Dioxygen-binding of water-soluble iron(II) porphyrins in phosphate buffer at room temperature

Christian Ruzié, Pascale Even, and Bernard Boitrel *

Université de Rennes1, Sciences Chimiques de Rennes, UMR CNRS 6226, 35042 Rennes Cedex, France. Fax: (33)2 2323 5637; Tel: (33)2 2323 5856; E-mail: Bernard.Boitrel@univ-rennes1.fr

Supplementary Information

Page S3-S6: Experimental procedures and analytical data for 3, 7, 8, 9, 10, 11, 12. UV-visible data upon dioxygen binding for $\mathbf{4 F e}$ and $\mathbf{6 F e}$.

Page S7: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 3 (323 K , DMSO- d_{6}).
Page S8: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum (aromatic domain) of 3 (323 K , DMSO- d_{6}).
Page S9: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum (aliphatic domain) of 3 (323 K , DMSO- d_{6}).
Page S10: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 3 (323 K , DMSO- d_{6}).
Page S11: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum (aromatic domain) of $\mathbf{3}\left(323 \mathrm{~K}\right.$, DMSO- d_{6}).
Page S12: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum (aliphatic domain) of 3 (323 K, DMSO- d_{6}).
Page S13: Low resolution mass spectrum of 3.
Page S14: Low resolution mass spectrum (zoomed view) of 3.
Page S15: High resolution mass spectrum of 3.
Page S16: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 4 (343 K , DMSO- d_{6}).
Page S17: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 4 (aromatic domain) (343 K , DMSO- d_{6}).
Page S18: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 4 (aliphatic domain) (343 K , DMSO- d_{6}).
Page S19: ${ }^{1} \mathrm{H}$ NMR (500 MHz$)^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of $4\left(343 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.
Page S20: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC-2D map of 4 (343 K, DMSO- d_{6}).
Page S21: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC-2D map of 4 (aromatic domain) (343 K , DMSO- d_{6}).
Page S22: Low resolution mass spectrum of 4 .
Page S23: Low resolution mass spectrum (zoomed view) of 4.
Page S24: High resolution mass spectrum of 4.
Page S25: Low resolution mass spectrum of $\mathbf{4 F e}$.
Page S26: Low resolution mass spectrum (zoomed view) of 4Fe.
Page S27: High resolution mass spectrum of 4 Fe .
Page S28: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 5 (323 K , DMSO- d_{6}).

Page S29: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 5 (aromatic domain) (323 K , DMSO- d_{6}).
Page S30: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 5 (aliphatic domain) (323 K, DMSO- d_{6}).
Page S31: Low resolution mass spectrum of 5.
Page S32: Low resolution mass spectrum (zoomed view) of 5 .
Page S33: Low resolution mass spectrum (zoomed view) of 5.
Page S34: High resolution mass spectrum of 5.
Page S35: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 6 (343 K, DMSO- d_{6}).
Page S36: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 6 (aromatic domain) (343 K, DMSO- d_{6}).
Page S37: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 6 (aliphatic domain) (343 K, DMSO- d_{6}).
Page S38: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 6 (343 K, DMSO- d_{6}).
Page S39: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum (aromatic domain) of $6\left(343 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.
Page S40: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum (aliphatic domain) of $6\left(343 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.
Page S41: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}){ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of $6\left(343 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.
Page S42: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of 6 (aromatic domain) (343 K , DMSO- d_{6}).
Page S43: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of 6 (aliphatic domain) (343 K , DMSO- d_{6}).
Page S44: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}){ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC-2D map of 6 (343 K , DMSO- d_{6}).
Page S45: Low resolution mass spectrum of 6 .
Page S46: Low resolution mass spectrum (zoomed view) of 6.
Page S47: High resolution mass spectrum of 6 .
Page S48: Low resolution mass spectrum (zoomed view) of 6Fe.
Page S49: Low resolution mass spectrum of $\mathbf{6 F e}$.
Page S50: Low resolution mass spectrum (zoomed view) of 6Fe.
Page S51: High resolution mass spectrum of 6Fe.
Page S52: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $7\left(323 \mathrm{~K}, \mathrm{DMSO}-d_{6}\right)$.
Page S53: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 7 (aromatic domain) (323 K, DMSO- d_{6}).
Page S54: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 7 (aliphatic domain) (323 K, DMSO- d_{6}).
Page S55: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 7 (323 K, DMSO- d_{6}).
Page S56: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 7 (aromatic domain) (323 K, DMSO- d_{6}).
Page S57: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 7 (aliphatic domain) ($323 \mathrm{~K}, \mathrm{DMSO}-d_{6}$).
Page S58: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}){ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of $7\left(323 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.
Page S59: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of 7 (aromatic domain) (323 K , DMSO- d_{6}).
Page S60: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of 8 (343 K, DMSO- d_{6}).
Page S61: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 8 (aromatic domain) ($343 \mathrm{~K}, \mathrm{DMSO}-d_{6}$).
Page S62: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 8 (aliphatic domain) (343 K, DMSO- d_{6}).
Page S63: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of $8\left(343 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.

Page S64: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 8 (aliphatic domain) (343 K, DMSO- d_{6}).
Page S65: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 8 (aromatic domain) ($343 \mathrm{~K}, \mathrm{DMSO}-d_{6}$).
Page S66: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}){ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMQC-2D map of $\mathbf{8}\left(343 \mathrm{~K}\right.$, DMSO- $\left.d_{6}\right)$.
Page S67: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}){ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC-2D map of 8 (343 K , DMSO- d_{6}).
Page S68: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC-2D map of 8 (aromatic domain) (343 K, DMSO- d_{6}).
Page S69: ${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC-2D map of 8 (aliphatic domain) (343 K , DMSO- d_{6}).
Page S70: Low resolution mass spectrum of 8.
Page S71: Low resolution mass spectrum (zoomed view) of 8.
Page S72: High resolution mass spectrum of 8.
Page S73: ${ }^{1} \mathrm{H}$ NMR (200 MHz) spectrum of 9 ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$).
Page S74: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$ spectrum of $\mathbf{1 1}\left(298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
Page S75: ${ }^{13} \mathrm{C}$ uncoupled NMR (75 MHz) spectrum of $\mathbf{1 1}\left(298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
Page S76: ${ }^{13} \mathrm{C}$ uncoupled NMR (75 MHz) spectrum of $\mathbf{1 1}$ (zoomed view) ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$).
Page S77: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $12\left(298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
Page S78: ${ }^{13} \mathrm{C}$ uncoupled NMR (125 MHz) spectrum of 12 ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$).
Page S79: ${ }^{13} \mathrm{C}$ uncoupled NMR (125 MHz) spectrum of $\mathbf{1 2}$ (zoomed view) ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$).
Page S80: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of $\mathbf{1 2}\left(298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$.
Page S81: ${ }^{1} \mathrm{H}$ NMR (500 MHz) COSY spectrum of 12 (aliphatic domain) ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$).
Page S82: Low resolution mass spectrum of 12.
Page S83: High resolution mass spectrum of 12.
Page S84: UV-vis. spectrum ($350-750 \mathrm{~nm}$) of $\mathbf{4 F e}+$ pyridine (phosphate buffer, $\mathrm{pH}=7.4,25^{\circ} \mathrm{C}$).
Page S85: UV-vis. spectrum ($350-750 \mathrm{~nm}$) of $\mathbf{6 F e}+$ pyridine (phosphate buffer, $\mathrm{pH}=7.4,25^{\circ} \mathrm{C}$).
$\alpha-5,10,15,20-\left\{2-\left[3,3^{\prime}, 3^{\prime \prime}, 3 ’ ’\right.\right.$ ' $-\left(N, N, N^{\prime}, N^{\prime \prime}-T r i s(2-a m i n o e t h y l) a m i n e\right)\left(N^{\prime}, N^{\prime \prime}\right.$-biscarboxy
methyl)tetrapropionamidoltetraphenyl $\}$ porphyrin 3. $\mathrm{C}_{66} \mathrm{H}_{64} \mathrm{~N}_{12} \mathrm{O}_{8}$. In a round bottom flask equipped with a stir bar porphyrin $2(0.01 \mathrm{mmol}, 12 \mathrm{mg})$ was charged with a methanol/ chloroform mixture (1/5) $(10 \mathrm{~mL})$ and potassium hydroxide ($0.1 \mathrm{mmol}, 5.5 \mathrm{mg}$). The reaction mixture was heated to $50{ }^{\circ} \mathrm{C}$ overnight then solvents were removed under vacuum. The resulting powder was dissolved in water then hydrochloric acid 2 N was added to pH 7 . The precipitate was filtrated, washed with diethyl ether and dried for several hours. The expected compound was obtained in 87% yield $(10 \mathrm{mg}) . \delta_{\mathrm{H}}(500.13 \mathrm{MHz}$, DMSO $\left.-d_{6}, 323 \mathrm{~K}\right)-2.68\left(2 \mathrm{H}\right.$, broad s), $-2.49\left(2 \mathrm{H}, \mathrm{s},-\mathrm{NH}_{\mathrm{pyr}}\right),-1.24(4 \mathrm{H}$, broad s), $0.41(8 \mathrm{H}$, broad s), $1.60\left(2 \mathrm{H}\right.$, broad s), 2.14-1.79 ($10 \mathrm{H}, \mathrm{m}$), $2.21\left(4 \mathrm{H}\right.$, broad s), $2.31\left(2 \mathrm{H}\right.$, broad s), $7.42\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=7.2\right.$, $\mathrm{H}_{\text {aro }}$), $7.56\left(4 \mathrm{H}, \mathrm{d},{ }^{3} J=6.8, \mathrm{H}_{\text {aro }}\right), 7.62\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=7.8, \mathrm{H}_{\text {aro }}\right), 7.80\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=8.2, \mathrm{H}_{\text {aro }}\right), 7.86\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=\right.$ $8.2, \mathrm{H}_{\text {aro }}$), $8.04\left(2 \mathrm{H}, \mathrm{d}, J=7.3, \mathrm{H}_{\text {aro }}\right), 8.24\left(2 \mathrm{H}\right.$, broad s, $\left.\mathrm{H}_{\text {aro }}\right), 8.38\left(2 \mathrm{H}, \mathrm{d}, J=8.3, \mathrm{H}_{\text {aro }}\right), 8.57(2 \mathrm{H}$, broad
$\left.\mathrm{s}, \mathrm{H}_{\beta \text { pyr }}\right), 8.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\beta \mathrm{pyr}}\right), 8.81\left(2 \mathrm{H}, \mathrm{d}, J=4.6, \mathrm{H}_{\beta \text { pyr }}\right), 8.82\left(2 \mathrm{H}, \mathrm{d}, J=4.6, \mathrm{H}_{\text {קpyr }}\right), 10.01(2 \mathrm{H}, \mathrm{s},-$ $\mathrm{N} H \mathrm{CO}$) and 11.79 (2 H , broad $\mathrm{s},-\mathrm{N} H \mathrm{CO}$); m / z (ESI HRMS) $1153.5052\left([\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{66} \mathrm{H}_{65} \mathrm{~N}_{12} \mathrm{O}_{8}\right.$ requires 1153.5048); $\lambda_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{DMF}(1 / 1)\right) / \mathrm{nm} 423.5\left(10^{-3} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 264.0\right)$, 517.0 (16.5); 550.5 (4.4); 590.5 (4.9) and 645.5 (2.0).
$\alpha-5,10,15,20-\left\{2-\left[3,3^{\prime}, 3^{\prime \prime}, 3^{\prime \prime \prime}-\left(N, N, N^{\prime}, N^{\prime \prime}-T r i s(2-a m i n o e t h y l) a m i n e\right) \quad\right.\right.$ ($N^{\prime}, N^{\prime \prime}$-(acetic acid 2-\{2-[2-ureido-ethoxy]-ethoxy\}-ethyl ester)tetrapropionamido]tetraphenyl\} porphyrin 7. $\mathrm{C}_{80} \mathrm{H}_{90} \mathrm{~N}_{14} \mathrm{O}_{14}$. In a 100 mL round bottom flask equipped with a stir bar and a gas inlet compound $12(1.20 \mathrm{mmol}, 230 \mathrm{mg})$ was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ then diphosgene ($0.60 \mathrm{mmol}, 72 \mu \mathrm{~L}$) was added dropwise. The solution was stirred at room temperature for 1 h then porphyrin $1(0.14 \mathrm{mmol}, 150 \mathrm{mg})$ was added. The solution was stirred overnight then solvent was removed under vacuum. The resulting powder was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and directly loaded on a silica gel chromatography column. The expected compound eluted with 4 to $6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was obtained in 78% yield (160 mg). ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}\right.$): $\delta=10.01$ (s, 2H, -NH); $8.94(\mathrm{~s}, 2 \mathrm{H},-$ NH); 8.71 (d, 2H, $J=4.6, \mathrm{H}_{\beta p y r}$); 8.63 (d, 2H, $J=4.6, \mathrm{H}_{\beta p y r}$); 8.53 (s, 2H, $\mathrm{H}_{\beta \text { pyr }}$); 8.48 (s, 2H, $\mathrm{H}_{\beta p y r}$); 8.27 (broad s, 2H, Haro); 8.10 (d, 2H, $J=7.1, H_{\text {aro }}$); 7.81 (m, 6H, Haro); 7.58 (m, 4H, Haro); 7.50 (t, 2H, J $=7.1 \mathrm{~Hz}, \mathrm{H}_{\text {aro }}$); 6.07 (broad s, 2H, NCONH); 4.15 (t, 4H, $J=4.7$); 3.65 (t, 4H, $J=4.7$); $3.60(\mathrm{~m}, 4 \mathrm{H})$; 3.55 (m, 6H); 3.41 (t, 4H, $J=5.3$); 3.12 (m, 4H); 2.99 (m, 4H); 2.30 (m, 2H); 2.13 (m, 2H); 2.01 (s, 6H, COCH_{3}); 1.65 (m, 2H); 1.50 (broad s, 6H); 1.22 (broad s, 2H); 0.45 (t, 2H, $J=7.0$); -1.26 (broad s, 2H); -1.70 (broad s, 2H); -2.82 (s, 2H, -NH pyr); -2.90 (broad s, 2H).; m / z (ESI HRMS) 1493.6687 ([M + Na] ${ }^{+}$ $\mathrm{C}_{80} \mathrm{H}_{90} \mathrm{~N}_{14} \mathrm{O}_{14} \mathrm{Na}$ requires 1493.6658); $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 419.0\left(10^{-3} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 419.0$ (331.1); 512.0 (16.5); 544.5 (3.2); 585.0 (4.7); 640.5 (1.4).
$\alpha-5,10,15,20-\left\{2-\left[3,3^{\prime}, 3^{\prime}, 3{ }^{3} \gg-\left(N, N, N^{\prime}, N^{\prime \prime}-T r i s(2-a m i n o e t h y l) a m i n e\right)\right.\right.$ ($N^{\prime}, N^{\prime ’}-b i s(3-\{2-[2-(2-h y d r o x y-$ ethoxy)-ethoxy]-ethyl\}-urea)tetrapropionamido]tetraphenyl\}porphyrin 8. $\mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~N}_{14} \mathrm{O}_{12}$. In a 100 mL round bottom flask equipped with a stir bar compound 7 ($0.033 \mathrm{mmol}, 50 \mathrm{mg}$) and potassium carbonate ($0.134 \mathrm{mmol}, 16 \mathrm{mg}$) was charged with $\mathrm{MeOH}(20 \mathrm{~mL})$. The solution was stirred at $60^{\circ} \mathrm{C}$ overnight then solvent was removed under vacuum. The resulting powder was dissolved in CHCl_{3} and directly loaded on a silica gel chromatography column. The expected compound eluted with 12% $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ was obtained in 83% yield $(45 \mathrm{mg}) . \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 343 \mathrm{~K}\right)-2.82(2 \mathrm{H}$, broad s), $-2.76\left(2 \mathrm{H}, \mathrm{s},-\mathrm{NH}_{\mathrm{pyr}}\right),-1.62(2 \mathrm{H}$, broad s), $-1.24(2 \mathrm{H}$, broad s), $0.48(2 \mathrm{H}, \mathrm{t}, J=8.5), 1.52(6 \mathrm{H}$, $\mathrm{m}), 1.66(2 \mathrm{H}, \mathrm{m}), 2.13(2 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}, \mathrm{m}), 3.00(4 \mathrm{H}, \operatorname{broad} \mathrm{s}), 3.10(4 \mathrm{H}, \mathrm{m}), 3.42(4 \mathrm{H}, \mathrm{t}, J=5.7)$, $3.50(4 \mathrm{H}, \mathrm{m}), 3.55(8 \mathrm{H}, \mathrm{m}), 3.60(4 \mathrm{H}, \mathrm{m}), 4.31(2 \mathrm{H}$, broad s, -OH$), 6.02(2 \mathrm{H}$, broad s, NCONH), 7.51 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aro }}\right), 7.59\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aro }}\right), 7.83\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {aro }}\right), 8.10\left(2 \mathrm{H}, \mathrm{d}, J=7.2, \mathrm{H}_{\text {aro }}\right), 8.28$ (2H, broad d, $J=$ $\left.7.2, \mathrm{H}_{\text {aro }}\right), 8.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\beta \mathrm{pyr}}\right), 8.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\beta \mathrm{pyr}}\right), 8.63\left(2 \mathrm{H}, \mathrm{d}, J=4.7, \mathrm{H}_{\beta \mathrm{pyr}}\right), 8.72\left(2 \mathrm{H}, \mathrm{d}, J=4.7, \mathrm{H}_{\beta \mathrm{pyr}}\right)$, $8.89(2 \mathrm{H}, \mathrm{s},-\mathrm{NH})$ and $9.91(2 \mathrm{H}, \mathrm{s},-\mathrm{NH}) ; m / z\left(\right.$ ESI HRMS) $1409.6448\left([\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~N}_{14} \mathrm{O}_{12} \mathrm{Na}\right.$
requires 1409.6447); $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 419.0\left(10^{-3} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 419.0$ (329.6), 512.5 (14.6); 545.0 (3.2); 585.5 (4.6) and 641.5 (1.4).

Acetic acid 2-[2-(2-hydroxy-ethoxy)-ethoxy]-ethyl ester 9. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5}$. In a 250 mL round bottom flask triethylene glycol ($0.1 \mathrm{~mol}, 15 \mathrm{~g}$) was charged with pyridine (100 mL). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ then acetyl chloride ($0.07 \mathrm{~mol}, 5 \mathrm{~mL}$) was added dropwise over 1 h . The reaction mixture was stirred at room temperature overnight then solvent was removed under vacuum. The resulting oil dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was directly loaded on a silica gel column chromatography. The expected compound eluted with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was obtained as a colourless oil in 35% yield (6.7 g). δ_{H} (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 1.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.83(1 \mathrm{H}$, broad s, OH$), 3,51(2 \mathrm{H}, \mathrm{t}, J=4.7), 3.58(4 \mathrm{H}, \mathrm{s})$, $3.61(4 \mathrm{H}, \mathrm{t}, J=4.9)$ and $4.14(2 \mathrm{H}, \mathrm{t}, J=4.9)$.

Acetic acid 2-[2-(2-bromo-ethoxy)-ethoxy]-ethyl ester 10. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Br}$. In a 100 mL round bottom flask compound 9 ($7.8 \mathrm{mmol}, 1.5 \mathrm{~g}$) was charged with freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ then triphenyl phosphine ($9.4 \mathrm{mmol}, 2.46 \mathrm{~g}$) and N-bromosuccinimide (9.4 mmol, 1.53 g) were added. The reaction mixture was stirred at room temperature overnight then evaporated under vacuum. The resulting oil dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was directly loaded on a silica gel column chromatography. The expected compound eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was obtained as a colourless oil in 78% yield (1.56 g). $\delta_{\mathrm{H}}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3,47(2 \mathrm{H}, \mathrm{t}, J=6.2), 3.67$ ($4 \mathrm{H}, \mathrm{s}$), $3.70(2 \mathrm{H}, \mathrm{t}, J=4.8), 3.81(2 \mathrm{H}, \mathrm{t}, J=6.2)$ and $4.22(2 \mathrm{H}, \mathrm{t}, J=4.5)$; $\delta_{\mathrm{C}}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298\right.$ K) 171.5; 71.8; 71.1; 71.0; 69.6; 64.0; 43.1; 21.4. m / z (ESI HRMS) $149.9680\left(\left[\mathrm{M}-{ }^{\bullet} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}\right]^{+}\right.$requires 149.9680).

Acetic acid 2-\{2-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethoxy]-ethoxy\}-ethyl ester 11. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{6}$. In a 250 mL round bottom flask compound $\mathbf{1 0}(5.2 \mathrm{mmol}, 1 \mathrm{~g})$ was charged with THF (50 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ then phthalimide ($5.2 \mathrm{mmol}, 765 \mathrm{mg}$) and triphenylphosphine (5.2 mmol, 1.36 g) were added. After dissolution, diisopropyl azodicarboxylate ($5.2 \mathrm{mmol}, 1.02 \mathrm{~mL}$) was added dropwise. The reaction mixture was stirred 4 h at room temperature then solvent was removed under vacuum. The resulting oil dissolved in hexane was directly loaded on a silica gel column chromatography. The expected compound eluted with 20% ethyl acetate/ hexane was obtained as a colourless oil in 60% yield (1 g). $\delta_{\mathrm{H}}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.57(2 \mathrm{H}, \mathrm{s})$, $3.58(4 \mathrm{H}, \mathrm{s}) ; 3.69(2 \mathrm{H}, \mathrm{t}, J=5.4), 3.85(2 \mathrm{H}, \mathrm{t}, J=5.7), 4.08(2 \mathrm{H}, \mathrm{t}, J=4.5), 7.66(2 \mathrm{H}, \mathrm{m}, \mathrm{Pht})$ and 7.79 (2H, m, Pht); $\delta_{\mathrm{C}}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$) 20.90, 37.20, 63.54, 67.88, 69.05, 70.04, 70.44, 123.20, 132.00, 133.90, 168.20 and 171.00.

Acetic acid 2-[2-(2-amino-ethoxy)-ethoxy]-ethyl ester 12. $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{4}$. In a 100 mL round bottom flask compound 11 ($3.1 \mathrm{mmol}, 1 \mathrm{~g}$) was charged with absolute ethanol $(50 \mathrm{~mL})$. The reaction mixture was
stirred at reflux then hydrazine monohydrate ($3.7 \mathrm{mmol}, 181 \mu \mathrm{~L}$) was added. The reaction mixture was stirred overnight then the reaction mixture was filtrated and evaporated under vacuum. The resulting oil dissolved in chloroform was directly loaded on a silica gel column chromatography. The reaction mixture was eluted firstly with $4 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ and the expected compound eluted with $\mathrm{CHCl}_{3} / \mathrm{NH}_{3 \mathrm{~g}}$ was obtained as a colourless oil in 91% yield (540 mg). $\delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 1.43(2 \mathrm{H}$, broad $\mathrm{s},-\mathrm{NH}_{2}$), $2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.80\left(2 \mathrm{H}, \mathrm{t}, J=4.7,-\mathrm{CH}_{2}-\mathrm{N}\right), 3.44(2 \mathrm{H}, \mathrm{t}, J=4.7), 3.57(2 \mathrm{H}, \mathrm{m}), 3.59$ $(2 \mathrm{H}, \mathrm{m}), 3.64\left(2 \mathrm{H}, \mathrm{t}, J=4.7,-\mathrm{CH}_{2}-\mathrm{CO}\right)$ and $4.16(2 \mathrm{H}, \mathrm{t}, J=4.4)$; $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 20.8$, 41.5, 63.5, 69.1, 70.2, 70.5, 72.9 and 170.8; m / z (ESI HRMS) $214.1051\left(\left[\mathrm{M}+\mathrm{Na}^{+} \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}\right.\right.$ requires 214.1055).

Supplementary UV-visible data upon dioxygen binding for 4Fe.

Decreasing of the absorbance at 436 nm upon dioxygen binding on $4 \mathrm{Fe}+$ pyridine (phosphate buffer, pH $=7.4,25^{\circ} \mathrm{C}$)

UV-vis. monitoring of dioxygen binding on $4 \mathbf{F e}+$ pyridine (phosphate buffer, $\mathrm{pH}=7.4,25^{\circ} \mathrm{C}$)

$00 \cdot 8$
09°
006
39•8
30.8
V
CH
V
i
i

 08ZT SLZT OLZT S9ZT 09ZT SSZT OSZT SDZT

File Text:C. RUZIE RCI 156 Haute Resolution 5000 FL Solvant : $\mathrm{CH} 3 \mathrm{OH} / \mathrm{CH} 2 \mathrm{C} 12$ ($90 / 10$) File:ESI 7399HRV Ident:1_11 SMO (2,5) $\operatorname{BSUB}(128,15,-3.0)$ PKD (5,3,5,0.018, 45720.0,0.00\%,T,F) Acq: $30-$ JAN-2004 $12: 06: 35$ +4:12 Cal:ESI_7399HRV

Aur8 $88 Z^{3}$

$\longrightarrow 7.320$

-29
-29
-29

$$
\begin{array}{lll}
c & \equiv & \\
0 & 0 & 0 \\
& = & s
\end{array}
$$

ru
0
n

$$
\begin{array}{lll}
\text { 맙 } \\
\text { in } \\
\text { in }
\end{array}
$$

:

3 3

[^0]${ }_{85 \mathrm{~V}}^{5} \mathrm{C}$ 8.850 $\varepsilon \rightarrow 76 t$

\because.
\bigcirc
a

(0)

00

D 溾
-
\square
48

-
a

$\begin{array}{ll}\cdots & \\ \equiv & \\ \vdots\end{array}$

ssew

${ }_{-1.993}{ }^{2} .002$

ppm

II

ZI
$\mathrm{zNO}^{\circ} \mathrm{O}^{\circ} \mathrm{O}^{\prime}$

／山

[^0]:

