Supplementary Information For:

Stereochemical preference of yeast epoxide hydrolase for the O-*axial* C3 epimers of 1-oxaspiro[2.5]octanes

Carel A.G.M. Weijers, Paul M. Könst, Maurice C.R. Franssen* and Ernst J.R. Sudhölter

Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703HB Wageningen, The Netherlands.

Table of contents

S2	¹ H NMR of substrate 1a/2a
S3	¹³ C NMR of substrate 1a/2a
S4	¹ H NMR of β -bromohydrin 4b
S5	¹³ C NMR of β -bromohydrin 4b
S6	¹ H NMR of substrate 1b
S7	¹³ C NMR of substrate 1b
S8	¹ H NMR of β -bromohydrin 5 b
S9	¹³ C NMR of β -bromohydrin 5b
S10	¹ H NMR of substrate 2b
S11	¹³ C NMR of substrate 2b
S12	¹ H NMR of β -bromohydrin 4 c
S13	¹³ C NMR of β -bromohydrin 4c
S14	¹ H NMR of substrate 1 c
S15	13 C NMR of substrate 1 c
S16	¹ H NMR of β -bromohydrin 5 c
S17	¹³ C NMR of β -bromohydrin 5 c
S18	¹ H NMR of substrate 2 c
S19	13 C NMR of substrate 2 c
S20	¹ H NMR of ketone <i>cis</i> - 3d
S21	¹³ C NMR of ketone <i>cis</i> - 3d
S22	¹ H NMR of β -bromohydrin 4d
S23	¹³ C NMR of β -bromohydrin 4d
S24	¹ H NMR of substrate 1d
S25	13 C NMR of substrate 1d
S26	¹ H NMR of β -bromohydrin 5d
S27	¹³ C NMR of β -bromohydrin 5d
S28	¹ H NMR of substrate 2d
S29	13 C NMR of substrate 2d
S30	¹ H NMR of β -bromohydrin 4e
S31	¹³ C NMR of β -bromohydrin 4e
S32	¹ H NMR of substrate 1e
S33	¹³ C NMR of substrate 1e
S34	13 C NMR of substrate 2e
S35	Table S1, conditions GC analysis

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

TABLE S1	Gas chromatography using a β -DEX 120 fused silica cyclodextrin
	capillary column

compound	oven temperature	carrier gas	$k^{\$}$	peak elution order
1a/2a	100 °C	N_2	3.25	one peak
1b/2b	100 °C	N_2	3.90, 5.05	1b, 2b
1c/2c	120 °C	H_2	3.55, 4.45	1c, 2c
1d/2d	100 °C	N_2	4.25, 5.30	1d, 2d
1e/2e	100 °C	N_2	3.76, 4.05, 5.14, 5.76	(3 <i>S</i> ,7 <i>R</i>)-1e, (3 <i>R</i> ,7 <i>S</i>)-1e (3 <i>S</i> ,7 <i>S</i>)-2e, (3 <i>R</i> ,7 <i>R</i>)-2e
3d	70 °C	H_2	8.05, 9.85	cis, trans
3e	100 °C	N_2	5.10, 5.35	(5S), (5R)
4b/5b	120 °C	H_2	7.90, 8.10	4b, 5b
4c/5c	145 °C	H_2	8.58, 11.00	5c, 4c
4d/5d	90 °C	H_2	37.8, 39.5	4d, 5d
4e/5e	110 °C	H_2	12.05, 12.42, 14.32, 15.00	enantiomers- 4e , enantiomers- 5e
6e	55 °C	N_2	8.05, 8.45	enantiomers-6e

[§] Capacity factor $k = (t_R - t_M) / t_M$ (t_R = retention time, $t_M = t_R$ of mobile phase)