Supplementary Information

To D or not to D

On estimating the microenvironment polarity of biomolecular cavities

Renatus W. Sinkeldam and Yitzhak Tor*

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093

Synthesis general

All materials obtained from commercial suppliers were used without further purification. Anhydrous triethylamine, DiPEA and CH₃CN were obtained from Sigma-Aldrich. Anhydrous DMF was acquired using a two-column purification system (Glasscontour System, Irvine, CA). Reactions were conducted under and argon atmosphere if required. NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer. NMR solvents were purchased from Cambridge Isotope Laboratories (Andover, MA). Mass spectra were recorded at the UCSD Chemistry and Biochemistry Mass Spectrometry Facility, utilizing either a LCQDECA (Finnigan) ESI with a quadrapole ion trap or a MAT900XL (ThermoFinnigan) FAB double focusing mass spectrometer.

Synthesis of 5-(dimethylamino)-*N*-methylnaphthalene-1-sulfonamide (5)

Scheme 1: Synthesis of 5-dimethylamine-naphthalene-1-N-methyl-sulfonamide. i) Methylamine (2 M in THF, 2 equiv.), DiPEA (2 equiv.), CH₃CN, 0°C to rt, 1 h, 72%.

A solution of dansylchloride (**15**) (0.997 g, 3.696 mmol) and DiPEA (1.27 mL, 0.955 g, 7.392 mmol) in dry CH₃CN (15 mL) is cooled to 0°C. After dropwise addition of CH₃NH₂ (3.70 mL, 7.392 mmol, of a 2.0 M solution in THF) the reaction mixture is stirred for 1 h allowing the temperature to rise to rt. TLC analysis (silica, CH₂Cl₂, R_f = 0.2) indicates full conversion. The crude reaction mixture is concentrated *in vacuo* after which the remaining solid is redisolved in EtOAc (50 mL) and subsequently washed with water (3 × 50 mL) and brine (50 mL). The organic layer is dried over MgSO₄ and filtered over a glass filter and concentrated *in vacuo*. The remaining solid is purified by column chromatography (silica, CH₂Cl₂, R_f = 0.2) to obtain 5-(dimethylamino)-*N*-methylnaphthalene-1-sulfonamide (**5**) as a very bright yellow solid with a greenish glow (0.71 g, 2.67 mmol, 72%). ¹H-NMR (DMSO, 400 MHz) δ (ppm): 8.45 (1H, d, 8.8 Hz),

8.26 (1H, d, 8.8 Hz), 8.07 (1H, d, J = 7.3 Hz), 7.73 (1H, q, J = 4.52, N-H), 7.64-7.56 (2 1H, 2 t overlapping, J = 7.3 Hz and J = 8.4 Hz), 7.25 (1H, d, J = 7.3 Hz), 2.81 (6H, s, 2 × CH₃), 2.40 (3H, d, J = 4.8 Hz, N-CH₃); ¹³C-NMR (DMSO, 100 MHz) δ (ppm): 151.4, 134.8, 129.5, 129.14, 129.10, 128.7, 127.9, 123.6, 119.1, 115.2, 45.1, 28.6; FAB-HRMS calc. 264.0927, found: 264.0929.

Synthesis of 2-phenylethynylfluorenone (13)

Scheme 2: Oxidation of 2-bromofluorene (16) to 2-bromofluorenone (17) and subsequent coupling to phenylacetylene under Sonogashira conditions gave 2-phenylethynylfluorenone (13). i) Bu_4NOH (0.13 equiv), pyridine, rt, 5 days, 52-65%. ii) Phenylacetylene (2 equiv.), $PdCl_2(dppf)$ (5 mol%), CuI (5 mol%), DMF/Et_3N (4:1), 70°C, 2 h, ~100 %.

A solution of phenylacetylene (0.27 mL, 0.255 g, 2.500 mmol) and Et₃N (0.8 mL) in DMF (3.2 mL) is purged with argon for 15 minutes and cannulated into a roundbottom flask containing 2-bromofluorenone $(17)^1$ (0.324 g, 1.250 mmol), Pd(dppf)Cl₂ (0.0510 g, 0.063 mmol) and CuI (0.012 g, 0.062 mmol) under an argon atmosphere. The reaction mixture is heated to 50°C for 17 h under continuous stirring after which it is concentrated in vacuo. The remaining solid is taken up in EtOAc (20 mL) and washed with 0.1 M HCl aq. $(3 \times 20 \text{ mL})$ and brine (20 mL). The organic layer is dried over MgSO₄ and filtered over a glass filter. The in vacuo concentrated filtrate is purified by column chromatography (silica, 20% CH_2Cl_2 in hexane, $R_f = 0.3$) yielding 2phenylethynylfluorenone (13) as a bright yellow solid (0.352 g, 1.256 mmol, ~100%). ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 7.81 (1H, dd, J = 1.1 Hz, J = 0.7 Hz), 7.68 (1H, d, J = 7.3 Hz), 7.65 (1H, dd, J = 1.5 Hz, J = 7.8 Hz), 7.55-7.49 (5H, m), 7.38-7.35 (3H, m), 7.32 (1H, dt, J = 7.1 Hz, J = 1.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 193.2 (C=O), 144.1, 143.8, 137.7, 135.0, 134.4, 134.3, 131.8, 129.5, 128.7, 128.5, 127.4, 124.6, 124.3, 122.9, 120.7, 120.4, 91.2 (C=CPh), 88.7 (C=CPh); FAB-HRMS calc. 280.0883, found: 280.0884.

Spectroscopy general

UV-Vis spectra were recorded on a Hewlett Packard 8453 Diode Array Spectrometer. Steady state fluorescence experiments were carried out at room temperature in a 1 mL quartz fluorescence cell with a path length of 1.0 cm (Hellma GmbH & Co KG, Müllheim, Germany) on a Jobin Yvon Horiba FluoroMax-3 luminescence spectrometer. All samples were prepared from a stock solution in DMSO, hence, all samples contain 0.4 v% DMSO.

Spectroscopic properties of 5-(dimethylamino)-*N*-methylnaphthalene-1-sulfonamide (5)

Figure 1: Absorption (solid lines) and emission curves (dashed lines) of dansylamide 5 in, dioxane (dark cyan), i-BuOH (green), DCM (light blue), EtOAc (Orange), n-BuOH (pink), CH₃CN (gray), acetone (dark gray), CHCl₃ (blue), MeOH (dark red). Quantum yields relative to anthracene are reported in the legend. All samples are measured at 1.02×10^{-5} M concentration and contain 0.4 v% DMSO to ensure solubility. All emission spectra are recorded after excitation at the long wavelength absorption maximum.

Tabel 1: Spectral properties of 5-(dimethylamino)-N-methylnaphthalene-1-sulfonamic	le
(5) and solvent polarity parameters ε , $E_T(30)$ and Δf .	

Solvent	Abs	Em	Stokes shift	rel. QY	3	E _T (30)	Δf
	[nm]	[nm]	[cm ⁻¹]		[D]	[kcal mol ⁻¹]	
EtOAc	335	488.0	9359	0.34	6.05	38.3	0.200
MeOH	335	518.0	10546	0.23	33.52	55.2	0.309
Dioxane	335	478.5	8952	0.54	2.22	36.3	0.022
Acetone	341	502.0	9405	0.36	21.40	42.7	0.285
CHCl ₃	341	486.0	8749	0.61	4.81	39.2	0.148
CH₃CN	339	512.0	9967	0.28	37.50	45.9	0.305
DCM	340	495.5	9230	0.60	8.90	41.3	0.217
n-BuOH	335	505.0	10049	0.36	17.92	49.6	0.264
iso-BuOH	335	503.5	9990	0.37	17.84	48.9	0.265
Toluene	336	475.0	8709	0.40	2.39	34.8	0.014
Water	328	561.5	12678		80.18		0.320

The quantum yield is determined relative to anthracene in EtOH (0.27). All $E_T(30)$ are determined experimentally,² the orientational polarizability is determined according Lippert³-Mataga⁴ based on refractive indexes taken from the Sigma-Aldrich website⁵ as reported for the pure solvents. The dielectric constants are taken from Wohlfarth.⁶

Spectroscopic properties of Prodan (12)

Tabel 2: Spectral properties of Prodan (12) and solvent polarity parameters ε , $E_T(30)$ and Δf .

Solvent	Abs	Em	Stokes shift	3	E _T (30)	Δf
	[nm]	[nm]	[cm ⁻¹]	[D]	[kcal mol ⁻¹]	
cyclohexane	342	401	4302	2.02	30.9	0.001
benzene	355	421	4416	2.28	34.3	0.002
triethylamine	343	406	4523	2.43	32.1	0.102
chlorobenzene	254	430	4992	5.65	36.8	0.143
chloroform	357	440	5284	4.81	39.1	0.185
acetone	350	452	6448	21.40	42.2	0.287
DMF	355	461	6477	38.70	43.2	0.276
acetonitrile	350	462	6926	37.50	45.6	0.304
ethylene glycol	375	515	7249	41.82	56.3	0.274
propylene glycol	370	510	7419	30.00	54.1	0.270
ethanol	360	496	7616	25.29	51.9	0.298
methanol	362	505	8206	33.52	55.4	0.308
water	364	531	8640	80.18	63.1	0.320

Absorption and emission data are taken from Weber and Farris.⁷ All $E_T(30)$ are taken from Reichardt,² the orientational polarizability is determined according Lippert⁸-Mataga⁹ based on refractive indexes taken from the Sigma-Aldrich website¹⁰ as reported for the pure solvents. The dielectric constants are taken from Wohlfarth.¹¹

1.0 1.0 Φ, 0% Water Dioxane Dioxane: 0.16 4x10⁴ **EtOAc** 4x10 EtOAc: 0.12 CH3CN 0.8 0.8 CH, CN: 0.03 DCM ij. norm. int.) DCM: 0.04 ້ຮູ ^{3x10⁴} ້ິິິິີ 2x10⁴ ີ່ພູ 2x10⁴ MeOH ε / Μ⁻¹ cm⁻¹ 3x10 MeOH: 0.00 norm. 0.6 0.6 2x10⁴ 0.4 Гē. 2 굽 1x10⁴ 1x10⁴ 0.2 0.2 0 0 0.0 0.0 400 300 500 600 700 300 400 5**0**0 700 600 λ / nm λ / nm

Spectroscopic properties of 2-phenylethynylfluorenone (10)

Figures 2: left) Absorption spectra of 5 in dioxane (blue line) EtOAc (orange line), CH₃CN (blue line), DCM (green line) and MeOH (red line) and their corresponding PL spectra (dashed lines); right) Absorption spectra (solid lines) and PL spectra (dashed lines) of 5 in various water dioxane mixtures with pure water and pure dioxane depicted in blue and red respectively. All samples are measured at a concentration of 4.71×10^{-5} M and contain 0.4 v% DMSO to ensure solubility. PL spectra are recorded after excitation at the long wavelength absorption maximum.

Solvent	Abs	Em	Stokes shift	3	E _T (30)	Δf
	[nm]	[nm]	[cm⁻¹]	[D]	[kcal mol ⁻¹]	
EtOAc	418	505	4121	6.05	38.3	0.200
Dioxane	418	509	4277	2.22	36.3	0.022
CH ₃ CN	420	528	4870	37.50	45.9	0.305
DCM	422	529	4793	8.90	41.9	0.217
MeOH	420	593	6946	33.52	55.3	0.309
fraction water in dioxane						
0	418	512	4392	2.08	36.4	0.008
6.00E-04	418	513	4430	2.10	36.6	0.009
0.003	416	515	4621	2.16	37.3	0.016
0.015	418	526	4912	2.49	39.9	0.048
0.042	420	540	5291	3.35	43.4	0.106
0.060	416	543	5622	4.00	44.7	0.135
0.120	420	551	5661	6.65	46.8	0.199
0.210	420	556	5824	11.85	48.6	0.243
0.420	424	571	6072	28.06	52.1	0.278
0.600	424	583	6432	44.21	54.9	0.289

Table 3: Spectral properties of 2-phenylethynylfluorenone and solvent parmeters ε , $E_T(30)$ and Δf .

 $E_T(30)$ values are determined experimentally with Reichardt's dye.² The dielectric constants for the pure solvents and the water-dioxane mixtures are taken from ref 6 and 12 respectively. The orientational polarizabilities are calculated according Lippert³ and Mataga⁴ with refractive indexes for the pure solvents and water-dioxane mixtures from ref 5 and 13 respectively and, where necessary, interpolation of the data was performed after curve fitting using Microcal Origin Pro v. 7.5.

References

- ¹ 2-Bromofluorenone is synthesized according: Pei, J.; Ni, J.; Zhou, X-H.; Cao, X-Y.; Lai, Y-H. J. Org. Chem. **2002**, 67, 4924-36.
- ² Reichardt, C. *Chem. Rev.* **1994**, *94*, 2319–58.
- ³ Lippert, E. Zeitschrift fur Elektrochemie **1957**, 61, 962-75.
- ⁴ Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc. Jpn. **1956**, 29, 465-70.

- ⁶ Wohlfarth, Ch. Numerical Data and Functional Relationships in Science and Technology. Group IV: Macroscopic and Technical Properties of Matter. Volume 6, Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Edited by Madelung, O.: Landolt-Bornstein, Springer-Verlag, Berlin, Heidelberg, 1991.
- ⁷ Weber, G. Farris, F. J. *Biochemistry* **1979**, *18*, 3075–8.
- ⁸ Lippert, E. Zeitschrift fur Elektrochemie **1957**, 61, 962-75.
- ⁹ Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc. Jpn. **1956**, 29, 465-70.
- ¹⁰ www.sigmaaldrich.com.
- ¹¹ Wohlfarth, Ch. Numerical Data and Functional Relationships in Science and Technology. Group IV: Macroscopic and Technical Properties of Matter. Volume 6, Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Edited by Madelung, O.: Landolt-Bornstein, Springer-Verlag, Berlin, Heidelberg, 1991.
- ¹² Hasted, J. B. *Water: A compr. Treatise* 2, **1973**, 405. Also reported in ref. 6.
- ¹³ Aminabhavi, T. M.; Gopalakrishna, B. J. Chem. Eng. Data, **1995**, 40, 856–61.

⁵ www.sigmaaldrich.com.