ELECTRONIC SUPPLEMENTARY INFORMATION

N-Amidothiourea Based PET Chemosensors for Anions

Wen-Xia Liu and Yun-Bao Jiang*

Department of Chemistry, College of Chemistry and Chemical Engineering, and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China

E-mail: ybjiang@xmu.edu.cn; Tel./Fax: +86 592 218 5662

Figure S1. Portion of 2D COSY spectrum of N-acetamidothiourea and summary of COSY observed in CD₃CN. This spectrum was taken as a reference for assigning –NH NMR signals of 1-3.

Figure S2. Job plot for binding of **2** with AcO⁻ in MeCN. The flurescence intensity is the difference of flurescence intensity of AcO⁻/**2** mixture and that of **2**. Total concentration of AcO⁻ and **2** is 8.55×10^{-6} mol L⁻¹.

Figure S3. Stern-Volmer plots for quenching of sensors 1-3 fluorescence by AcO⁻, F⁻ and H₂PO₄⁻, respectively, in MeCN

N-(1-Pyrenebutanamide)-*N*^{*}-(*p*-tolyl)thiourea (1): ¹³C NMR (100 MHz, DMSO-*d*₆).

N-(1-Pyrenebutanamide)-*N*'-phenylthiourea (2): ¹³C NMR (100 MHz, DMSO-*d*₆).

N-(1-Pyrenebutanamide)-*N*'-(*m*-trifluoromethylphenyl)thiourea (3): ¹H NMR (400 MHz, DMSO-*d*₆).

N-(1-Pyrenebutanamide)-*N*'-(*m*-trifluoromethylphenyl)thiourea (3): 13 C NMR (100 MHz, DMSO- d_{δ}).

6