in the similar manner to **1**. Yield: 76%; HPLC analysis at 230 nm: purity was 94% ($t_R = 35.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.79-7.77 (m, 2H), 7.64-7.61 (m, 2H), 7.40-7.27 (m, 4H), 7.17-7.14 (m, 2H), 6.87-6.84 (m, 2H), 5.44-5.39 (m, 1H), 4.43-4.38 (m, 1H), 4.30-4.10 (m, 4H), 3.11-3.05 (m, 1H), 2.88-2.80 (m, 1H), 1.43 (s, 9H), 1.30-1.19 (m, 12H); HRMS (FAB): calcd. for C₃₇H₄₄N₂O₉Na (M+Na)⁺: 683.2945, found: 683.2939.

Boc–Thr(Fmoc–Trp(Boc))–OBzl (80). 80 was synthesized in the similar manner to **42**. Epimerization during the synthesis was not detected, confirmed by comparison with independently synthesized D-tryptophan derivative **118**. Yield: 94%; HPLC analysis at 230 nm: purity was 92% ($t_R = 40.8 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.77-7.70 (m, 2H), 7.63-7.48 (m, 4H), 7.37-7.19 (m, 12H), 5.45-5.42 (m, 1H), 5.11 (d, J = 12.3 Hz, 1H), 5.03 (d, J = 12.3 Hz, 1H), 4.58-4.50 (m, 1H), 4.43-4.38 (m, 1H), 4.33-4.16 (m, 3H), 3.18-3.11 (m, 1H), 3.08-3.00 (m, 1H), 1.58 (s, 9H), 1.43 (s, 9H), 1.15 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₄₇H₅₁N₃O₁₀Na (M+Na)⁺: 840.3472, found: 840.3476.

Boc–Thr(Fmoc–D-Trp(Boc))–OBzl (118). 118 was synthesized in the similar manner to **44**. Yield: 96%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 40.7 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.77-7.68 (m, 2H), 7.64-7.47 (m, 4H), 7.36-7.17 (m, 12H), 5.46-5.44 (m, 1H), 5.09 (d, J = 12.1 Hz, 1H), 5.00 (d, J = 12.1 Hz, 1H), 4.53-4.48 (m, 1H), 4.45-4.42 (m, 1H), 4.34-4.28 (m, 1H), 4.24-4.15 (m, 2H), 3.26-3.11 (m, 1H), 2.96-2.88 (m, 1H), 1.59 (s, 9H), 1.41 (s, 9H), 1.27 (d, J = 6.8 Hz, 3H); HRMS (FAB): calcd. for C₄₇H₅₁N₃O₁₀Na (M+Na)⁺: 840.3472, found: 840.3476.

Boc–Thr(Fmoc–Trp(Boc))–OH (80). 80 was synthesized in the similar manner to **1**. Yield: 91%; HPLC analysis at 230 nm: purity was higher than 95% ($t_{\rm R} = 37.0 \text{ min}$); ¹H NMR (CD₃OD, 300MHz) δ 7.75 (d, J = 7.7 Hz, 2H), 7.66-7.63 (m, 1H), 7.55-7.51 (m, 3H), 7.36-7.18 (m, 7H), 5.44-5.41 (m, 1H), 4.61-4.56 (m, 1H), 4.32-4.25 (m, 1H), 4.21-4.11 (m, 3H), 3.27-3.21 (m, 1H), 3.12-3.03 (m, 1H), 1.57 (s, 9H), 1.42 (s, 9H), 1.22 (d, J = 6.4 Hz, 3H); HRMS (FAB): calcd. for C₄₀H₄₅N₃O₁₀Na (M+Na)⁺: 750.3003, found: 750.3007.