Towards a General Solid Phase Approach for the Iterative Synthesis of Conjugated Oligomers Using a Germanium Based Linker – First Solid Phase Synthesis of an Oligo-(triarylamine)

David J. Turner,^d Rémi Anémian,^c Philip R. Mackie,^c Domenico C. Cupertino,^c Stephen G. Yeates,^b Michael L. Turner,^b Alan C. Spivey^{*a}

 ^a Dr A.C. Spivey Department of Chemistry Imperial College London South Kensington campus, London, SW7 2AZ, UK Fax: (+) 44 (0)20 75945841 E-mail: a.c.spivey@imperial.ac.uk

- ^b Prof. M.L. Turner, Prof. S.G. Yeates Department of Chemistry University of Manchester Oxford Road, Manchester M13 9PL, UK
- ^c Dr R. Anémian, Dr P.R. Mackie, Dr D.C. Cupertino Merck Chemicals Ltd LC – Manchester Technical Centre Hexagon Tower, Blackley, Manchester M9 8ZS UK
- ^d Dr D.J. Turner Department of Chemistry University of Sheffield Brook Hill, Sheffield UK S3 7HF UK

SUPPORTING INFORMATION

Experimental Procedures for 6, 1b-c, 8b-e, 9b-e, 10b-e, 12-20, 23-28	2-10
¹ H and ¹³ C spectra for 1b , 1c , 8a-e and 9a-e	11-22
¹ H and ¹³ C spectra for bis-(4-{2-[(4-methoxyphenyl)-di- <i>para</i> -tolylgermanyl]ethyl}phenoxy)methane	23
¹ H and ¹³ C spectra for 10a-e and 12-18	24-35
HPLC traces for 19	36
¹ H and ¹³ C spectra for 20 , 23-26 and 28	37-42
Fig. 1 ¹ H MAS NMR (400 MHz, CDCl ₃) spectra for resins 30-36	43
Fig. 2 Gel phase ¹³ C NMR (75 MHz, <i>d</i> ₈ -THF) spectra for resins 39-41 & 43-47	44
Fig. 3 Gel phase ¹³ C NMR (75 MHz, <i>d</i> ₈ -THF) spectra for resins 48 & 49	45
¹ H and ¹³ C spectra for 50	46
HPLC trace for 50	47
References	47

Supplementary Experimental Section - for general directions see main manuscript.

2-Bromo-3-(*n*-hexyl)thiophene 6.¹ To a solution of 3-(*n*-hexyl)thiophene (11, 2.97 g, 17.6 mmol) in glacial acetic acid (8.7 mL) was added *N*-bromosuccinimide (3.11 g, 17.6 mmol) under N₂. The mixture was left to stir at RT for 24 h before partitioning between sat. NaHCO₃ (aq) (50 mL) and ether (50 mL). After evolution of gas ceased the aqueous layer was extracted with ether (2×50 mL), the organic fractions were combined, dried (MgSO₄) and the solvent removed *in vacuo*. The residue was purified by FC (pentane) to afford bromide **6** as a colourless oil (4.37 g, 99%). R_f (pentane) 0.80; ¹H NMR (250 MHz, CDCl₃): δ 0.88 (t, *J* = 6, 3H), 1.20-1.40 (6H), 1.57 (m, 2H), 2.55 (t, *J* = 7.5, 2H), 6.78 (d, *J* = 5.5, 1H), 7.17 (d, *J* = 5.5, 1H); MS (EI+) *m/z* 246 (M⁺); HRMS (EI+) calcd. for C₁₀H₁₅BrS (M⁺) 246.0078, found 246.0077.

Triethyl-[3-(*n*-hexyl)thiophen-2-yl]silane 1b. According to general procedure A, bromide 6 (275 mg, 1.11 mmol), *n*-BuLi (1.04 mL, 1.17 M, 1.22 mmol) in hexanes, and triethylchlorosilane (373 μ L, 2.22 mmol) gave silylthiophene 1b as a colourless oil (260 mg, 83%). R_f 0.70 (pentane); ¹H NMR (250 MHz, CDCl₃): δ 0.78-1.01 (18H), 1.22-1.41 (6H), 1.59 (m, 2H), 2.64 (t, *J* = 7.5, 2H), 7.05 (d, *J* = 4.5, 1H), 7.47 (d, *J* = 4.5, 1H); ¹³C NMR (62.8 MHz, CDCl₃) δ 4.7 (t, 3C), 7.5 (q, 3C), 14.1 (q), 22.7 (t), 29.5 (t), 31.4 (t), 31.8 (t), 31.8 (t), 129.4 (s), 129.7 (d), 130.1 (d), 150.7 (s); IR (neat) 2955-2875 (C-H), 1512, 1458, 1416, 1402, 1378, 1238, cm⁻¹; MS (EI+) *m/z* 282 (M⁺); HRMS calcd. for C₁₆H₃₀SSi (M⁺) 282.1838, found 282.1837; Anal. calcd. for C₁₆H₃₀SSi: C 68.0, H 10.7, S 11.4, found C 68.2, H 10.8, S 11.5.

tert-Butyl-[3-(*n*-hexyl)thiophen-2-yl]dimethylsilane 1c. According to general procedure A, bromide 6 (275 mg, 1.11 mmol), *n*-BuLi (1.04 mL, 1.17 M, 1.22 mmol) in hexanes, and *tert*-butylchlorodimethylsilane (335 mg, 2.22 mmol) gave silylthiophene 1c as a colourless oil (238 mg, 76%). R_f 0.75 (pentane); ¹H NMR (250 MHz, CDCl₃): δ 0.33 (s, 6H), 0.85-0.92 (12H), 1.23-1.38 (6H), 1.57 (m, 2H), 2.66 (t, *J* = 8, 2H), 7.05 (d, *J* = 5, 1H), 7.47 (d, *J* = 5, 1H); ¹³C NMR (62.8 MHz, CDCl₃) δ -3.6 (q, 2C), 14.1 (q), 17.9 (s), 22.6 (t), 26.8 (q, 2C), 29.6 (t), 31.8 (t, 2C), 31.9 (t), 118.9 (s), 129.8 (d), 130.1 (d), 151.1 (s); IR (neat) 2960-2855 (C-H), 1513, 1464, 1403, 1362, 1250 [Si(CH₃)_n] cm⁻¹; MS (EI+) *m/z* 282 (M⁺); HRMS calcd. for C₁₆H₃₀SSi (M⁺) 282.1838, found 282.1833; Anal. calcd. for C₁₆H₃₀SSi: C 68.0, H 10.7, S 11.4, found C 68.0, H 10.8, S 11.4.

4-{2-[Diethyl-(4-methoxyphenyl)germanyl]ethyl}phenol 8b. According to general procedure B, *4-{2-dichloro-(4-methoxyphenyl)germanyl]ethyl}phenol* (**7**)² (272 mg, 730 µmol) and EtMgBr (3.63 mL, 2.0 M, 7.26 mmol) in THF gave diethylgermane **8b** as a pale yellow oil (195 mg, 74%). R_f 0.55 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 0.82-1.15 (10H); 1.20 (m, 2H), 2.54 (m, 2H), 3.74 (s, 3H), 4.57 (broad s, 1H), 6.66 (d, *J* = 8.5, 2H), 6.85 (d, *J* = 8.5, 2H), 6.97 (d, *J* = 8.5, 2H), 7.29 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 4.8 (t, 2C), 9.0 (q, 2C), 14.5 (t), 30.3 (t), 55.1 (q), 113.9 (d, 2C), 115.2 (d, 2C), 128.9 (d, 2C), 130.2 (s), 135.2 (d, 2C), 137.4 (s), 153.5 (s), 159.8 (s); IR (neat) 3402 (broad, O-H), 3020-2835 (C-H), 1612, 1593, 1568, 1512, 1499, 1461, 1337, 1279, 1246 cm⁻¹; MS (EI+) *m/z* 360 (M⁺); HRMS calcd. for C₁₉H₂₆Ge⁷⁴O₂ (M⁺) 360.1145, found 360.1147.

4-{2-[Diisopropyl-(4-methoxyphenyl)germanyl]ethyl}phenol 8c. According to general procedure B, *4-{2-dichloro-(4-methoxyphenyl)germanyl]ethyl}phenol* (**7**)² (272 mg, 730 µmol) and isopropyl magnesium chloride (3.63 mL, 2.0 M, 7.26 mmol) in THF gave di-*iso*-propylgermane **8c** as a pale yellow oil (150 mg, 53%). R_f 0.55 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 1.04 (d, *J* = 7.5, 6H), 1.07 (d, *J* = 7.5, 6H), 1.25 (m, 2H), 1.46 (sept, *J* = 7.5, 2H), 2.62 (m,

2H), 3.74 (s, 3H), 4.71 (broad s, 1H), 6.68 (d, J = 8.5, 2H), 6.85 (d, J = 9, 2H), 7.01 (d, J = 8.5, 2H), 7.29 (d, J = 9, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 12.5 (t), 14.2 (d, 2C), 19.5 (q, 2C), 19.6 (q, 2C), 30.7 (t), 55.0 (q), 113.7 (d, 2C), 115.3 (d, 2C), 128.5 (s), 128.8 (d, 2C), 135.8 (d, 2C), 137.8 (s), 153.5 (s), 159.7 (s); IR (neat) 3402 (broad, O-H), 3020-2861 (C-H), 1612, 1592, 1568, 1513, 1499, 1463, 1365, 1278, 1246 cm⁻¹; MS (ES-) *m/z* 387 ((M-H)⁻); HRMS (EI+) calcd. for C₂₁H₃₀Ge⁷⁴O₂ (M⁺) 388.1458, found 388.1466.

4-{2-[(4-Methoxyphenyl)diphenylgermanyl]ethyl}phenol 8d. According to general procedure B, *4-{2-dichloro-(4-methoxyphenyl)germanyl]ethyl}phenol* (**7**)² (275 mg, 738 µmol) and phenyl magnesium bromide (2.47 mL, 3.0 M, 7.41 mmol) in Et₂O gave diphenylgermane **8d** as a pale yellow oil (310 mg, 92%). R_f 0.30 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 1.79 (m, 2H), 2.79 (m, 2H), 3.84 (s, 3H), 5.00 (broad s, 1H), 6.74 (d, *J* = 8.5, 2H), 6.97 (d, *J* = 8.5, 2H), 7.07 (d, *J* = 8.5, 2H), 7.37-7.55 (12H); ¹³C NMR (62.8 MHz, CDCl₃) δ 16.5 (t), 21.6 (q, 2C), 30.3 (t), 55.2 (q), 114.2 (d, 2C), 115.3 (d, 2C), 127.6 (s), 128.3 (d, 4C), 129.0 (d, 2C), 135.0 (d, 4C), 136.3 (d, 2C), 137.0 (s, 2C), 137.3 (s), 153.6 (s), 160.4 (s); IR (neat) 3407 (broad, O-H), 3020-2835 (C-H), 1611, 1592, 1567, 1513, 1500, 1442, 1430, 1337, 1281, 1247 cm⁻¹; MS (EI+) *m/z* 456 (M⁺); HRMS (EI+) calcd. for C₂₇H₂₆Ge⁷⁴O₂ (M⁺) 456.1143, found 456.1145.

4-{2-[(4-Methoxyphenyl)-di-*para***-tolylgermanyl]ethyl}phenol 8e.** According to general procedure B, *4-{2-dichloro-*(*4-methoxyphenyl)germanyl]ethyl}phenol* (**7**)² (186 mg, 499 µmol) and the Grignard reagent formed between Mg (120 mg, 5.00 mmol) and 4-bromotoluene (855 mg, 5.00 mmol) gave di-*para*-tolylgermane **8e** as a yellow oil (222 mg, 92%). R_f 0.40 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 1.76 (m, 2H), 2.36 (s, 6H), 2.74 (m, 2H), 3.81 (s, 3H), 4.64 (broad s, 1H), 6.71 (d, *J* = 8.5, 2H), 6.92 (d, *J* = 8.5, 2H), 7.04 (d, *J* = 8.5, 2H), 7.19 (d, *J* = 8, 4H), 7.38 (d, *J* = 8, 4H), 7.40 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 16.6 (t), 21.6 (q, 2C), 30.4 (t), 55.2 (q), 114.2 (d, 2C), 115.3 (d, 2C), 128.2 (s), 129.0 (d, 2C), 129.2 (d, 4C), 133.8 (s, 2C), 135.0 (d, 4C), 136.3 (d, 2C), 137.1 (s), 138.8 (s, 2C), 153.6 (s), 160.3 (s); IR (neat) 3409 (broad, O-H), 3015-2860 (C-H), 1593, 1568, 1512, 1442, 1392, 1281, 1247 cm⁻¹; MS (EI+) *m/z* 484 (M⁺); HRMS (EI+) calcd. for C₂₉H₃₀Ge⁷⁴O₂ (M⁺) 484.1458, found 484.1446; Anal. calcd. for C₂₉H₃₀GeO₂: C 72.1, H 6.3, found C 72.6, H 6.1.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}diethyl-(4-methoxyphenyl)germane 9b. According to general procedure C, phenol **8b** (150 mg, 41.8 μmol), 2-chlorodiethyl ether (100 μL, 911 μmol), TBAI (15.5 mg, 42.0 μmol) and caesium carbonate (222 mg, 629 μmol) gave ether **9b** as a pale yellow oil (163 mg, 90%). R_f 0.30 (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): δ 0.91-1.11 (10H), 1.22-1.32 (5H), 2.64 (m, 2H), 3.61 (q, J = 7, 2H), 3.79 (t, J = 4.5, 2H), 3.82 (s, 3H), 4.10 (t, J = 4.5, 2H), 6.85 [d, J = 8.5, 2H], 6.93 [d, J = 8.5, 2H], 7.10 [d, J = 8.5, 2H], 7.37 [d, J = 8.5, 2H]; ¹³C NMR (62.8 MHz, CDCl₃) δ 4.8 (t, 2C), 9.0 (q, 1C), 14.4 (t, 1C), 15.2 (q, 1C), 30.3 (t, 1C), 55.0 (q, 1C), 66.9 (t, 1C), 67.6 (t, 1C), 69.1 (t, 1C), 113.8 (d, 2C), 114.6 (d, 2C), 128.7 (d, 2C), 130.0 (s, 1C), 135.1 (d, 2C), 137.4 (s, 1C), 157.0 (s, 1C), 159.8 (s, 1C); IR (neat) 3030-2870 (C-H), 1611, 1593, 1568, 1511, 1500, 1456, 1374, 1279, 1246 cm⁻¹; MS (EI+) m/z 432 (M⁺); HRMS calcd. for C₂₃H₃₄Ge⁷⁴O₃ (M⁺) 432.1720, found 432.1722.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}diisopropyl-(4-methoxyphenyl)germane 9c. According to general procedure C, phenol **8c** (115 mg, 297 μmol), 2-chlorodiethyl ether (71.0 μL, 647 μmol), TBAI (11.0 mg, 29.7 μmol) and caesium carbonate (159 mg, 451 μmol) gave ether **9c** as a pale yellow oil (105 mg, 77%). R_f 0.30 (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): δ 1.12 (d, *J* = 7.5, 6H), 1.16 (d, *J* = 7.5, 6H), 1.25 (t, *J* = 7, 3H), 1.34 (m, 2H), 1.54 (sept, *J* = 7.5, 2H), 2.70 (m, 2H), 3.61 (q, *J* = 7, 2H), 3.79 (t, *J* = 4.5, 2H), 3.82 (s, OCH₃, 3H), 4.11 (t, *J* = 4.5, 2H), 6.87 (d, *J* = 8.5, 2H), 6.93 (d, *J* = 9, 2H), 7.13 (d, *J* = 8.5, 2H), 7.37 (d, *J* = 9, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 12.5 (t, 1C), 14.2 (d,

2C), 15.2 (q, 1C), 19.6 (q, 2C), 19.6 (q, 2C), 30.7 (t, 1C), 55.0 (q, 1C), 66.9 (t, 1C), 67.6 (t, 1C), 69.1 (t, 1C), 113.7 (d, 2C), 114.6 (d, 2C), 128.4 (s, 1C), 128.6 (d, 2C), 135.8 (d, 2C), 137.9 (s, 1C), 157.0 (s, 1C), 159.8 (s, 1C); IR (neat) 3025-2860 (C-H), 1610, 1593, 1567, 1510, 1500, 1461, 1372, 1298, 1279, 1247 cm⁻¹; MS (EI+) m/z 459 ((M-H)⁺); HRMS calcd. for C₂₅H₃₈Ge⁷⁴O₃ (M⁺) 460.2033, found 460.2023.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-(4-methoxyphenyl)diphenylgermane 9d. According to general procedure C. phenol **8d** (124 mg, 272 μmol), 2-chlorodiethyl ether (65.0 μL, 592 μmol), TBAI (10.0 mg, 27.1 μmol) and caesium carbonate (143 mg, 405 μmol) gave ether **9d** as a pale yellow oil (115 mg, 80%). R_f 0.75 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 1.25 (t, J = 7, 3H), 1.82 (m, 2H), 2.77 (m, 2H), 3.60 (q, J = 7, 2H), 3.78 (t, J = 5.5, 2H), 3.82 (s, 3H), 4.10 (t, J = 5.5, 2H), 6.83 (d, J = 8.5, 2H), 6.94 (d, J = 8.5, 2H), 7.08 (d, J = 8.5, 2H), 7.34-7.52 (CH₃OC(=C<u>H</u>)C<u>H</u>, 2×C<u>H</u>=C<u>H</u>C<u>H</u>=C<u>H</u>C<u>H</u>, m, 12H); ¹³C NMR (62.8 MHz, CDCl₃) δ 15.3 (q, 1C), 16.4 (t, 1C), 30.3 (t, 1C), 55.1 (q 1C), 66.8 (t, 1C), 67.6 (t, 1C), 69.1 (t, 1C), 114.1 (d, 2C), 114.7 (d, 2C), 127.5 (s, 1C), 128.3 (d, 4C), 128.7 (d, 2C), 135.0 (d, 4C), 128.9 (d, 2C), 136.3 (d, 2C), 137.0 (s, 2C), 137.3 (s, 1C), 157.1 (s, 1C), 160.4 (s, 1C); IR (neat) 3010-2870 (C-H), 1610, 1593, 1567, 1510, 1456, 1430, 1372, 1281, 1247 cm⁻¹; MS (EI+) *m/z* 528 (M⁺); HRMS (EI+) calcd. for C₃₁H₃₄Ge⁷⁴O₃ (M⁺) 528.1720, found 528.1717.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-(4-methoxyphenyl)di*para***-tolylgermane 9e.** According to general procedure C. phenol **8e** (9.57 g, 19.8 mmol), 2-chlorodiethyl ether (4.56 mL, 41.5 mmol), TBAI (739 mg, 2.00 mmol) and caesium carbonate (14.1 g, 40.0 mmol) gave:

Ether **9e** as a colourless oil (7.81 g, 71%): $R_f 0.55$ (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): δ 1.24 (t, J = 7, 3H), 1.76 (m, 2H), 2.36 (s, 6H), 2.74 (m, 2H), 3.59 (q, J = 7, 2H), 3.77 (t, J = 5.5, 2H), 3.81 (s, 3H), 4.09 (q, J = 5.5, 2H), 6.82 (d, J = 8.5, 2H), 6.92 (d, J = 8.5, 2H), 7.07 (d, J = 8.5, 2H), 7.18 (d, J = 8, 4H), 7.38 (d, J = 8, 4H), 7.40 (d, J = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 15.3 (q), 16.6 (t), 21.6 (q, 2C), 30.4 (t), 55.1 (q), 66.9 (t), 67.6 (t), 69.1 (t), 114.1 (d, 2C), 114.7 (d, 2C), 128.0 (s), 128.8 (d, 2C), 129.1 (d, 4C), 133.8 (s, 2C), 135.0 (d, 4C), 136.3 (d, 2C), 137.2 (s), 138.7 (s, 2C), 157.0 (s), 160.4 (s); IR (neat) 3010-2925 (C-H), 1593, 1567, 1510, 1454, 1392, 1281, 1247 cm⁻¹; MS (EI+) m/z 556 (M⁺); HRMS (EI+) calcd. for C₃₃H₃₈Ge⁷⁴O₃ (M⁺) 556.2033, found 556.2042.

Bis-(4-{2-[(4-methoxyphenyl)-di-para-tolylgermanyl]ethyl]phenoxy)methane[§] as white needles (1.94 g, 20%). Mp 43.0-44.5 °C; R_f 0.50 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 1.77 (m, 4H), 2.37 (s, 12H), 2.76 (m, 4H), 3.82 (s, 6H), 5.66 (s, 2H), 6.93 (d, *J* = 9, 4H), 7.00 (d, *J* = 8.5, 4H), 7.10 (d, *J* = 8.5, 4H), 7.20 (d, *J* = 8, 8H), 7.36-7.42 (12H); ¹³C NMR (62.8 MHz, CDCl₃) δ 16.7 (t, 2C), 21.7 (q, 4C), 30.7 (t, 2C), 55.2 (q, 2C), 91.7 (t), 114.3 (d, 4C), 116.7 (d, 4C), 128.0 (s, 2C), 128.8 (d, 4C), 129.0 (d, 8C), 133.9 (s, 4C), 135.1 (d, 8C), 136.4 (d, 4C), 138.8 (s, 4C), 139.0 (s, 2C), 155.4 (s, 2C), 160.5 (s, 2C); IR (CH₂Cl₂ cell) 3015-2920 (C-H), 1593, 1568, 1509, 1464, 1442, 1281, 1247, 1209 cm⁻¹; MS (EI+) *m/z* 978 (M-2H⁺); HRMS calcd. for C₅₉H₆₀Ge⁷⁴₂O₄ (M⁺) 980.2915, found 980.2919; Anal. calcd. for C₅₉H₆₀Ge₂O₄: C 72.4, H 6.4, found C 72.5, H 6.4.

{2-[4-(2-Ethoxy)phenyl]ethyl}diethyl-[4-(*n***-hexyl)thiophen-2-yl]germane 10b. To germyl-***p***-anisole 9b (161 mg, 374 μmol) was added HCl (5.00 mL, 1.0 M, 5.00 mmol) in Et₂O and the reaction mixture left to stir for 1.5 h. The solvent was then removed** *in vacuo* **to give the crude germyl chloride as a brown oil. In a separate flask, a solution of LDA (925**

 $^{^{\$}}$ This acetal dimer is formed readily under the Williamson etherification reactions conditions if CH₂Cl₂ is carried through from the previous step (as happened in this reaction). The reaction of phenolates with CH₂Cl₂ in this fashion has been reported previously. See ref 3 (pp47).

 μ L, 2.0 M, 1.85 mmol) in hexanes/THF/ethylbenzene (6/5/3) was added dropwise to a degassed solution of 3-(*n*-hexyl)thiophene (311 mg, 1.85 mmol) in THF (3 mL) at -50 °C. This solution was warmed to -40 °C, stirred for 40 min at this temperature and recooled to -50 °C before being transferred by cannula to a degassed solution of the crude germyl chloride in THF (2mL) at -50 °C. The resulting mixture was stirred for 1 h at -40 °C, warmed to RT and stirred for a further 1 h. After quenching with sat. NH₄Cl (aq) (100 mL), the mixture was extracted with Et₂O (3 × 100 mL), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo*. The residue was purified by FC (petrol/EtOAc, 19/1) to give diethylgermylthiophene **10b** as a yellow oil (132 mg, 72%). R_f 0.40 (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): δ 0.85 (t, *J* = 7, 3H), 0.90–1.37 (21H), 1.62 (t, *J* = 7.5, 2H), 2.59-2.72 (4H), 3.59 (q, *J* = 7, 2H), 3.78 (t, *J* = 5, 2H), 4.09 (t, *J* = 5, 2H), 6.83 (d, *J* = 8.5, 2H), 6.96 (s, 1H), 7.06 (s, 1H), 7.11 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 6.0 (t, 2C), 8.9 (q, 2C), 14.1 (q), 15.2 (q), 15.5 (t), 22.7 (t), 29.2 (t), 30.1 (t), 30.2 (t), 30.7 (t), 31.7 (t), 66.8 (t), 67.5 (t), 69.1 (t), 114.6 (d, 2C), 124.5 (d), 128.7 (d, 2C), 134.5 (d), 136.8 (s), 139.6 (s), 144.5 (s), 157.0 (s); IR (neat) 2930-2870 (C-H), 1611, 1584, 1511, 1456, 1425, 1377, 1298, 1246 cm⁻¹; MS (EI+) *m/z* 492 (M⁺); HRMS (EI+) calcd. for C₂₆H₄₂Ge⁷⁴O₂S (M⁺) 492.2117, found 492.2103.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-[4-(n-hexyl)thiophen-2-yl]di-iso-propylgermane 10c. To germyl-p-anisole 9c (110 mg, 239 µmol) was added HCl (5.0 mL, 1.0 M, 5.0 mmol) in Et₂O and the reaction left to stir for 2.5 h. The solvent was then removed *in vacuo* to give crude germyl chloride as a brown oil. In a separate flask, a solution of LDA (600 μ L, 2.0 M, 1.20 mmol) in hexanes/THF/ethylbenzene (6/5/3) was added dropwise to a degassed solution of 3-(nhexyl)thiophene (202 mg, 1.20 mmol) in THF (2.5 mL) at -50 °C. This solution was warmed to -40 °C, stirred for 40 min at this temperature and recooled to -50 °C before being transferred by cannula to a degassed solution of the crude germyl chloride in THF (2 mL) at -50 °C. The resulting mixture was stirred for 1 hr at -40 °C, warmed to RT and stirred for a further 1 h. After quenching with sat. NH₄Cl (aq) (100 mL), the reaction mixture was extracted with Et₂O (3×100 mL), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo*. Purification by FC (petrol/EtOAc, 19/1) gave di-*iso*-propylgermylthiophene **10c** as a colourless oil (97.0 mg, 78%). R_f 0.40 (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): δ 0.87 (t, J = 7, 3H), 1.13-1.56 (27H), 2.60-2.74 (4H), 3.59 (q, J = 7, 2H), 3.77 (t, J = 4.5, 2H), 4.10 (t, J = 4.5, 2H), 6.84 (d, J = 8.5, 2H), 6.96 (d, J = 1, 1H), 7.11 (d, J = 8.5, 2H), 7.14 $(d, J = 1, 1H); {}^{13}C$ NMR (62.8 MHz, CDCl₃) δ 13.7 (t, 2C), 14.1 (q, 2C), 15.2 (q, 2C), 19.5 (q, 2C), 19.5 (q), 22.7 (t), 29.1 (t), 30.1 (t), 30.7 (t, 2C), 31.7 (t), 66.9 (t), 67.5 (t), 69.1 (t), 114.6 (d, 2C), 124.5 (d), 128.6 (d, 2C), 135.1 (s), 135.6 (d), 137.6 (s), 144.3 (s), 157.0 (s); IR (neat) 2930-2860 (C-H), 1611, 1510, 1458, 1383, 1299, 1246 cm⁻¹; MS (EI+) m/z 520 (M⁺); HRMS (EI+) calcd. for $C_{28}H_{46}Ge^{74}O_2S (M^+) 520.2430$, found 520.2423.

{2-[4-(2-Ethoxy-ethoxy)-phenyl]-ethyl}-[4-(*n***-hexyl)thiophen-2-yl]diphenylgermane 10d. To germyl-***p***-anisole 9d (114 mg, 196 μmol) was added HCl in Et₂O (5.00 mL, 1.0 M, 5.00 mmol) and the reaction mixture left to stir for 16 h. The solvent was then removed** *in vacuo* **to give the crude germyl chloride as a colourless oil [¹H NMR (250 MHz, CDCl₃): δ 1.28 (t, J = 7, 3H), 1.98 (m, 2H), 2.91 (m, 2H), 3.63 (q, J = 7, 2H), 3.80 (t, J = 5, 2H), 4.11 (q, J = 5, 2H), 6.85 (d, J = 8.5, 2H), 7.11 (d, J = 8.5, 2H), 7.40-7.64 (10H); ¹³C NMR (62.8 MHz, CDCl₃) δ 15.2 (q), 21.1 (t), 29.2 (t), 66.9 (t), 67.6 (t), 69.1 (t), 114.8 (d, 2C), 128.6 (d, 4C), 128.9 (d, 2C), 130.3 (d, 2C), 133.5 (d, 4C), 135.4 (s, 2C), 135.7 (s), 157.3 (s); IR (neat) 3070-2870 (C-H), 1611, 1584, 1511, 1485, 1455, 1433, 1373, 1301, 1246 cm⁻¹; MS (EI+)** *m/z* **456 (M⁺); HRMS (EI+) calcd. for C₂₄H₂₇ClGe⁷⁴O₂ (M⁺) 456.0911, found 456.0894.]. In a separate flask, a solution of LDA (595 µL, 1.8 M, 1.07 mmol) in HFF/ethylbenzene (6/5/3) was added dropwise to a degassed solution of 3-(***n***-hexyl)thiophene (180 mg, 1.07 mmol) in THF (5 mL) at -50 °C. This solution was stirred for 40 min at -40 °C, and then**

transferred by cannula to a degassed solution of the crude germylchloride (98.0 mg) in THF (5 mL) at -50 °C. The resulting mixture was stirred for 1 h at -40 °C, warmed to RT and stirred for a further 1 h. After quenching with sat. NH₄Cl (aq) (100 mL), the mixture was extracted with Et₂O (3 × 100 mL), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo*. The residue was purified by FC (petrol/EtOAc, 9/1) to give diphenylgermylthiophene **10d** as a yellow oil (72.1 mg, 57%). R_f 0.30 (9/1, petrol/EtOAc); ¹H NMR (250 MHz, CDCl₃) δ 0.88 (t, *J* = 6.5, 3H), 1.25 (t, *J* = 7, 3H), 1.24-1.37 (6H), 1.62 (m, 2H), 1.79 (m, 2H), 2.64 (t, *J* = 8, 2H), 2.80 (m, 2H), 3.60 (q, *J* = 7, 2H), 3.78 (t, *J* = 5, 2H), 4.09 (t, *J* = 5, 2H), 6.83 (d, *J* = 8.5, 2H), 7.04 (d, *J* = 1, 1H), 7.08 (d, *J* = 8.5, 2H), 7.23 (d, *J* = 1, 1H), 7.33-7.46 (6H), 7.51-7.57 (4H); ¹³C NMR (62.8 MHz, CDCl₃) δ 14.1 (q), 15.2 (q, 2C), 17.4 (t), 22.6 (t), 29.1 (t), 30.1 (t), 30.1 (t), 30.6 (t), 31.7 (t), 66.8 (t), 67.5 (t), 69.0 (t), 114.6 (d, 2C), 125.8 (d), 128.3 (d, 4C), 128.7 (d, 2C), 129.1 (d, 2C), 134.5 (s, 2C), 134.6 (d, 4C), 136.8 (s), 137.0 (d), 144.7 (s), 157.0 (s); IR (neat) 2930-2855 (C-H), 1611, 1584, 1510, 1485, 1455, 1431, 1373, 1300, 1246 cm⁻¹; MS (EI+) *m/z* 588 (M⁺). HRMS (EI+) calcd. for C₃₄H₄₂Ge⁷⁴O₂S (M⁺) 588.2117, found 588.2091.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-[4-(n-hexyl)thiophen-2-yl]di-para-tolylgermane 10e. To germyl-p-anisole 9e (100 mg, 180 µmol) was added HCl in Et₂O (7.0 mL, 1.0 M, 7.0 mmol) and the reaction mixture left to stir for 16 h. The solvent was then removed *in vacuo* to give the crude germyl chloride as a colourless oil [¹H NMR (250 MHz, CDCl₃): δ 1.24 (t, J = 7, 3H), 1.89 (m, 2H), 2.37 (s, 6H), 2.84 (m, 2H), 3.60 (q, J = 7, 2H), 3.77 (t, J = 5, 2H), 4.08 (q, J = 5, 2H), 6.81 (d, J = 8.5, 2H), 7.07 (d, J = 8.5, 2H), 7.23 (d, J = 8, 4H), 7.45 (d, J = 8, 4H); ¹³C NMR (62.8 MHz, CDCl₃) δ 15.3 (q), 21.6 (t), 21.6 (q, 2C), 29.2 (t), 66.9 (t), 67.6 (t), 69.1 (t), 114.7 (d, 2C), 128.9 (d, 2C), 129.4 (d, 4C), 132.3 (s, 2C), 133.5 (d, 4C), 135.6 (s), 140.4 (s, 2C), 157.3 (s); IR (neat) 2975-2865 (C-H), 1610, 1584, 1511, 1453, 1393, 1300, 1247 cm⁻¹; MS (EI+) m/z 483 (M⁺); HRMS (EI+) calcd. for C₂₆H₃₁ClGe⁷⁴O₂ (M⁺) 484.1224, found 484.1207; Anal. calcd. for C₂₆H₃₁ClGe⁷⁴O₂: C 64.6, H 6.5, Cl 7.3, found C 64.1, H 6.6, Cl 7.7]. In a separate flask, a solution of LDA (3.71 mL, 2.0 M, 742 µmol) in hexanes/THF/ethylbenzene (6/5/3) was added dropwise to a degassed solution of 3-(n-hexyl)thiophene (124 mg, 737 µmol) in THF (5 mL) at -50 °C. This solution was stirred for 40 min at -40 °C, and then transferred by cannula to a degassed solution of the crude germylchloride (82.2 mg) in THF (5 mL) at -50 °C. The resulting mixture was stirred for 1 h at -40 °C, warmed to RT and stirred for a further 1 h. After quenching with sat. NH₄Cl (aq) (100 mL), the mixture was extracted with Et₂O (3×100 mL), the combined organic extracts dried (MgSO₄) and the solvent removed in vacuo. The residue was purified by FC (petrol/EtOAc, 9/1) to give di-para-tolylgermylthiophene 10e as a a pale yellow oil (56.0 mg, 61%). $R_f 0.60$ (3/1, petrol/EtOAc); ¹H NMR (250 MHz, CDCl₃): $\delta 0.87$ (t, J = 7, 3H), 1.21-1.63 (11H), 1.78 (m, 2H), 2.36 (s, 6H), 2.62 (t, J = 8, 2H), 2.77 (m, 2H), 3.59 (q, J = 7, 2H), 3.77 (t, J = 5, 2H), 4.09 (t, J = 5, 2H = 5, 2H), 6.82 (d, J = 8.5, 2H), 7.01 (d, J = 1, 1H), 7.08 (d, J = 8.5, 2H), 7.17-7.21 (5H), 7.42 (d, J = 8, 4H); ¹³C NMR (62.8 MHz, CDCl₃) δ 14.1 (q), 15.2 (q), 17.5 (t), 21.5 (q, 2C), 22.7 (t), 29.1 (t), 30.1 (t), 30.2 (t), 30.6 (t), 31.7 (t), 66.9 (t), 67.5 (t), 69.0 (t), 114.6 (d, 2C), 125.7 (d), 128.7 (d, 2C), 129.1 (d, 4C), 133.2 (s, 2C), 134.6 (d, 4C), 135.0 (s), 136.8 (s), 136.9 (d), 138.9 (s, 2C), 144.6 (s), 157.0 (s); IR (neat) 2926-2857 (C-H), 1686, 1610, 1584, 1510, 1485, 1455, 1392, 1299, 1246 cm⁻¹; MS (EI+) m/z 616 (M⁺); HRMS (EI+) calcd. for C₃₆H₄₆Ge⁷⁴O₂S (M⁺) 616.2430, found 616.2428.

tert-Butyl-[4-(*n*-hexyl)thophen-2-yl]dimethylsilane 12. A solution of LDA (3.12 mL, 2.0 M, 6.24 mmol) in hexanes/ethylbenzene/THF (6/5/3) was added dropwise to a degassed solution of 3-(*n*-hexyl)thiophene (7) (1.00 g, 5.94 mmol) in THF (10 mL) at -50 °C to give an orange solution. After stirring for 40 min at -40 °C, a degassed solution of *tert*-butyldimethylsilyl chloride (1.34 g, 8.89 mmol) in THF (5 mL) was added by cannula at -50 °C. The resulting mixture was warmed to -40 °C, stirred for 30 min at this temperature, warmed to RT and stirred for a further 40 min to

give a yellow solution. After quenching with sat. NH₄Cl (aq) (50 mL), the mixture was extracted with Et₂O (3×50 mL), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo*. Purification by vacuum distillation (105 °C, 10⁻³ Torr) removed starting material. Further purification by HPLC (Jupiter ODS-C18 column, UV 254 nm detection, 1 mLmin⁻¹, 5→100% MeCN in H₂O + 0.1% formic acid, R_t = 14.2 min) gave silylthiophene **12** as a colourless oil (1.05 g, 62%). R_f (pentane) 0.85; ¹H NMR (250 MHz, CDCl₃): δ 0.27 (s, 6H), 0.87 (t, *J* = 7.5, 3H), 0.90 (s, 9H), 1.24-1.30 (6H), 1.61 (t, *J* = 8, 2H), 2.62 (t, *J* = 8, 2H), 7.15 (s, 1H), 7.25 (s, 1H); ¹³C NMR (62.8 MHz, CDCl₃) δ -4.9 (q, 2C), 14.2 (q), 16.9 (s), 22.7 (t), 26.4 (q, 3C), 29.1 (t), 30.0 (t), 30.7 (t), 31.7 (t), 125.4 (d), 136.6 (d), 136.9 (s), 144.5 (s); IR (neat) 2955-2855 (C-H), 1462, 1406, 1361, 1249 [Si(CH₃)_n] cm⁻¹; MS (EI+) *m/z* 282 (M⁺); HRMS (EI+) calcd. for C₁₆H₃₀SSi (M⁺) 282.1838, found 282.1827; Anal. calcd. for C₁₆H₃₀SSi: C 68.0, H 10.7, S 11.4, found C 68.5, H 11.0, S 11.5.

$tert-Butyl-5-(\{2-[4-(2-ethoxyethoxy)phenyl]ethyl\}di-para-tolylgermanyl)-[4-(n-hexyl)thiophen-2-yl]dimethylsilane and the set of th$

13. A solution of LDA (730 µL, 2.0 M, 1.46 mmol) in hexanes/THF/ethylbenzene (6/5/3) was added dropwise to a degassed solution of silvlthiophene 12 (360 mg, 1.27 mmol) in THF (40 mL) at -50 °C. This solution was warmed to -40 °C, stirred for 40 min at this temperature and recooled to -50 °C before being transferred by cannula to a degassed solution of the germylchloride obtained from treatment of p-anisylgermane 9e with HCl in Et₂O (as described in the preparation of 10e, above) (411 mg, 848 µmol) in THF (40 mL) at -50 °C. The resulting mixture was stirred for 1 h at -40 °C, warmed to RT and stirred for a further 1 h. After quenching with sat. NH₄Cl (aq) (100 mL), the mixture was extracted with Et₂O (3×100 mL), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo*. The residue was purified by FC (petrol/EtOAc, 9/1) to give germylthiophene 13 as a pale yellow oil (456 mg, 73%). $R_f 0.30$ (9/1, petrol/EtOAc); ¹H NMR (250 MHz, CDCl₃): δ 0.27 (s, 6H], 0.78 (t, J = 7.5, 3H), 0.80-1.26 (m, 20H), 1.80 (m, 2H), 2.35 (s, 8H), 2.71 (m, 2H), 3.59 (q, J = 7, 2H), 3.76 (t, J = 5, 2H), 4.08 (q, J = 5, 2H), 6.81 (d, J = 8.5, 2H), 7.05 (d, J = 8.5, 7. 8.5, 2H), 7.17 (d, J = 8, 4H), 7.18 (s, 1H), 7.39 (d, J = 8, 4H); ¹³C NMR (62.8 MHz, CDCl₃) δ -4.6 (q, 2C), 14.2 (q, 1C), 15.4 (q, 1C), 17.1 [s, 1C), 18.4/22.7/29.4/30.5/31.4/31.7/31.8 (t, 14H), 21.6 (q, 2C), 26.6 (q, 3C), 66.9 (t, 1C), 67.6 (t, 1C), 69.2 (t, 1C), 114.7 (d, 2C), 128.9 (d, 2C), 129.2 (d, 4C), 133.6 (s, 2C), 134.6 (s, 1C), 134.9 (d, 4C), 137.2 (s, 1C), 138.1 (d, 1C), 138.8 (s, 22C), 142.4 (s, 1C), 151.7 (s, 1C), 157.([s, 1C); IR (neat) 2955-2855 (C-H), 1610, 1509, 1457, 1391, 1300, 1278, 1250 [Si(CH₃)_n] cm⁻¹; MS (EI+) m/z 730 (M⁺). HRMS (EI+) calcd. for C₄₂H₆₀Ge⁷⁴O₂SSi (M⁺) 730.3295, found 730.3298.

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-[3-(*n***-hexyl)thiophen-2-yl]di-***para***-tolylgermane 14. To silylthiophene 13 (225 mg, 308 µmol) in DMF (3 mL) was added caesium fluoride (234 mg, 1.54 mmol) and the mixture left to stir for 24 h at 110 °C. The reaction mixture was partitioned between Et₂O (40 mL) and H₂O (75 mL) and the Et₂O layer extracted with H₂O (3 × 40 mL). The organic layer was dried (MgSO₄), the solvent removed** *in vacuo* **and the residue purified by FC (petrol/EtOAc, 9/1) to give germylthiophene 14 as a pale yellow oil (182 mg, 95%). R_f 0.30 (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): \delta 0.81 (t,** *J* **= 7.5, 3H), 0.83-1.37 (11H), 1.84 (m, 2H), 2.35 (s, 6H), 2.44 (t,** *J* **= 8, 2H), 2.78 (m, 2H), 3.61 (q,** *J* **= 7, 2H), 3.79 (t,** *J* **= 5, 2H), 4.10 (q,** *J* **= 5, 2H), 6.84 (d,** *J* **= 8.5, 2H), 7.09 (d,** *J* **= 8.5, 2H), 7.12 (d,** *J* **= 5, 1H), 7.20 (d,** *J* **= 8, 4H), 7.43 (d,** *J* **= 8, 4H), 7.54 (d,** *J* **= 5, 1H); ¹³C NMR (62.8 MHz, CDCl₃) \delta 14.3 (q), 15.4 (q), 18.4 (t), 21.6 (q, 2C), 22.7 (t), 29.4 (t), 30.6 (t), 31.6 (t), 31.8 (t), 31.8 (t), 67.0 (t), 67.7 (t), 69.2 (t), 114.8 (d, 2C), 128.9 (d, 2C), 129.2 (d, 4C), 130.1 (d), 130.3 (d), 133.5 (s, 2C), 134.9 (d, 4C; s), 137.1 (s), 139.0 (s, 2C), 150.8 (s), 157.2 (s); IR (neat) 2930-2860 (C-H), 1610, 1510, 1457, 1392, 1300, 1258, 1245 cm⁻¹; MS (EI+)** *m/z* **616 (M⁺); HRMS (EI+) calcd. for C₃₆H₄₆Ge⁷⁴O₂S (M⁺) 616.2430, found 616.2435.**

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-[3-(*n***-hexyl)-5-iodothiophen-2-yl]di-***para***-tolylgermane 15. A solution of LDA (545 μL, 2.0 M, 1.09 mmol) in hexanes/THF/ethylbenzene (6/5/3) was added dropwise to a solution of germylthiophene 14 (224 mg, 36.4 μmol) in THF (3 mL) at -50 °C. After stirring for 40 min at -40 °C, a solution of degassed 1,2-diiodoethane (1.56 g, 5.53 mmol) in THF (2 mL) was added by cannula at -50 °C. The resulting mixture was stirred in the dark for 1 h at -40 °C, warmed to RT and stirred for a further 1 h. The reaction mixture was partitioned between sat. Na₂S₂O₃ (aq) (200 mL) and Et₂O (100 mL), extracted with Et₂O (2 × 100 mL), the organic fractions combined and then dried (MgSO₄). The solvent was removed** *in vacuo* **and the residue purified by FC (petrol/EtOAc, 9/1) to give iodide 15 as a pale yellow oil (251 mg, 90%). R_f 0.50 (petrol/EtOAc, 9/1); ¹H NMR (250 MHz, CDCl₃): δ 0.79 (t,** *J* **= 7, 3H), 0.87-1.30 (11H), 1.80 (m, 2H), 2.34-2.41 (8H), 2.75 (m, 2H), 3.60 (q,** *J* **= 7, 2H), 3.78 (t,** *J* **= 5, 2H), 4.09 (q,** *J* **= 5, 2H), 6.82 (d,** *J* **= 8.5, 2H), 7.06 (d,** *J* **= 8.5, 2H), 7.17 (s, 1H), 7.19 (d,** *J* **= 8, 4H), 7.38 (d,** *J* **= 8, 4H); ¹³C NMR (62.8 MHz, CDCl₃) δ 14.2 (q), 15.3 (q), 18.2 (t), 21.6 (q, 2C), 22.6 (t), 29.2 (t), 30.4 (t), 31.3 (t), 31.5 (t), 31.7 (t), 66.9 (t), 67.6 (t), 69.1 (t), 77.7 (s), 114.7 (d, 2C), 128.8 (d, 2C), 129.2 (d, 4C), 132.8 (s, 2C), 134.7 (d, 4C; s), 136.7 (s), 139.2 (s, 2C), 139.8 (d), 152.7 (s), 157.1 (s); IR (neat) 2925-2855 (C-H), 1610, 1510, 1454, 1393, 1299, 1246 cm⁻¹; MS (ES+)** *m/z* **765 (MNa⁺); HRMS (ES+) calcd. for C₃₆H₄₅Ge⁷⁴INaO₂S (MNa⁺) 765.1295, found 765.1266.**

2-[5-(*tert***-Butyldimethylsilanyl)-[3-(***n***-hexyl)thiophen-2-yl]-4,4,5,5-tetramethyl-[1,2,3]dioxaborolane 16. A solution of LDA (1.33 mL, 2.0 M, 2.66 mmol) in hexanes/ethylbenzene/THF (6/5/3) was added dropwise to a solution of silylthiophene 12** (501 mg, 1.77 mmol) in THF (5 mL) at -50 °C and then warmed to -40 °C give an orange solution. After stirring for 40 min at this temperature the reaction mixture was cooled to -50 °C and a solution of *2-isopropoxy-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane* (162 mg, 871 µmol) in THF (1 mL) was added dropwise by cannula. The resulting mixture was stirred for 30min at -40 °C, warmed to RT and stirred for a further 15 min. The reaction mixture was then cooled to 0 °C and anhydrous HCl (710 µL, 1.0 M, 710 µmol) in Et₂O added. The mixture was left to stir at this temperature for 15 min and then allowed to warm to RT. The solvent was removed *in vacuo* and the residue dissolved in dry Et₂O (50 mL). The solution was passed through a pad of dry CeliteTM, dried (MgSO₄) and the solvent removed *in vacuo*. The residue was purified by FC (petrol/ CH₂Cl₂, 3/1) to give boronic ester **16** as a pale yellow oil (371 mg, 51%). R_f 0.40 (3:1, petrol/ CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 0.26 (s, 6H), 0.87 (t, *J* = 7, 3H), 0.90 (s, 9H), 1.27-1.32 (18H), 1.57 (t, *J* = 8, 2H), 2.87 (t, *J* = 8, 2H), 7.12 (s, 1H); ¹³C NMR (62.8 MHz, CDCl₃) δ -4.8 (q, 2C), 14.2 (q), 16.9 (s), 22.7 (t), 24.9 (q, 4C), 26.4 (q, 3C), 29.1 (t), 30.0 (t), 31.7 (t), 32.0 (t), 83.4 (s, 2C), 138.4 (d), 144.9 (s), 155.3 (s), (absent: <u>CB</u>); IR (neat) 2955-2855 (C-H), 1525, 1470, 1435, 1370, 1332, 1298, 1271, 1250 [Si(CH₃)n], 1214 cm⁻¹; MS (ES+) *m/z* 409 (MH⁺); HRMS (ES+) calcd. for C₂₂H₄₂BO₂SSi (MH⁺) 409.2768, found 409.2770.

tert-Butyl-[5'-({2-[4-(2-ethoxyethoxy)phenyl]ethyl}-di-para-tolylgermanyl)-3,4'-dihexithiophenyl-5-

yl]dimethylsilane 17. To a degassed solution of boronic ester **16** (256 mg, 627 μmol), K₃PO₄ (427mg, 3.14mmol) and iodide **15** (155 mg, 203 μmol) in DMF (1 mL) was added [Pd(PPh₃)₄] (23.1 mg, 20.0 μmol) and the resulting mixture stirred at 60 °C for 24 h. The reaction mixture was partitioned between H₂O (100 mL) and Et₂O (50 mL), extracted with Et₂O (2 × 50 mL) and the organic fractions combined and dried (MgSO₄). The solvent was removed *in vacuo* and the residue purified by FC (petrol/CH₂Cl₂, 2/1) to give germylbithiophene **17** as a yellow oil (112 mg, 60%). R_f 0.50 (petrol/CH₂Cl₂, 2/1); ¹H NMR (250 MHz, CDCl₃): δ 0.27 (s, 6H), 0.75-1.36 (34H), 1.80 (m, 2H), 2.32-2.39 (8H), 2.71-2.80 (4H), 3.59 (q, *J* = 7, 2H), 3.76 (t, *J* = 5, 2H), 4.08 (q, *J* = 5, 2H), 6.82 (d, *J* = 8.5, 2H), 6.99 (s, 1H), 7.07 (d, *J* = 8.5, 2H), 7.11 (s, 1H), 7.18 (d, *J* = 8, 4H), 7.42 (d, *J* = 8, 4H); ¹³C NMR (62.8 MHz, CDCl₃) δ -5.0 (q, 2C), 14.1 (q, 2C), 15.2 (q), 16.9 (s), 18.2 (t), 21.5 (q, 2C), 22.6 (t), 22.7 (t), 26.4 (q, 3C), 29.3 (t), 29.3 (t, 2C), 30.4 (t), 30.7 (t), 31.3 (t), 31.7 (t, 2C),

31.8 (t), 66.8 (t), 67.5 (t), 69.1 (t), 114.6 (d, 2C), 128.4 (d), 128.7 (d, 2C), 129.0 (s), 129.1 (d, 4C), 133.3 (s, 2C), 134.7 (d, 4C), 135.1 (s), 136.5 (s), 137.0 (s), 138.3 (d), 138.9 (s, 2C), 140.2 (s), 141.1 (s), 151.0 (s), 157.0 (s); IR (neat) 2924-2854 (C-H), 1610, 1509, 1455, 1390, 1246 [Si(CH₃)_n] cm⁻¹; MS (EI+) m/z 896 (M⁺). HRMS (ES+) calcd. for C₅₂H₇₄Ge⁷⁴NaO₂S₂Si (MNa⁺) 919.4009, found 919.4001.

[4,3'-Di-(*n*-hexyl)-**[2,2']bithiophenyl-5-yl]-{2-[4-(2-ethoxyethoxy)phenyl]ethyl}***di-para*-tolylgermane **18**. To silylthiophene **17** (60.0 mg, 86.0 µmol) in DMF (1 mL) was added caesium fluoride (63.4 mg, 0.42 mmol) and the mixture left to stir for 24 hrs at 110 °C. The reaction mixture was partitioned between Et₂O (50 mL) and H₂O (100 mL) and the Et₂O layer extracted with H₂O (3 × 50 mL). The organic layer was dried (MgSO₄), the solvent removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 9/1) to give germylbithiophene **18** as a brown oil (54.0 mg, 99%). R_f 0.30 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 0.75-1.65 (25H), 1.82 (m, 2H), 2.40-2.55 (8H), 2.70-2.81 (4H), 3.59 (q, *J* = 7, 2H), 3.76 (t, *J* = 5, 2H), 4.08 (q, *J* = 5, 2H), 6.82 (d, *J* = 8.5, 2H), 6.89 (d, *J* = 5, 1H), 7.05-7.20 (8H), 7.43 (d, *J* = 8.5, 4H); ¹³C NMR (62.8 MHz, CDCl₃) δ 14.1 (q, 2C), 15.2 (q), 18.2 (t), 21.5 (q, 2C), 22.6 (t), 22.7 (t), 29.2 (t, 2C), 29.3 (t), 30.4 (t), 30.7 (t), 31.3 (t), 31.7 (t, 2C), 31.8 (t), 66.8 (t), 67.5 (t), 69.1 (t), 98.3 (s), 114.6 (d, 2C), 123.3 (d), 128.7 (d, 2C), 129.1 (d, 4C), 130.0 (d), 131.1 (s), 132.0 (d) 133.2 (s, 2C), 134.7 (d, 4C), 137.0 (s), 138.9 (s, 2C), 139.2 (s), 140.9 (s), 151.0 (s), 157.0 (s); IR (neat) 2925-2850, 1609, 1509, 1454, 1391, 1244 cm⁻¹; MS (ES+) *m/z* 805 (MNa⁺). HRMS (ES+) calcd. for C₄₆H₆₀Ge⁷⁴NaO₂S₂ (MNa⁺) 805.3144, found 805.3174.

3,4'-Di-(*n*-hexyl)-[**2,2']**bithiophene **19.**⁴ *Method 2:* To germylthiophene **18** (20.1 mg, 25.7 μ mol) was added a solution of TFA in CH₂Cl₂ (33% v/v, 1.5 mL) and the mixture left to stir at RT for 1 h. The solvent was then removed *in vacuo* and the residue purified by FC (pentane) to give bithiophene **19** as a yellow oil (8.3 mg, 97%). Spectroscopic data as in main manuscript.

2-[3-(*n***-Hexyl)thiophen-2-yl]-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane 20.** To a solution of germylthiophene **14** (28.2 mg, 45.7 µmol) and propylene oxide (1.00 mL, 990 µmol) in CH₂Cl₂ (1 mL) at -78 °C was added boron trichloride (99.0 µL, 1.0 M, 14.3 mmol) in heptane. After stirring for 40 min at this temperature, anhydrous pinacol (41.0 mg, 347 µmol) was added and the reaction mixture allowed to warm to RT. The solvent was then removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 19/1) to give boronic ester **20** as a yellow oil (4.1 mg, 30%). R_f 0.50 (9/1, petrol/EtOAc); ¹H NMR (250 MHz, CDCl₃): δ 0.87 (t, *J* = 6.5, 3H), 1.23-1.30 (6H), 1.32 (s, 12H), 1.55 (m, 2H), 2.87 (t, *J* = 8, 2H), 7.00 (d, *J* = 4.5, 1H), 7.47 (d, *J* = 4.5, 1H); ¹³C NMR (62.8 MHz, CDCl₃) δ 14.3 (q), 22.7 (t), 24.9 (q, 4C), 29.1 (t), 30.2 (t), 31.8 (t), 31.9 (t), 83.6 (s, 2C), 130.4 (d), 131.4 (d), 154.8 (s), (absent: <u>C</u>B); IR (neat) 2930-2855 (C-H), 1530, 1435, 1373, 1337, 1272, 1215 cm⁻¹; MS (EI+) *m/z* 294 (M⁺); HRMS calcd. for C₁₆H₂₇BO₂S (M⁺) 294.1825, found 294.1811.

2-[2-(2-*para***-Tolyloxyethoxy]ethoxy]ethanol 23.** To a solution of *p*-cresol (**21**, 1.28 g, 11.8 mmol) in acetonitrile (12 mL) was added 2-[2-(2-chloroethoxy)ethoxy]ethanol (**22**, 862 µL, 5.93 mmol), TBAI (438 mg, 1.19 mmol) and caesium carbonate (4.06 g, 11.5 mmol). The mixture was refluxed at 85 °C for 17 h then cooled and filtered. The solvent was removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 9/1) to give alcohol **23** as a colourless oil (2.16 g, 76%). R_f 0.55 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 2.27 (s, 3H), 3.62 (m, 2H), 3.67-3.76 (6H), 3.85 (t, *J* = 4.5, 2H), 4.10 (t, *J* = 4.5, 2H), 6.81 (d, *J* = 8.5, 2H), 7.07 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 20.5 (q), 61.7 (t), 67.4 (t), 69.8 (t), 70.3 (t), 70.8 (t), 72.6 (t), 114.5 (d, 2C), 129.9 (d, 2C), 130.1 (s), 156.6 (s); IR (neat) 3436 (broad, O-H), 2925-2870 (C-H), 1614, 1586, 1512, 1456, 1245 cm⁻¹; MS (EI+) *m/z* 240 (M⁺); HRMS calcd. for C₁₃H₂₀O₄ (M⁺) 240.1362, found 240.1368.

1-{2-[2-(2-Chloroethoxy)ethoxy]ethoxy}-4-methylbenzene 24 and formic acid 2-[2-(2-*para*-tolyloxyethoxy)ethoxy]ethyl ester 25. To a solution of the alcohol 23 (100 mg, 416 μ mol) in CH₂Cl₂ (5 mL) at RT was added thionyl chloride (152 μ L, 2.08 mmol) and DMF (6.2 μ L, 80.0 mmol) and the mixture left to stir for 24 h. The solvent was removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 4/1) to give:

Chloride **24** as a colourless oil (95.8 mg, 89%): $R_f 0.55$ (petrol/EtOAc, 1/1); ¹H NMR (250 MHz, CDCl₃): δ 2.27 (s, 3H), 3.46 (t, *J* = 6.5, 2H), 3.67-3.77 (4H), 3.77-3.87 (4H), 4.10 (t, *J* = 4.5, 2H), 6.81 (d, *J* = 8.5, 2H), 7.07 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 20.5 (q), 30.4 (t), 67.5 (t), 69.9 (t), 70.6 (t), 70.8 (t), 71.3 (t), 114.5 (d, 2C), 129.9 (d, 2C), 130.1 (s), 156.6 (s); IR (neat) 2925-2870 (C-H), 1614, 1586, 1512, 1456, 1245 cm⁻¹; MS (EI+) *m/z* 302 (M⁺); HRMS calcd. for C₁₃H₁₉BrO₃ (M⁺) 302.0518, found 302.0503.

Formate ester **25** as a colourless oil (10.0 mg, 9%): $R_f 0.70$ (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 2.26 (s, 3H), 3.65-3.75 (6H), 3.83 (t, J = 5, 2H), 4.10 (t, J = 5, 2H), 4.31 (t, J = 5, 2H), 6.80 (d, J = 8.5, 2H), 7.06 (d, J = 8.5, 2H), 8.06 (s, 1H); MS (EI+) m/z 268 (M⁺); HRMS calcd. for $C_{14}H_{20}O_5$ (M⁺) 268.1311, found 268.1315.

1-{2-[2-(2-Bromoethoxy)ethoxy]ethoxy}-4-methylbenzene 26. To a solution of the alcohol **23** (98.0 mg, 408 μmol) in CH₂Cl₂ (5 mL) at 0 °C was added triphenylphosphine (214 mg, 817 μmol) and carbon tetrabromide (542 mg, 1.63 mmol). The yellow solution was warmed to RT and left to stir for 24 h. The solvent was then removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 4/1) to give bromide **26** as a colourless oil (120 mg, 97%). R_f 0.35 (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 2.27 (s, 3H), 3.46 (t, *J* = 6.5, 2H), 3.67-3.77 (4H), 3.77-3.87 (4H), 4.10 (t, *J* = 4.5, 2H), 6.81 (d, *J* = 8.5, 2H), 7.07 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ 20.5 (q), 30.4 (t), 67.5 (t), 69.9 (t), 70.6 (t), 70.8 (t), 71.3 (t), 114.5 (d, 2C), 129.9 (d, 2C), 130.1 (s), 156.6 (s); IR (neat) 2925-2870 (C-H), 1614, 1586, 1512, 1456, 1245 cm⁻¹; MS (EI+) *m/z* 302 (M⁺); HRMS calcd. for C₁₃H₁₉BrO₃ (M) 302.0518, found 302.0503.

Trimethyl-[2-(4-{2-[2-(2-*para***-tolyloxyethoxy)ethoxy]ethoxy]phenyl)ethyl]germane 28.** *Method 1:* To a solution of 4-(2-trimethylgermanylethyl)phenol **27**⁵ (105 mg, 298 µmol) in acetonitrile (2 mL) was added chloride **24** (77.2 mg, 321 µmol), TBAI (15.5 mg, 42.0 µmol) and caesium carbonate (145 mg, 411 µmol). The reaction mixture was refluxed at 85 °C for 17 h then cooled and filtered. The solvent was removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 9/1) to give ether **28** as a colourless oil (119 mg, 87%). $R_f 0.30$ (petrol/EtOAc, 3/1); ¹H NMR (250 MHz, CDCl₃): δ 0.00 (s, 9H), 0.91 (m, 2H), 2.17 (s, 3H), 4.00 (m, 2H), 3.65 (s, 4H), 3.75 (t, *J* = 5, 4H), 4.00 (t, *J* = 5, 4H), 6.71 (d, *J* = 8.5, 2H), 6.72 (d, *J* = 8.5, 2H), 6.96 (d, *J* = 8.5, 2H), 6.99 (d, *J* = 8.5, 2H); ¹³C NMR (62.8 MHz, CDCl₃) δ -2.4 (q, 3C), 18.8 (t), 20.5 (q), 30.3 (t), 67.5 (t, 2C), 69.9 (t, 2C), 70.9 (t, 2C), 114.5 (d, 4C), 128.7 (d, 2C), 129.9 (d, 2C), 130.0 (s), 137.4 (s), 156.7 (s), 156.8 (s); IR (neat) 2920-2870 (C-H), 1612, 1585, 1511, 1455, 1246 cm⁻¹; MS (EI+) *m/z* 462 (M⁺); HRMS calcd. for C₂₄H₃₆Ge⁷⁴O₄ (M⁺) 462.1825, found 462.1807.

Method 2: To a solution of 4-(2-trimethylgermanylethyl)phenol 27^5 (54.0 mg, 178 µmol) in acetonitrile (2 mL) was added bromide 26 (54.0 mg, 178 µmol), TBAI (9.2 mg, 24.9 µmol) and caesium carbonate (87.3 mg, 247 µmol). The mixture was refluxed at 85 °C for 17 h then cooled and filtered. The solvent was removed *in vacuo* and the residue purified by FC (petrol/EtOAc, 9/1) to give the ether 28 as a colourless oil (70.1 mg, 84%) Spectroscopic data as above.

Triethyl-[3-(*n*-hexyl)thiophen-2-yl]silane 1b.

¹H NMR (250 MHz, CDCl₃)

tert-Butyl-[3-(n-hexyl)thiophen-2-yl]dimethylsilane 1c.

¹H NMR (250 MHz, CDCl₃)

4-{2-[(4-Methoxyphenyl)dimethylgermanyl]ethyl}phenol 8a.

¹H NMR (250 MHz, CDCl₃)

4-{2-[Diethyl-(4-methoxyphenyl)germanyl]ethyl}phenol 8b.

¹H NMR (250 MHz, CDCl₃)

4-{2-[Diisopropyl-(4-methoxyphenyl)germanyl]ethyl}phenol 8c.

¹H NMR (250 MHz, CDCl₃)

4-{2-[(4-Methoxyphenyl)diphenylgermanyl]ethyl}phenol 8d.

¹H NMR (250 MHz, CDCl₃)

4-{2-[(4-Methoxyphenyl)-di-para-tolylgermanyl]ethyl}phenol 8e.

¹H NMR (250 MHz, CDCl₃)

 $\label{eq:constraint} \end{tabular} \end{t$

C₂₁H₃₀GeO₃ Mol. Wt.: 403.07

¹H NMR (250 MHz, CDCl₃)

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}diethyl-(4-methoxyphenyl)germane 9b.

¹H NMR (250 MHz, CDCl₃)

¹³C NMR APT (62.8 MHz, CDCl₃)

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}diisopropyl-(4-methoxyphenyl)germane 9c.

C₂₅H₃₈GeO₃ Mol. Wt.: 459.18

¹H NMR (250 MHz, CDCl₃)

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-(4-methoxyphenyl)diphenylgermane 9d.

¹H NMR (250 MHz, CDCl₃)

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-(4-methoxyphenyl)di-*para*-tolylgermane 9e.

C₃₃H₃₈GeO₃ Mol. Wt.: 555.26

¹H NMR (250 MHz, CDCl₃)

 $Bis-(4-\{2-[(4-methoxyphenyl)-di-{\it para-tolylgermanyl}]ethyl\} phenoxy) methane.$

¹H NMR (250 MHz, CDCl₃)

 $\label{eq:lambda} \ensuremath{\belowdisplayskip} \ensuremath$

¹H NMR (250 MHz, CDCl₃)

{2-[4-(2-Ethoxy)phenyl]ethyl}diethyl-(4-hexylthiophen-2-yl)germane 10b.

¹H NMR (250 MHz, CDCl₃)

 $\label{eq:constraint} \end{tabular} \end{t$

¹H NMR (250 MHz, CDCl₃)

 $\label{eq:constraint} \end{tabular} \end{t$

¹H NMR (250 MHz, CDCl₃)

 $\label{eq:last} \end{tabular} \end{tabular$

¹H NMR (250 MHz, CDCl₃)

tert-Butyl-(4-hexylthophen-2-yl)dimethylsilane 12.

¹H NMR (250 MHz, CDCl₃)

tert-Butyl-[5-({2-[4-(2-ethoxyethoxy)phenyl]ethyl}di-*para*-tolylgermanyl)-4-hexylthiophen-2-yl]dimethylsilane 13.

C₄₂H₆₀GeO₂SSi Mol. Wt.: 729.69

¹H NMR (250 MHz, CDCl₃)

¹³C NMR APT (62.8 MHz, CDCl₃)

 $\label{eq:constraint} \end{tabular} \end{t$

¹H NMR (250 MHz, CDCl₃)

{2-[4-(2-Ethoxyethoxy)phenyl]ethyl}-(3-*n*-hexyl-5-iodothiophen-2-yl)-di-*para*-tolylgermane 15.

¹H NMR (250 MHz, CDCl₃)

- $\label{eq:2-1} 2-[5-(\textit{tert-Butyldimethylsilanyl})-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-2-[5-(\textit{tert-Butyldimethylsilanyl})-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,4,5,5-tetramethyl-3-\textit{n-hexylthophen-2-yl}]-4,5,5-tetramethyl-3-maphen-2-yl]-2,5-tetramethyl-3-maphen-2-ma$
- [1,2,3]dioxaboralane 16.

¹H NMR (250 MHz, CDCl₃)

tert-Butyl-[5'-({2-[4-(2-ethoxyethoxy)phenyl]ethyl}-di-*para*-tolylgermanyl)-3,4'dihexithiophenyl-5-yl]dimethylsilane 17.

C₅₂H₇₄GeO₂S₂Si Mol. Wt.: 895.97

¹H NMR (250 MHz, CDCl₃)

(4,3'-Dihexyl[2,2']bithiophenyl-5-yl)-{2-[4-(2-ethoxyethoxy)phenyl]ethyl}-di-*para*-tolylgermane 18.

¹H NMR (250 MHz, CDCl₃)

¹³C NMR APT (62.8 MHz, CDCl₃)

3,4'-Dihexyl-[2,2']bithiophene 19.

HPLC: Jupiter ODS-C18 column (250 × 0.46 cm), UV 254 nm detection, 1 mLmin⁻¹, 5 \rightarrow 100% MeCN in H₂O + 0.1% formic acid, R_t = 17.1 min.

Before 'double coupling':

After 'double coupling':

2-(3-*n*-Hexylthiophen-2-yl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane 20.

¹H NMR (250 MHz, CDCl₃)

2-[2-(2-para-Tolyloxyethoxy)ethoxy]ethanol 23.

C₁₃H₂₀O₄ Mol. Wt.: 240.30

¹H NMR (250 MHz, CDCl₃)

¹³C NMR APT (62.8 MHz, CDCl₃)

$1-\{2-[2-(2-Chloroethoxy)ethoxy]ethoxy\}-4-methylbenzene\ 24$

C₁₃H₁₉ClO₃ Mol. Wt.: 258.74

¹H NMR (250 MHz, CDCl₃)

Formic acid 2-[2-(2-para-tolyloxyethoxy)ethoxy]ethyl ester 25.

¹H NMR (250 MHz, CDCl₃)

1-{2-[2-(2-Bromoethoxy)ethoxy]ethoxy}-4-methylbenzene 26.

C₁₃H₁₉BrO₃ Mol. Wt.: 303.19

¹H NMR (250 MHz, CDCl₃)

Trimethyl-[2-(4-{2-[2-(2-para-tolyloxyethoxy)ethoxy]ethoxy}phenyl)ethyl]germane 28.

¹H NMR (250 MHz, CDCl₃)

Figure 1. ¹H MAS NMR (400 MHz, CDCl₃) spectra for resins 30-36. *NB*. All spectra except that for the initial resin 29 are Car-Purcell-Meiboon-Gill (CPMG) processed.^{6,7}

Figure 2. Gel phase ¹³C NMR (75 MHz, d_8 -THF) spectra for resins 39-41 & 43-47.

Figure 3. Gel phase 13 C NMR (75 MHz, d_8 -THF) spectra for resins 48 & 49.

*N*4'-[4'-(Di-*para*-tolylaminobiphenyl-4-yl]-*N*4-(4'-phenyl)-*N*4,*N*4'-di-*para*-tolyl-biphenyl-4,4'- diamine 50.

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

HPLC: Jupiter ODS-C18 column (250 × 0.46 cm), UV 300 nm detection, 1 mLmin⁻¹, 5 \rightarrow 100% MeCN in H₂O + 0.1% formic acid, R_t = 9.7 min.

References.

- ¹ K. J. Hoffmann and P. J. Carlsen, *Synth. Commun.*, 1999, **29**, 1607.
- ² A. C. Spivey, D. J. Turner, M. L. Turner, and S. Yeates, *Synlett*, 2004, 111.
- ³ H. Taniguchi and E. Nomura, *Chem. Lett.*, 1988, 1773.
- ⁴ D. S. Galvao, D. A. Dos Santos, B. Laks, and M. C. Dos Santos, *Synth. Met.*, 1991, **43**, 3521.
- ⁵ A. C. Spivey, C. M. Diaper, H. Adams, and A. J. Rudge, *J. Org. Chem.*, 2000, **65**, 5253.
- ⁶ H. Y. Carr and E. M. Purcell, *Phys. Rev.*, 1954, **94**, 630.
- ⁷ S. Meiboom and D. Gill, *Rev. Sci. Instrum.*, 1958, **29**, 688.