Supporting information for

Synthesis and evaluation of 2-(2-fluoro-4-hydroxymethyl-5-methoxyphenoxy) acetic acid as linker in solid-phase synthesis monitored by ¹⁹F gel-phase NMR spectroscopy

Fredrik K. Wallner,^a Sara Spjut,^a Dan Boström^b and Mikael Elofsson^{*a}

^a Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.

^b Energy Technology and Thermal Process Chemistry, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.

* Corresponding author: Mikael Elofsson, Fax: +4690 13 88 85; Tel: +4690 786 93 28; E-mail: mikael.elofsson@chem.umu.se

Contents

X-ray crystallography	
General	р 2
Crystallisation of 11 and 13	p 2
Figure 1, structure of 11	p 2
Figure 2, structure of 13	р 2
Table 1, crystal data for 11 and 13	p 3
Gel-phase ¹⁹ F NMR spectra for substance 18, 21, 23, 26 and 27	
Figure 3, 18	p 4
Figure 4, 21	p 4
Figure 5, 23	р :
Figure 6, 26	р 5
Figure 7, 27	р (
References	p é

X-ray chrystallography

X-ray crystal structures were determined from data collected with a Nonius KappaCCD area detector diffractometer, using graphite monochromatized MoK_{α} .¹ Solution of the structures were made by direct methods² and refinements on F².³ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were isotropically refined on calculated positions (riding model).

Crystallization of 11 and 13

From a different batch both 11 and the dimer 13 were purified by preparative LC/MS. Crystallisation from heptane, for 11, or EtOH, for 13, gave thin needles. X-ray diffraction on the crystals showed the expected structures.

Figure 1. Single crystal X-ray structure of compound **11** (two crystallographical non-identical molecules), with displacement ellipsoids of non-hydrogen atoms drawn at the 50% probability level and hydrogen atoms of arbitrary size (ATOMS⁴).

Figure 2. Single crystal X-ray structure of compound **13** with displacement ellipsoids of non-hydrogen atoms drawn at the 50% probability level and hydrogen atoms of arbitrary size (ATOMS⁴). The compound has imposed twofold symmetry with the central oxygen on the twofold axis.

Identification code	11	13
Empirical formula	C12 H15 F O5	C24 H28 F2 O9
Formula weight	258.245	498.477
Temperature of data collection	100K	298K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Orthorhombic
Space group	P-1	P b c n
Unit cell dimensions	a = 4.7854(6)	a = 13.7696(5)
	b = 11.316(2)	b = 8.3551(2)
	c = 22.705(3)	c = 20.4951(6)
	$\alpha = 80.348(8)$	
	$\beta = 86.525(10)$	
	$\gamma = 86.318(7)$	
Volume	1208.0(3)	2357.89(12)

Table 1. Crystal data for 11 and 13.

Gel-phase ¹⁹F NMR spectra for substance 18, 21, 23, 26 and 27.

Figure 3. Gel-phase ¹⁹F NMR spectrum for 18.

Figure 4. Gel-phase ¹⁹F NMR spectrum for 21.

Figure 5. Gel-phase ¹⁹F NMR spectrum for 23.

Figure 7. Gel-phase ¹⁹F NMR spectrum for 27.

References

- Nonius., COLLECT, (1999) Nonius BV, Delft, The Netherlands. 1.
- 2. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Of Appl. Cryst., 1999, 32, 115-119.
- 3. G. M. Sheldrick, SHELXL97, (1997) University of Göttingen, Göttingen, Germany.
- E. Dowty, ATOMS for Windows and Macintosh, (2000) Shape Software, 521 Hidden Valley 4. Road, Kingsport, TN 37663, USA.