Malonic acid mono-2-bromoethyl ester (4): A solution of Meldrum's acid (2.03 g, 14.1 mmol) and 2-bromoethanol (1.00 mL, 14.1 mmol) in 10 mL of dry toluene was refluxed for two hours. The reaction mixture was washed with a satured solution of NaHCO₃ (20 ml). The aqueous phase was acidified with conc. HCl and extracted twice with diethyl ether (20 mL). After drying over MgSO₄, evaporation of the solvent and drying under high vacuum **4** was obtained as a pale yellow oil (1.78 g, 8.41 mmol, 60%). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 11.02$ (s, br, 1H, COO*H*), 4.46 (t, ³*J* = 6.1 Hz, 2H, OC*H*₂), 3.51 (t, ³*J* = 6.1 Hz, 2H, BrC*H*₂), 3.48 (s, 2H, OCC*H*₂CO) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 171.54$ (1C, COOH), 165.88 (1C, CO), 64.84 (1C, OCH₂), 40.72 (1C, OCCH₂CO), 27.87 (1C, BrCH₂) ppm. MS (FAB, NBA): m/z = 211 [M+H]⁺. C₅H₇BrO₄: calcd. C 28.46, H 3.34, Br 37.87, O 30.33; found C 28.39, H 3.44.

malonate precursor 16: ¹H-NMR (400 MHz, RT, CDCl₃): δ = 6.10 (s, br, 2H, N*H*), 4.51 (t, ${}^{3}J$ = 6.3 Hz, 4H, OC*H*₂), 3.26 (s, 2H, OCC*H*₂CO), 2.07 (m, 16H, C*H*₂COO'Bu, C*H*₂CO), 1.82 (m, 16H, NHC(C*H*₂)₃, OCH₂C*H*₂), 1.28 (s, 54H, C(C*H*₃)₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 172.57 (6C, COO'Bu), 171.14 (2C, CONH), 166.43 (2C, CO), 80.13 (6C, C(CH₃)₃), 64.29 (2C, OCH₂), 57.09 (2C, NC(CH₂)₃), 41.05 (1C, OCCH₂CO), 32.74 (2C, CH₂CO), 29.44 (6C, CH₂COO'Bu), 29.35 (6C, NHC(CH₂)₃), 27.66 (18C, C(CH₃)₃), 24.17 (2C, OCH₂CH₂) ppm. MS (FAB, NBA): m/z = 1094 [M+Na]⁺, 1071 [M]⁺, 726 [M-6 ^{*i*}Bu]⁺. C₅₅H₉₄N₂O₁₈: calcd. C 61.66, H 8.84, N 2.61, O 26.88; found: C 61.45, H 8.99, N 2.65.

protected monoadduct 16: ¹H-NMR (400 MHz, RT, CDCl₃): δ = 6.23 (s, br, 2H, CON*H*), 4.54 (t, ³*J* = 6.5 Hz, 4H, OC*H*₂), 2.35 (t, ³*J* = 6.6 Hz, 4H, C*H*₂CO), 2.24 (m, 12H, C*H*₂COO^{*t*}Bu), 2.19 (m, 4H, OCH₂C*H*₂), 1.99 (m, 12H, NHC(C*H*₂)₃), 1.44 (s, 54H, C(C*H*₃)₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 172.80 (6C, COO^{*t*}Bu), 170.91 (2C, CONH), 163.58 (2C, CO), 145.25, 145.18, 145.15, 145.11, 144.87, 144.65, 144.62, 144.59, 143.85, 143.07, 142.98, 142.95, 142.16, 141.83, 140.95, 138.99 (58C, C₆₀-sp²), 80.60 (6C, C(CH₃)₃), 71.44 (2C, C₆₀-sp³), 66.63 (2C, OCH₂), 57.54 (2C, NHC(CH₂)₃), 51.96 (1C, OCCCO), 33.03 (2C, *C*H₂CO), 29.88 (6C, *C*H₂COO^{*t*}Bu), 29.78 (6C, NHC(*C*H₂)₃), 28.06 (18C, C(*C*H₃)₃), 24.50 (2C, OCH₂*C*H₂) ppm. MS (FAB, NBA): m/z = 1790 [M]⁺, 720 [C₆₀]⁺. UV/Vis (CH₂Cl₂): λ_{max} = 258, 325, 425, 496 nm.

deprotected monoadduct 16: ¹H-NMR (400 MHz, RT, THF-d₈): $\delta = 9.41$ (s, br, 6H, COO*H*), 6.81 (s, br, 2H, CON*H*), 4.54 (t, ³*J* = 6.6 Hz, 4H, OC*H*₂), 2.40 (t, ³*J* = 6.5 Hz, 4H, C*H*₂CO), 2.26 (m, 12H, C*H*₂COOH), 2.13 (m, 4H, OCH₂C*H*₂), 2.02 (m, 12H, NHC(C*H*₂)₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 175.22$ (6C, COOH), 172.23 (2C, CONH), 164.16 (2C, CO), 147.11, 146.49, 146.35, 146.26, 145.96, 145.80, 145.66, 145.06, 143.85,

144.19, 144.12, 144.09, 143.38, 143.13, 141.99, 140.43 (58C, C_{60} -sp²), 73.27 (2C, C_{60} -sp³), 68.21 (2C, OCH₂), 58.14 (2C, NH*C*(CH₂)₃), 53.95 (1C, OCCCO), 33.30 (2C, *C*H₂CO), 30.56 (6C, *C*H₂COOH), 28.86 (6C, NHC(*C*H₂)₃), 24.98 (2C, OCH₂CH₂) ppm. MS (FAB, NBA): $m/z = 1453 \text{ [M]}^+$, 720 [C_{60}]⁺. UV/Vis (DMSO): $\lambda_{max} = 254$, 322, 424 nm.

2-((hexyloxy)carbonyl)acetic acid (20): A mixture of 1-hexanol (1.42 g, 13.9 mmol) and meldrum's acid (2 g, 13.9 mmol) was heated at 115 °C under vigorous stirring for 3 h. After cooling to room temperature, the product was washed with pentane (3 x 25 ml) and dried in vacuum to afford **20** as a white solid (2.54 g, 13.5 mmol, 97 %). ¹H-NMR (300 MHz, RT, CDCl₃): $\delta = 11.30$ (s, br, 1H, COO*H*), 4.08 (t, ³*J* = 6.8 Hz, 2H, OC*H*₂), 3.36 (s, 2H, OCC*H*₂CO), 1.57 (m, 2H, C*H*₂), 1.22 (m, 6H, C*H*₂), 0.80 (t, ³*J* = 6.9 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): $\delta = 171.53$ (1C, CO), 166.57 (1C, CO), 65.72 (1C, OCH₂), 40.78 (1C, OCC*H*₂CO), 31.06, 28.06, 25.12, 22.21 (4C, CH₂), 13.63 (1C, CH₃) ppm. MS (FAB, NBA): m/z = 189 [M+H]⁺. C₉H₁₆O₄: calcd. C 57.43, H 8.57, O 34.00; found C 57.09, H 8.63.

2-((octadecyloxy)carbonyl)acetic acid) (21): Prepared as described for compound **20** from 1-Octadecanol (4.69 g, 17.3 mmol) and meldrum's acid (2.5 g, 17.3 mmol). (6.11 g, 17.1 mmol, 99 %, white solid). ¹H-NMR (300 MHz, RT, CDCl₃): $\delta = 10.08$ (s, br, 1H, COO*H*), 4.18 (t, ³*J* = 6.8 Hz, 2H, OC*H*₂), 3.44 (s, 2H, OCC*H*₂CO), 1.66 (m, 2H, C*H*₂), 1.26 (m, 30H, C*H*₂), 0.88 (t, ³*J* = 6.8 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): $\delta = 170.65$ (1C, CO), 167.34 (1C, CO), 66.22 (1C, OCH₂), 40.47 (1C, OCCH₂CO), 31.91 (1C, CH₂), 29.69 (5C, CH₂), 29.65 (2C, CH₂), 29.63, 29.55, 29.48, 29.35, 29.16, 28.36, 25.73, 22.68 (8C, CH₂), 14.11 (1C, CH₃) ppm. MS (FAB, NBA): *m*/*z* = 357 [M+H]⁺. C₂₁H₄₀O₄: calcd. C 70.74, H 11.31, O 17.95; found C 70.55, H 11.59.

2-((heptadecan-9-yloxy)carbonyl)acetic acid (22): Prepared as described for compound **20** from heptadecan-9-ol (3 g, 11.7 mmol) and meldrum's acid (1.69 g, 11.7 mmol). (3.85 g, 11.2 mmol, 96 %, white solid). ¹H-NMR (300 MHz, RT, CDCl₃): δ = 9.01 (s, br, 1H, COO*H*), 4.96 (quin, ³*J* = 6.7 Hz, 1H, OC*H*), 3.42 (s, 2H, OCC*H*₂CO), 1.54 (m, 4H, CHC*H*₂), 1.25 (m, 24H, C*H*₂), 0.88 (t, ³*J* = 6.7 Hz, 6H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): δ = 171.07 (1C, CO), 167.08 (1C, CO), 76.78 (1C, CH), 40.70 (1C, OCCH₂CO), 33.85 (2C, CH₂), 31.82 (2C, CH₂), 29.42 (4C, CH₂), 29.20, 25.15, 22.63 (6C, CH₂), 14.09 (2C, CH₃) ppm. MS (FAB, NBA): *m/z* = 343 [M+H]⁺. C₂₀H₃₈O₄: calcd. C 70.13, H 11.18, O 18.68; found C 69.88, H 11.21.

6-(benzyloxy)hexanoic acid (23): Freshly crushed 85 % KOH (49.2 g, 0.745 mol) was added to a solution of benzyl bromide (120 g, 0.7 mol) and ε-caprolactone (20.06 g, 0.176 mol) in

300 mL toluene. The mixture was heated at reflux for 48 h using a Dean-Stark apparatus, then diluted with 200 mL of Et₂O and washed with 300 mL of H₂O. The aqueous layer was extracted twice with 200 mL Et₂O. The organic layers were concentrated in vacuum to 150 mL and were set aside. The aqueous layer was cooled in an ice bath and 2M H₂SO₄ (180 mL) was added. The turbid aqueous solution was extracted with CH₂Cl₂ (3 x 200 mL), dried over anhydrous MgSO₄ and concentrated in vacuum to afford 23 as a pale yellow oil. To the residue of the toluene/Et₂O layers NaOH (16 g, 0.4 mol) and H₂O (80 mL) was added and the resulting mixture was heated at reflux for 24 h. The aqueous layer was separated, diluted to 250 mL with H₂O and washed with Et₂O (3 x 100 mL). The aqueous layer was acidified with a slurry of 25 mL conc. H₂SO₄ in 100 mL of ice and then extracted with CH₂Cl₂ (3 x 100 mL). The organic layers were dried over anhydrous MgSO₄ and the solvent was removed in vacuum to afford **23** as a pale yellow oil. (36.3 g, 0.16 mmol, 92.7 %). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 10.41$ (s, br, 1H, COOH), 7.34 (m, 5H, arom.H), 4.51 (s, 2H, ArCH₂O), 3.48 $(t, {}^{3}J = 6.5 \text{ Hz}, 2H, \text{ OCH}_{2}), 2.37 (t, {}^{3}J = 7.6 \text{ Hz}, 2H, CH_{2}COOH), 1.66 (m, 4H, CH_{2}), 1.45 (m, 4H, CH_$ 2H, CH₂) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 179.02$ (1C, COOH), 138.47 (1C, ArC), 128.31 (2C, ArC), 127.59 (2C, ArC), 127.47 (1C, ArC), 72.91 (1C, ArCH₂O), 70.06 (1C, OCH₂), 33.89 (1C, CH₂COOH), 29.42, 25.75, 24.54 (3C, CH₂). MS (FAB, NBA): *m/z* = 223 [M+H]⁺. C₁₃H₁₈O₃: calcd. C 70.24, H 8.16, O 21.59; found: C 70.09, H 8.18.

tert-butyl 6-(benzyloxy)hexanoate (24): A solution of 23 (30 g, 0.135 mol) in dry CH₂Cl₂ (30 mL) was treated with condensed isobutene (100 mL at -60°C) and H₂SO₄ (2 mL). The resulting solution was stirred for three days at room temperature, then neutralized with a solution of K₂CO₃ (25 g) in H₂O (300 mL). The organic layer was washed with K₂CO₃ (saturated solution), citric acid (10 wt % in H₂O), and H₂O. After the mixture was dried over anhydrous MgSO₄, filtered, and concentrated, a pale yellow oil was obtained. (33.6 g, 0.12 mmol, 89.3 %). ¹H-NMR (400 MHz, RT, CDCl₃): δ = 7.34 (m, 5H, arom.*H*), 4.51 (s, 2H, ArC*H*₂O), 3.48 (t, ³*J* = 6.6 Hz, 2H, OC*H*₂), 2.22 (t, ³*J* = 7.5 Hz, 2H, C*H*₂COO'Bu), 1.62 (m, 4H, C*H*₂), 1.45 (s, 9H, C(C*H*₃)₃), 1.42 (m, 2H, C*H*₂) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 173.07 (1C, COO'Bu), 138.54 (1C, ArC), 128.28 (2C, ArC), 127.54 (2C, ArC), 127.43 (1C, ArC), 79.97 (1C, C(CH₃)₃), 72.86 (1C, ArCH₂O), 70.19 (1C, OCH₂), 35.55 (1C, CH₂COO'Bu), 29.48 (1C, CH₂), 28.15 (3C, C(CH₃)₃), 25.75, 24.97 (2C, CH₂). MS (FAB, NBA): *m/z* = 278 [M]⁺. C₁₇H₂₆O₃: calcd. C 73.34, H 9.41, O 17.24; found: C 73.14, H 9.45. *tert*-butyl 6-hydroxyhexanoate (25): A solution of 24 (26 g, 93 mmol) in dry methanol (300 mL) was treated with 10% palladium on carbon (3 g) and H₂ at room temperature. After 48 h,

the suspension was filtered through Celite and concentrated under reduced pressure to give 25

as an oily product in quantitative yield. (17.6 g, 93 mmol, 100 %). ¹H-NMR (300 MHz, RT, CDCl₃): $\delta = 3.63$ (t, ³J = 6.5 Hz, 2H, HOC H_2), 2.22 (t, ³J = 7.4 Hz, 2H, C H_2 COO^tBu), 1.81 (s, br, 1H, OH), 1.58 (m, 4H, C H_2), 1.43 (s, 9H, C(C H_3)₃), 1.40 (m, 2H, C H_2) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): $\delta = 173.19$ (1C, COO^tBu), 80.06 (1C, C(CH₃)₃), 62.54 (1C, HOCH₂), 35.41 (1C, CH₂COO^tBu), 32.29 (1C, CH₂CH₂OH), 28.05 (3C, C(CH₃)₃), 25.15, 24.68 (2C, CH₂). MS (FAB, NBA): m/z = 188 [M]⁺. C₁₀H₂₀O₃: calcd. C 63.80, H 10.71, O 25.50; found: C 63.53, H 10.59.

5-(*tert*-butoxycarbonyl)pentyl hexyl malonate (26): A solution of 20 (1 g, 5.31 mmol) and 25 (1 g, 5.31 mmol) in dry CH₂Cl₂ (150 mL) was cooled to 0 °C under nitrogen atmosphere. DMAP (64.9 mg, 0.53 mmol) and DCC (1.1 g, 5.31 mmol) were added subsequently. After stirring the solution under N₂ for 1 h at 0 °C, it was left at room temperature for another 24 h. Progress of the reaction was monitored by TLC. After evaporation of the solvent, the resulting product was purified by flash column chromatography (SiO₂; hexane/ethyl acetate, 100:30). The purified material was dried in vacuum affording 26 as a colourless oil. (1.43 g, 3.98 mmol, 75 %). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 3.89$ (m, 4H, OCH₂), 3.12 (s, 2H, OCCH₂CO), 1.97 (t, ³J = 7.5 Hz, 2H, OCCH₂), 1.41 (m, 6H, CH₂), 1.20 (s, 9H, CH₃), 1.08 (m, 8H, CH₂), 0.66 (t, ³J = 6.4 Hz, 3H, CH₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 172.08$ (1C, CO), 165.99 (2C, CO), 79.18 (1C, C(CH₃)₃), 64.81 (1C, OCH₂), 64.52 (1C, OCH₂), 40.89 (1C, OCCH₂CO), 34.59 (1C, CH₂CO), 30.78, 27.84, 27.60 (3C, CH₂), 27.38 (3C, C(CH₃)₃), 24.84, 24.70, 24.00, 21.88 (4C, CH₂), 13.29 (1C, CH₃) ppm. MS (FAB, NBA): *m/z* = 358 [M]⁺. C₁₉H₃₄O₆: calcd. C 63.66, H 9.56, O 26.78; found: C 63.91, H 9.78.

5-(*tert*-butoxycarbonyl)pentyl octadecyl malonate (27): Prepared as described for compound 26 from 21 (3.79 g, 10.64 mmol), 25 (2.00 g, 10.64 mmol), DCC (2.20 g, 10.64 mmol) and DMAP (130 mg, 1.06 mmol). Purification was obtained by flash column chromatography (SiO₂; hexane/ethyl acetate, 60:15). (4.54 g, 8.62 mmol, 81 %, colourless oil). ¹H-NMR (300 MHz, RT, CDCl₃): $\delta = 4.13$ (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 4.12 (t, ³*J* = 6.8 Hz, 2H, OC*H*₂), 3.35 (s, 2H, OCC*H*₂CO), 2.20 (t, ³*J* = 7.4 Hz, 2H, OCC*H*₂), 1.63 (m, 6H, C*H*₂), 1.43 (s, 9H, C*H*₃), 1.25 (m, 32H, C*H*₂), 0.87 (t, ³*J* = 6.4 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): $\delta = 172.77$ (1C, CO), 166.57 (2C, CO), 80.00 (1C, *C*(CH₃)₃), 65.62 (1C, OCH₂), 65.27 (1C, OCH₂), 41.58 (1C, OCCH₂CO), 35.29 (1C, CH₂CO), 31.88, 29.65, 29.61, 29.53, 29.47, 29.31, 29.16, 28.42, 28.15 (15C, CH₂), 28.05 (3C, C(CH₃)₃), 25.74, 25.27, 24.60, 22.64 (4C, CH₂), 14.06 (1C, CH₃) ppm. MS (FAB, NBA): *m/z* = 527 [M]⁺. C₃₁H₅₈O₆: calcd. C 70.68, H 11.10, O 18.22. found: C 70.32, H 11.31.

5-(*tert*-butoxycarbonyl)pentyl heptadecan-9-yl malonate (28): Prepared as described for compound 26 from 22 (2.25 g, 6.57 mmol), 25 (1.24 g, 6.57 mmol), DCC (1.36 g, 6.57 mmol) and DMAP (81 mg, 0.66 mmol). Purification was obtained by flash column chromatography (SiO₂; hexane/ethyl acetate, 90:12). (2.84 g, 5.39 mmol, 82 %. colourless oil). ¹H-NMR (300 MHz, RT, CDCl₃): δ = 4.91 (quin, ³*J* = 6.3 Hz, 1H, OC*H*), 4.14 (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 3.35 (s, 2H, OCC*H*₂CO), 2.22 (t, ³*J* = 7.4 Hz, 2H, OCC*H*₂), 1.64 (m, 6H, C*H*₂), 1.55 (m, 2H, C*H*₂), 1.45 (s, 9H, C*H*₃), 1.26 (m, 26H, C*H*₂), 0.81 (t, ³*J* = 6.6 Hz, 6H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): δ = 172.86 (1C, CO), 166.74 (1C, CO), 166.35 (1C, CO), 80.08 (1C, C(CH₃)₃), 75.97 (1C, CH), 65.28 (1C, OCH₂), 41.94 (1C, OCCH₂CO), 35.33 (1C, CH₂CO), 33.93 (2C, CH(CH₂)₂), 31.84, 29.48, 29.47, 29.23, 28.20 (9C, CH₂), 28.09 (3C, C(CH₃)₃), 25.30, 25.18 (3C, CH₂), 24.65 (1C, CH₂CH₂CO), 22.65 (2C, CH₂CH₃), 14.10 (2C, CH₃) ppm. MS (FAB, NBA): *m/z* = 512 [M]⁺. C₃₀H₅₆O₆: calcd. C 70.27, H 11.01, O 18.72; found: C 69.89, H 11.10.

6-(2-((hexyloxy)carbonyl)acetoyloxy)hexanoic acid (29): Trifluoroacetic acid (2.4 mL, 31.0 mmol) was added to a solution of **26** (1.1 g, 3.07 mmol) in CH₂Cl₂ (50 mL). The reaction mixture was stirred for 12 h at room temperature and the progress of the reaction was monitored by TLC. The reaction mixture was concentrated and dried in vacuum to afford **29** as a white solid. (919 mg, 3.04 mmol, 99 %). ¹H-NMR (400 MHz, RT, CDCl₃): δ = 7.91 (s, br, 1H, COO*H*), 4.15 (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 4.14 (t, ³*J* = 6.8 Hz, 2H, OC*H*₂), 3.38 (s, 2H, OCC*H*₂CO), 2.37 (t, ³*J* = 7.4 Hz, 2H, OCC*H*₂), 1.65 (m, 6H, C*H*₂), 1.43 (m, 2H, C*H*₂), 1.30 (m, 6H, C*H*₂), 0.89 (t, ³*J* = 6.9 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (100.5 MHz, CDCl₃, RT): δ = 179.42 (1C, CO), 166.75 (1C, CO), 166.72 (1C, CO), 65.74 (1C, OCH₂), 65.23 (1C, OCH₂), 41.58 (1C, OCCH₂CO), 33.76 (1C, CH₂CO), 31.32, 28.36, 28.07, 25.40, 25.24, 24.15, 22.48 (7C, CH₂), 13.94 (1C, CH₃) ppm. MS (FAB, NBA): *m/z* = 303 [M+H]⁺. C₁₅H₂₆O₆: calcd. C 59.58, H 8.67, O 31.75. found: C 59.17, H 8.96.

6-(2-((octadecyloxy)carbonyl)acetoyloxy)hexanoic acid (30): Prepared as described for compound **29** from **27** (2.00 g, 3.80 mmol) and trifluoroacetic acid (2.9 mL, 38.0 mmol). (1.77 g, 3.76 mmol, 99 %, white solid). ¹H-NMR (300 MHz, RT, CDCl₃): δ = 10.10 (s, br, 1H, COO*H*), 4.15 (t, ³*J* = 6.6 Hz, 2H, OC*H*₂), 4.13 (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 3.37 (s, 2H, OCC*H*₂CO), 2.37 (t, ³*J* = 7.4 Hz, 2H, OCC*H*₂), 1.66 (m, 6H, C*H*₂), 1.42 (m, 2H, C*H*₂), 1.26 (m, 30H, C*H*₂), 0.87 (t, ³*J* = 6.7 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): δ = 179.49 (1C, CO), 166.66 (1C, CO), 166.65 (1C, CO), 65.71 (1C, OCH₂), 65.19 (1C, OCH₂), 41.58 (1C, OCCH₂CO), 33.77 (1C, CH₂CO), 31.90, 29.67, 29.65, 29.64, 29.62, 29.56, 29.49, 29.34, 29.19, 28.43, 28.10, 25.76, 25.26 (17C, CH₂), 24.17 (1C, CH₂CH₂CO), 22.67 (1C,

*C*H₂), 14.09 (1C, *C*H₃) ppm. MS (FAB, NBA): $m/z = 472 [M+H]^+$. C₂₇H₅₀O₆: calcd. C 68.90, H 10.71, O 20.40; found: C 69.07, H 10.77.

6-(2-((heptadecan-9-yloxy)carbonyl)acetoyloxy)hexanoic acid (31): Prepared as described for compound **29** from **28** (2.00 g, 3.80 mmol) and trifluoroacetic acid (2.9 mL, 38.0 mmol). (1.70 g, 3.72 mmol, 98 %, white solid). ¹H-NMR (300 MHz, RT, CDCl₃): $\delta = 10.82$ (s, br, 1H, COO*H*), 4.91 (quin, ³*J* = 6.3 Hz, 1H, OC*H*), 4.15 (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 3.36 (s, 2H, OCC*H*₂CO), 2.37 (t, ³*J* = 7.4 Hz, 2H, OCC*H*₂), 1.68 (m, 4H, CH(*CH*₂)₂), 1.53 (m, 4H, *CH*₂), 1.43 (m, 2H, *CH*₂), 1.26 (m, 24H, *CH*₂), 0.88 (t, ³*J* = 6.8 Hz, 6H, *CH*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): $\delta = 178.90$ (1C, *CO*), 166.75 (1C, *CO*), 166.38 (1C, *CO*), 76.03 (1C, *CH*), 65.14 (1C, OCH₂), 41.93 (1C, OCCH₂CO), 33.93 (2C, CH(*C*H₂)₂), 33.68 (1C, *C*H₂CO), 31.84, 29.49, 29.48, 29.23, 28.14, 25.27, 25.19 (12C, *C*H₂), 24.20 (1C, *C*H₂CH₂CO), 22.65 (2C, *C*H₂CH₃), 14.09 (2C, *C*H₃) ppm. MS (FAB, NBA): *m*/*z* = 458 [M+H]⁺. C₂₆H₄₈O₆: calcd. C 68.38, H 10.59, O 21.02; found: C 68.36, H 10.80.

asymmetric malonate (G1) 37: Prepared as described for compound 36 from 30 (1.5 g, 3.19 mmol), 32 (1.32 g, 3.19 mmol), DMAP (78 mg, 0.64 mmol), 1-HOBt (431 mg, 3.19 mmol) and EDC (673 mg, 3.51 mmol). Purification was obtained by flash column chromatography (SiO₂, hexane/ethyl acetate, 15:10). (1.88 g, 2.17 mmol, 68 %, colourless oil). ¹H-NMR (300 MHz, RT, CDCl₃): $\delta = 5.90$ (s, br, 1H, CON*H*), 4.13 (t, ³*J* = 6.6 Hz, 2H, OC*H*₂), 4.12 (t, ³*J* = 6.8 Hz, 2H, OC*H*₂), 3.36 (s, 2H, OCC*H*₂CO), 2.22 (t, ³*J* = 7.7 Hz, 6H, C*H*₂COO'Bu), 2.11 (t, ³*J* = 7.4 Hz, 2H, OCC*H*₂), 1.95 (t, ³*J* = 7.8 Hz, 6H, NHC(C*H*₂)₃), 1.63 (m, 6H, C*H*₂), 1.43 (s, 27H, C(C*H*₃)₃), 1.25 (m, 32H, C*H*₂), 0.87 (t, ³*J* = 6.7 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (75 MHz, RT, CDCl₃): $\delta = 172.87$ (3C, COO'Bu), 172.07 (1C, CONH), 166.66 (1C, CO), 166.61 (1C, CO), 80.63 (3C, *C*(CH₃)₃), 65.67 (1C, OCH₂), 65.28 (1C, OCH₂), 57.28 (1C, NHC(CH₂)₃), 29.79 (3C, CH₂COO'Bu), 29.66, 29.64, 29.62, 29.55, 29.48, 29.33, 29.18, 28.43, 28.18 (14C, CH₂), 28.03 (9C, C(CH₃)₃), 25.75 (1C, CH₂), 25.48 (1C, CH₂CCO), 25.23, 22.65 (2C, CH₂), 14.09 (1C, CH₃) ppm. MS (FAB, NBA): *m*/*z* = 868 [M]⁺, 696 [M-3'Bu]⁺. C₄₉H₈₉NO₁₁: calcd. C 67.78, H 10.33, N 1.61, O 20.27; found: C 67.93, H 10.58, N 1.64.

asymmetric malonate (G1) 38: Prepared as described for compound **36** from **31** (1 g, 2.19 mmol), **32** (0.91 g, 2.19 mmol), DMAP (54 mg, 0.44 mmol), 1-HOBt (296 mg, 2.19 mmol) and EDC (462 mg, 2.41 mmol). Purification was obtained by flash column chromatography (SiO₂, hexane/ethyl acetate, 20:10 to 15:10). (1.20 g, 1.40 mmol, 64 %, colourless oil). ¹H-NMR (400 MHz, RT, CDCl₃): δ = 5.91 (s, br, 1H, CON*H*), 4.91 (quin, ³*J* = 6.2 Hz, 1H, OC*H*), 4.13 (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 3.36 (s, 2H, OCC*H*₂CO), 2.22 (t, ³*J* = 7.8 Hz, 6H,

CH₂COO'Bu), 2.11 (t, ${}^{3}J$ = 7.6 Hz, 2H, OCCH₂), 1.97 (t, ${}^{3}J$ = 7.9 Hz, 6H, NHC(CH₂)₃), 1.64 (m, 4H, CHCH₂), 1.52 (m, 2H, CH₂), 1.43 (s, 27H, C(CH₃)₃), 1.41 (m, 2H, CH₂), 1.26 (m, 26H, CH₂), 0.88 (t, ${}^{3}J$ = 6.8 Hz, 6H, CH₃) ppm; 13 C-NMR (100.5 MHz, RT, CDCl₃): δ = 173.40 (3C, COO'Bu), 172.59 (1C, CONH), 167.20 (1C, CO), 166.85 (1C, CO), 80.69 (3C, C(CH₃)₃), 75.96 (1C, CH), 65.19 (1C, OCH₂), 57.20 (1C, NHC(CH₂)₃), 41.72 (1C, OCCH₂CO), 37.04 (1C, CH₂CO), 33.70 (2C, CH(CH₂)₂), 31.61, 30.04 (3C, CH₂), 29.71 (3C, NHC(CH₂)₃), 29.55 (3C, CH₂COO'Bu), 29.43, 29.24, 29.22, 28.98, 27.98 (6C, CH₂), 27.80 (9C, C(CH₃)₃), 25.26 (1C, CH₂CH₂CO), 25.00, 24.91, 22.37 (5C, CH₂), 13.78 (2C, CH₃) ppm. MS (FAB, NBA): m/z = 854 [M]⁺, 682 [M-3'Bu]⁺. C₄₈H₈₇NO₁₁: calcd. C 67.49, H 10.27, N 1.64, O 20.60; found: C 67.20, H 10.17, N 1.64.

asymmetric malonate (G2) 39: A solution of 29 (330 mg, 1.09 mmol) and 34 (1.57 g, 1.09 mmol) in dry CH₂Cl₂/THF = 1/1 (200 mL) was cooled to 0 °C under nitrogen atmosphere. DMAP (27 mg, 0.22 mmol), 1-HOBt (147 mg, 1.09 mmol) and EDC (230 mg, 1.20 mmol) were added subsequently. After stirring the solution under N₂ for 2 h at 0 °C, it was left at room temperature for another 48 h. Progress of the reaction was monitored by TLC. The organic phase was washed with water (2 x 150 mL) and dried over MgSO₄. After evaporation of the solvent, the resulting product was purified by flash column chromatography (SiO₂, hexane/ethyl acetate, 10:10 to 10:15). The purified material was dried in vacuum affording 39 as a colourless oil. (1.38 g, 0.80 mmol, 73 %). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 7.50$ (s, br, 1H, CONH), 6.15 (s, br, 3H, CONH), 3.98 (t, ${}^{3}J = 6.5$ Hz, 2H, OCH₂), 3.96 (t, ${}^{3}J = 6.7$ Hz, 2H, OCH₂), 3.24 (s, 2H, OCCH₂CO), 2.06 (m, 26H, CH₂COO^tBu, OCCH₂), 1.81 (m, 24H, NHC(CH₂)₃), 1.50 (m, 6H, CH₂), 1.38 (m, 2H, CH₂), 1.30 (m, 83H, C(CH₃)₃, CH₂), 1.17 (m, 4H, CH₂), 0.71 (t, ${}^{3}J$ = 6.8 Hz, 3H, CH₃) ppm; 13 C-NMR (100.5 MHz, RT, CDCl₃): δ = 172.87 (1C, CONH), 172.75 (3C, CONH), 172.32 (9C, COO'Bu), 166.38 (1C, CO), 166.35 (1C, CO), 80.09 (9C, C(CH₃)), 65.27 (1C, OCH₂), 65.04 (1C, OCH₂), 57.24 (1C, NHC(CH₂)₃), 57.07 (3C, NHC(CH₂)₃), 41.23 (1C, OCCH₂CO), 36.76 (1C, CH₂CO), 31.53 (3C, NHC(CH₂)₃), 31.34 (3C, CH₂CON), 31.06 (1C, CH₂), 29.49 (9C, NHC(CH₂)₃) 29.37 (9C, CH₂COO^tBu), 28.73, 28.54 (2C, CH₂), 27.72 (27C, C(CH₃)₃), 25.27, 25.15 (2C, CH₂), 24.97 (1C, CH₂CH₂CO), 22.27 (1C, CH₂), 13.85 (1C, CH₃) ppm. MS (FAB, NBA): m/z = 1724 [M]⁺. C₉₁H₁₅₈N₄O₂₆: calcd. C 63.39, H 9.24, N 3.25, O 24.13; found: C 63.01, H 8.98, N 3.38.

asymmetric malonate (G2) 40: Prepared as described for compound 39 from 30 (500 mg, 1.06 mmol), 34 (1.53 g, 1.06 mmol), DMAP (30 mg, 0.21 mmol), 1-HOBt (143 mg, 1.06 mmol) and EDC (224 mg, 1.17 mmol). Purification was obtained by flash column

chromatography (SiO₂, hexane/ethyl acetate, 20:10 to 13:10). (1.48 g, 0.78 mmol, 74 %, colourless oil). ¹H-NMR (400 MHz, RT, CDCl₃): δ = 7.61 (s, br, 1H, CON*H*), 6.09 (s, br, 3H, CON*H*), 4.05 (t, ³*J* = 6.6 Hz, 2H, OC*H*₂), 4.03 (t, ³*J* = 6.6 Hz, 2H, OC*H*₂), 3.27 (s, 2H, OCC*H*₂CO), 2.09 (m, 26H, C*H*₂COO'Bu, OCC*H*₂), 1.84 (m, 24H, NHC(C*H*₂)₃), 1.54 (m, 6H, C*H*₂), 1.33 (m, 83H, C(C*H*₃)₃, C*H*₂), 1.15 (m, 30H, C*H*₂), 0.77 (t, ³*J* = 6.6 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 172.88 (1C, CONH), 172.66 (3C, CONH), 172.38 (9C, COO'Bu), 166.46 (1C, CO), 166.43 (1C, CO), 80.25 (9C, C(CH₃)₃), 65.39 (1C, OCH₂), 65.13 (1C, OCH₂), 57.26 (1C, NHC(CH₂)₃), 57.16 (3C, NHC(CH₂)₃), 41.30 (1C, OCCH₂CO), 36.85 (1C, CH₂CO), 31.65 (4C, NHC(CH₂)₃, CH₂), 31.47 (3C, CH₂CON), 29.54 (1C, CH₂), 29.52 (9C, NHC(CH₂)₃), 29.42 (9C, CH₂COO'Bu), 29.41, 29.38, 29.32, 29.25, 29.09, 28.96, 28.21, 27.99 (13C, CH₂), 13.88 (1C, CH₃) ppm; MS (FAB, NBA): *m*/*z* = 1892 [M]⁺. C₁₀₃H₁₈₂N₄O₂₆: calcd. C 65.37, H 9.69, N 2.96, O 21.98; found: C 65.47, H 9.79, N 3.04. **asymmetric malonate (G2) 41:** Prepared as described for compound **39** from **31** (350 mg,

0.77 mmol), 34 (1.10 g, 0.77 mmol), DMAP (19 mg, 0.15 mmol), 1-HOBt (104 mg, 0.77 mmol) and EDC (162 mg, 0.85 mmol). Purification was obtained by flash column chromatography (SiO₂, hexane/ethyl acetate, 13:10 to 10:10). (998 mg, 0.53 mmol, 69 %, colourless oil). ¹H-NMR (400 MHz, RT, CDCl₃): δ = 7.57 (s, br, 1H, CON*H*), 6.09 (s, br, 3H, CONH), 4.84 (quin, ${}^{3}J = 6.3$ Hz, 1H, CH), 4.08 (t, ${}^{3}J = 6.7$ Hz, 2H, OCH₂), 3.29 (s, 2H, OCCH₂CO), 2.13 (m, 26H, CH₂COO^tBu, OCCH₂), 1.88 (m, 24H, NHC(CH₂)₃), 1.60 (m, 4H, $CH(CH_2)_2$, 1.46 (m, 4H, CH_2), 1.37 (m, 83H, $C(CH_3)_3$, CH_2)), 1.19 (m, 24H, CH_2), 0.81 (t, ³J) = 6.8 Hz, 6H, CH₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 173.11 (1C, CONH), 172.90 (3C, CONH), 172.64 (9C, COO^tBu), 166.75 (1C, CO), 166.36 (1C, CO), 80.40 (9C, C(CH₃)₃), 75.72 (1C, CH), 65.18 (1C, OCH₂), 57.28 (1C, NHC(CH₂)₃), 57.23 (3C, NHC(CH₂)₃), 41.64 (1C, OCCH₂CO), 36.88 (1C, CH₂CO), 33.70 (2C, CH₂), 31.66 (3C, NHC(CH₂)₃), 31.62 (2C, CH₂), 31.53 (3C, CH₂CON), 29.60 (9C, NHC(CH₂)₃), 29.56 (9C, CH₂COO^tBu), 29.25, 29.23, 29.00, 28.06 (7C, CH₂), 27.85 (27C, C(CH₃)₃), 25.36 (1C, CH_2CH_2CO), 25.06, 24.94, 22.41 (5C, CH_2), 13.87 (2C, CH_3) ppm. MS (FAB, NBA): m/z =1878 [M]⁺. C₁₀₂H₁₈₀N₄O₂₆: calcd. C 65.22, H 9.66, N 2.98, O 22.14; found: C 64.83, H 9.77, N 3.10.

 C_{60} monoadduct 43: Prepared as described for compound 42 from 37 (500 mg, 0.58 mmol), C_{60} (498 mg, 0.69 mmol), CBr₄ (212 mg, 0.64 mmol) and DBU (96 µL, 0.64 mmol). Purification was obtained by flash column chromatography (SiO₂, toluene/ethyl acetate, 80:10 to 80:15). (488 mg, 0.31 mmol, 53 %, red brownish solid). ¹H-NMR (400 MHz, RT, CDCl₃):

δ = 5.90 (s, br, 1H, CON*H*), 4.50 (t, ³*J* = 6.6 Hz, 2H, OC*H*₂), 4.49 (t, ³*J* = 6.7 Hz, 2H, OC*H*₂), 2.22 (t, ³*J* = 7.8 Hz, 6H, C*H*₂COO'Bu), 2.13 (t, ³*J* = 7.6 Hz, 2H, OCC*H*₂), 1.98 (t, ³*J* = 7.8 Hz, 6H, NHC(C*H*₂)₃), 1.85 (m, 4H, OCH₂C*H*₂), 1.70 (m, 2H, C*H*₂), 1.44 (s, 27H, (C*H*₃)₃), 1.25 (m, 32H, C*H*₂), 0.88 (t, ³*J* = 6.8 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ =172.88 (3C, COO'Bu), 171.96 (1C, CONH), 163.67 (1C, CO), 163.59 (1C, CO), 145.37, 145.33, 145.25, 145.16, 145.14, 144.67, 144.63, 144.59, 143.86, 143.09, 143.06, 143.07, 143.00, 142.97, 142.19, 141.88, 140.93, 138.98, 138.93 (58C, C₆₀-sp²), 80.69 (3C, C(CH₃)₃), 71.65 (2C, C₆₀-sp³), 67.50 (1C, OCH₂), 67.13 (1C, OCH₂), 57.34 (1C, NHC(CH₂)₃), 49.87 (1C, OCCCO), 37.22 (1C, CH₂CO), 31.92 (1C, CH₂), 30.00 (3C, NHC(CH₂)₃), 29.83 (3C, CH₂COO'Bu), 29.72, 29.70, 29.67, 29.62, 29.37, 29.22, 28.60, 28.35 (14C, CH₂), 28.06 (9C, C(CH₃)₃), 26.00 (1C, CH₂), 25.64 (1C, CH₂CH₂CO), 25.24, 22.69 (2C, CH₂), 14.14 (1C, CH₃) ppm. MS (FAB, NBA): *m/z* = 1610 [M+Na]⁺, 1587 [M]⁺, 720 [C₆₀]⁺. UV/Vis (CH₂Cl₂): $λ_{max} = 254, 323, 425, 475$ nm.

C₆₀ monoadduct 44: Prepared as described for compound 42 from 38 (300 mg, 0.35 mmol), C₆₀ (304 mg, 0.42 mmol), CBr₄ (130 mg, 0.39 mmol) and DBU (59 µL, 0.39 mmol). Purification was obtained by flash column chromatography (SiO₂, toluene/ethyl acetate, 90:10 to 70:10). (310 mg, 0.20 mmol, 56 %, red brownish solid). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 5.89$ (s, br, 1H, CONH), 5.25 (m, 1H, OCH), 4.48 (t, ${}^{3}J = 6.8$ Hz, 2H, OCH₂), 2.22 (t, ${}^{3}J =$ 7.8 Hz, 6H, $CH_2COO'Bu$), 2.13 (t, ${}^{3}J$ = 7.7 Hz, 2H, OCCH₂), 1.97 (t, ${}^{3}J$ = 7.8 Hz, 6H, NHC(CH₂)₃), 1.87 (m, 2H, CH₂), 1.78 (m, 2H, CH₂), 1.68 (m, 6H, CHCH₂, CH₂), 1.44 (m, 29H, C(CH₃)₃, CH₂), 1.27 (m, 22H, CH₂), 0.88 (t, ${}^{3}J = 6.8$ Hz, 6H, CH₃) ppm; 13 C-NMR $(100.5 \text{ MHz}, \text{RT}, \text{CDCl}_3)$: $\delta = 173.01 (3C, COO^t\text{Bu}), 172.08 (1C, CONH), 163.70 (1C, CO),$ 163.29 (1C, CO), 145.61, 145.46, 145.33, 145.25, 144.93, 144.77, 144.75, 144.65, 143.95, 143.94, 143.18, 143.09, 143.05, 142.28, 141.98, 141.00, 139.11, 138.89 (58C, C₆₀-sp²), 80.69 (3C, C(CH₃)₃), 78.56 (1C, CH), 71.79 (2C, C₆₀-sp³), 67.12 (1C, OCH₂), 57.31 (1C, NHC(CH₂)₃), 52.74 (1C, OCCCO), 37.16 (1C, CH₂CO), 33.87 (2C, CH(CH₂)₂), 31.83, 30.11 (3C, CH₂), 29.92 (3C, NC(CH₂)₃), 29.76 (3C, CH₂COO^tBu), 29.63, 29.55, 29.48, 29.21, 28.35 (6C, CH₂), 28.01 (9C, C(CH₃)₃), 25.59 (1C, CH₂CH₂CO), 25.32, 25.18, 22.60 (5C, CH₂), 14.08 (2C, CH₃) ppm. MS (FAB, NBA): $m/z = 1596 [M+Na]^+$, 1573 $[M]^+$, 720 $[C_{60}]^+$. UV/Vis (CH₂Cl₂): $\lambda_{max} = 254, 324, 425, 475$ nm.

 C_{60} monoadduct 45: Prepared as described for compound 42 from 39 (260 mg, 0.15 mmol), C_{60} (144 mg, 0.2 mmol), CBr_4 (56 mg, 0.17 mmol) and DBU (25 µL, 0.17 mmol). Purification was obtained by flash column chromatography (SiO₂, toluene/ethyl acetate, 30:10 to 15:10). (171 mg, 0.07 mmol, 47 %, red brownish solid). ¹H-NMR (400 MHz, RT, CDCl₃):

δ = 7.57 (s, br, 1H, CON*H*), 6.14 (s, br, 3H, CON*H*), 4.50 (t, ³*J* = 6.5 Hz, 2H, OC*H*₂), 4.49 (t, ³*J* = 6.4 Hz, 2H, OC*H*₂), 2.19 (m, 26H, C*H*₂COO'Bu, OCC*H*₂), 1.95 (m, 24H, NHC(C*H*₂)₃), 1.84 (m, 4H, C*H*₂), 1.69 (m, 2H, C*H*₂), 1.47 (m, 2H, C*H*₂), 1.44 (m, 83H, C(C*H*₃)₃, C*H*₂), 1.26 (m, 4H, C*H*₂), 0.85 (t, ³*J* = 6.7 Hz, 3H, C*H*₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 173.29 (1C, CONH), 173.15 (3C, CONH), 172.80 (9C, COO'Bu), 163.81 (1C, CO), 163.74 (1C, CO), 145.67, 145.53, 145.43, 145.32, 145.26, 145.12, 144.95, 144.83, 144.76, 144.68, 144.65, 143.95, 143.91, 143.53, 143.13, 143.05, 142.26, 141.98, 141.00, 139.12, 139.03, 139.00 (58C, C₆₀-sp²), 80.59 (9C, C(CH₃)), 71.65 (2C, C₆₀-sp³), 67.47 (1C, OCH₂), 67.33 (1C, OCH₂), 57.58 (1C, NHC(CH₂)₃), 57.42 (3C, NHC(CH₂)₃), 52.36 (1C, OCCCO), 37.01 (1C, CH₂CO), 31.68 (3C, NHC(CH₂)₃), 31.30 (3C, CH₂CON), 30.75 (1C, CH₂), 29.72 (9C, NHC(CH₂)₃), 29.61 (9C, CH₂COO'Bu), 28.47, 28.32 (2C, CH₂), 28.01 (27C, C(CH₃)₃), 25.55, 25.23 (2C, CH₂), 24.38 (1C, CH₂CH₂CO), 22.53 (1C, CH₂), 14.00 (1C, CH₃) ppm. MS (FAB, NBA): m/z = 2466 [M+Na]⁺, 2443 [M]⁺, 720 [C₆₀]⁺. UV/Vis (CH₂Cl₂): $λ_{max}$ = 254.5, 324, 424.5, 476 nm.

C₆₀ monoadduct 46: Prepared as described for compound 42 from 40 (600 mg, 0.32 mmol), C₆₀ (302 mg, 0.42 mmol), CBr₄ (117 mg, 0.35 mmol) and DBU (52 µL, 0.35 mmol). Purification was obtained by flash column chromatography (SiO₂, toluene/ethyl acetate, 70:20 to 70:50). (366 mg, 0.14 mmol, 44 %, red brownish solid). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 7.63$ (s, br, 1H, CONH), 6.04 (s, br, 3H, CONH), 4.51 (t, ${}^{3}J = 6.4$ Hz, 2H, OCH₂), 4.50 (t, ${}^{3}J = 6.8$ Hz, 2H, OCH₂), 2.20 (m, 26H, CH₂COO^tBu, OCCH₂), 1.96 (m, 24H, NHC(CH₂)₃), 1.83 (m, 4H, CH₂) 1.71 (m, 2H, CH₂) 1.44 (m, 83H, C(CH₃)₃, CH₂), 1.25 (m, 30H, CH₂), 0.88 (t, ${}^{3}J = 6.8$ Hz, 3H, CH₃) ppm; 13 C-NMR (100.5 MHz, CDCl₃, RT); $\delta = 173.07$ (1C, CONH), 172.99 (3C, CONH), 172.77 (9C, COO'Bu), 163.75 (1C, CO), 163.68 (1C, CO), 145.48, 145.26, 145.19, 145.16, 145.11, 145.09, 144.80, 144.63, 144.62, 144.59, 144.55, 144.53, 143.83, 143.81, 143.02, 142.95, 142.93, 142.90, 142.15, 142.13, 141.85, 140.88, 139.16, 139.10, 138.75 (58C, sp²-C), 80.43 (9C, C(CH₃)₃), 71.66 (2C, sp³-C), 67.44 (1C, OCH₂), 67.32 (1C, OCH₂), 57.57 (1C, NHC(CH₂)₃), 57.39 (3C, NHC(CH₂)₃), 52.42 (1C, OCCCO), 37.02 (1C, CH₂CO), 31.84 (3C, NHC(CH₂)₃), 31.73 (1C, CH₂), 31.63 (1C, CH₂), 31.62 (3C, CH₂CON), 29.74 (3C, CH₂), 29.71 (9C, NHC(CH₂)₃), 29.64 (9C, CH₂COO^tBu), 29.61, 29.59, 29.56, 29.55, 29.29, 29.27, 29.14, 28.53, 28.28 (9C, CH₂), 28.02 (27C, C(CH₃)₃), 27.97, 25.51 (2C, CH₂), 25.23 (1C, CH₂CH₂CO), 24.84, 22.61 (2C, CH₂), 14.04 (1C, CH₃) ppm; MS (FAB, NBA): $m/z = 2634 [M+Na]^+$, 2611 $[M]^+$, 720 $[C_{60}]^+$. UV/Vis (CH_2Cl_2) : $\lambda_{max} = 254, 324, 424, 476 \text{ nm}.$

C₆₀ monoadduct 47: Prepared as described for compound 42 from 41 (250 mg, 0.13 mmol), C₆₀ (122 mg, 0.17 mmol), CBr₄ (48 mg, 0.14 mmol) and DBU (22 µL, 0.14 mmol). Purification was obtained by flash column chromatography (SiO₂; toluene/ethyl acetate, 70:20 to 70:50). (159 mg, 0.06 mmol, 47 %, red brownish solid). ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 7.59$ (s, br, 1H, CONH), 6.04 (s, br, 3H, CONH), 5.24 (quin, ${}^{3}J = 6.4$ Hz, 1H, CH), 4.48 NHC(CH₂)₃), 1.69 (m, 4H, CH(CH₂)₂), 1.59 (m, 4H, CH₂), 1.43 (m, 83H, C(CH₃)₃, CH₂)), 1.25 (m, 24H, CH₂), 0.87 (t, ${}^{3}J$ = 6.9 Hz, 6H, CH₃) ppm; 13 C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 172.82$ (3C, CONH), 172.74 (1C, CONH), 172.62 (9C, COO'Bu), 163.54 (1C, CO), 163.12 (1C, CO), 145.62, 145.36, 145.24, 145.20, 145.15, 145.13, 145.10, 144.80, 144.68, 144.64, 144.56, 144.53, 143.85, 143.82, 143.02, 142.98, 142.96, 142.94, 142.91, 142.17, 141.86, 140.89, 139.10, 138.72 (58C, sp²-C), 80.55 (9C, C(CH₃)₃), 77.20 (1C, CH), 67.32 (1C, OCH₂), 57.42 (3C, NHC(CH₂)₃), 57.38 (1C, NHC(CH₂)₃), 49.08 (1C, OCCCO), 37.02 (1C, CH₂CO), 33.91 (2C, CH₂), 31.88 (2C, CH₂), 31.85 (3C, NHC(CH₂)₃), 31.70 (3C, CH₂CON), 29.79 (9C, NHC(CH₂)₃) 29.76 (9C, CH₂COO^tBu), 29.65, 29.57, 29.48, 29.23, 28.44 (8C, CH₂), 28.07 (27C, C(CH₃)₃), 25.58 (1C, CH₂CH₂CO), 25.34, 24.91, 22.64 (6C, *C*H₂), 14.13 (2C, *C*H₃) ppm; MS (FAB, NBA): $m/z = 2620 \text{ [M+Na]}^+$, 2597 [M]⁺, 720 [C₆₀]⁺. UV/Vis (CH₂Cl₂): $\lambda_{max} = 254.5, 324, 424.5, 476$ nm.

C₆₀ **monoadduct 49:** Prepared as described for compound **48** from **43** (300 mg, 0.19 mmol) and formic acid (25 mL). Purification was obtained by reprecipitation from MeOH/Et₂O. (259 mg, 0.18 mmol, 96 %). ¹H-NMR (400 MHz, RT, DMSO-d₆): $\delta = 12.05$ (s, br, 3H, COO*H*), 7.14 (s, br, 1H, CON*H*), 4.39 (m, br, 4H, OC*H*₂), 2.09 (m, br, 8H, C*H*₂COOH, OCC*H*₂), 1.82 (m, br, 8H, NHC(C*H*₂)₃, C*H*₂), 1.51 (m, br, 4H, OCH₂C*H*₂), 1.36 (m, br, 32H, C*H*₂), 0.85 (m, br, 3H, C*H*₃) ppm; ¹³C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 174.42$ (3C, COOH), 171.81 (1C, CONH), 163.63 (1C, CO), 163.52 (1C, CO), 144.71, 144.13, 143.40, 142.53, 141.69, 141.30, 140.61, 140.35, 139.10, 138.85 (58C, C₆₀-sp²), 71.42 (2C, C₆₀-sp³), 67.12 (1C, OCH₂), 67.02 (1C, OCH₂), 56.34 (1C, NHC(CH₂)₃), 52.32 (1C, OCCCO), 38.13 (1C, CH₂CO), 31.73 (1C, CH₂), 29.97 (3C, NHC(CH₂)₃), 29.88 (3C, CH₂COOH), 29.69, 29.70, 29.60, 29.62, 29.33, 29.28, 28.54, 28.37 (14C, CH₂), 25.99 (1C, CH₂), 25.42 (1C, CH₂CH₂CC), 25.06, 22.57 (2C, CH₂), 14.23 (1C, CH₃) ppm. MS (FAB, NBA): *m/z* = 1419 [M]⁺, 720 [C₆₀]⁺. UV/Vis (DMSO): $\lambda_{max} = 254, 323.5, 424.5$ nm.

C₆₀ monoadduct 50: Prepared as described for compound 48 from 44 (250 mg, 0.16 mmol) and formic acid (25 mL). Purification was obtained by reprecipitation from MeOH/Et₂O. (218 mg, 0.16 mmol, 97 %). ¹H-NMR (400 MHz, RT, DMSO-d₆): $\delta = 11.89$ (s, br, 3H, COOH),

7.04 (s, br, 1H, CON*H*), 5.18 (m, br, 1H, OC*H*), 4.41 (m, br, 2H, OC*H*₂), 2.18 (m, br, 8H, C*H*₂COOH, OCC*H*₂), 1.91 (m, br, 8H, NHC(C*H*₂)₃, C*H*₂), 1.65 (m, br, 8H, CHC*H*₂, C*H*₂), 1.41 (m, br, 2H, C*H*₂), 1.21 (m, br, 22H, C*H*₂), 0.85 (m, br, 6H, C*H*₃) ppm; ¹³C-NMR (100.5 MHz, RT, DMSO-d₆): δ = 175.02 (3C, COOH), 172.00 (1C, CONH), 163.59 (1C, CO), 163.51 (1C, CO), 144.88, 144.76, 144.36, 144.01, 143.76, 143.35, 143.08, 142.28, 141.88, 141.00, 139.11, 138.79 (58C, C₆₀-sp²), 78.01 (1C, CH), 71.59 (2C, C₆₀-sp³), 67.54 (1C, OCH₂), 56.69 (1C, NHC(CH₂)₃), 52.56 (1C, OCCCO), 37.99 (1C, CH₂CO), 33.98 (2C, CH(CH₂)₂), 31.89, 30.13 (3C, CH₂), 29.89 (3C, NHC(CH₂)₃), 29.71 (3C, CH₂COOH), 29.63, 29.48, 29.01, 28.37 (6C, CH₂), 25.61 (1C, CH₂CH₂CO), 25.37, 22.60 (5C, CH₂), 14.11 (2C, CH₃) ppm. MS (FAB, NBA): *m*/*z* = 1405 [M]⁺, 720 [C₆₀]⁺. UV/Vis (DMSO): $\lambda_{max} = 254$, 323.5, 424.5 nm.

C₆₀ monoadduct 51: Prepared as described for compound 48 from 45 (150 mg, 0.06 mmol) and formic acid (35 mL). Purification was obtained by reprecipitation from MeOH/Et₂O. (112 mg, 0.06 mmol, 97 %). ¹H-NMR (400 MHz, RT, DMSO-d₆): δ = 12.01 (s, br, 9H, COO*H*), 8.05 (s, br, 1H, CON*H*), 7.16 (s, br, 3H, CON*H*), 4.51 (m, br, 4H, OC*H*₂), 2.11 (m, br, 26H, C*H*₂COOH, OCC*H*₂), 1.91 (m, br, 28H, NHC(C*H*₂)₃, C*H*₂), 1.51 (m, br, 6H, C*H*₂), 1.26 (m, br, 4H, C*H*₂), 0.84 (m, br, 3H, C*H*₃) ppm. MS (FAB, NBA): *m*/*z* = 1938 [M]⁺, 720 [C₆₀]⁺. UV/Vis (DMSO): λ_{max} = 254, 324, 424.5 nm.

C₆₀ monoadduct 52: Prepared as described for compound 48 from 46 (300 mg, 0.11 mmol) and formic acid (50 mL). Purification was obtained by reprecipitation from MeOH/Et₂O. (237 mg, 0.11 mmol, 98 %). ¹H-NMR (400 MHz, RT, DMSO-d₆): δ = 12.03 (s, br, 9H, COO*H*), 8.12 (s, br, 1H, CON*H*), 7.20 (s, br, 3H, CON*H*), 4.46 (m, br, 4H, OC*H*₂), 2.09 (m, br, 26H, C*H*₂COOH, OCC*H*₂), 1.81 (m, br, 30H, NHC(C*H*₂)₃, C*H*₂), 1.21 (m, br, 32H, C*H*₂), 0.82 (m, br, 3H, C*H*₃) ppm. MS (FAB, NBA): *m*/*z* = 2106 [M]⁺, 720 [C₆₀]⁺. UV/Vis (DMSO): λ_{max} = 254, 324, 424.5 nm.

C₆₀ monoadduct 53: Prepared as described for compound 48 from 47 (150 mg, 0.06 mmol) and formic acid (35 mL). Purification was obtained by reprecipitation from MeOH/Et₂O. (117 mg, 0.06 mmol, 97 %). ¹H-NMR (400 MHz, RT, DMSO-d₆): δ = 12.11 (s, br, 9H, COO*H*), 8.07 (s, br, 1H, CON*H*), 7.01 (s, br, 3H, CON*H*), 5.20 (m, br, 1H, C*H*), 4.41 (m, br, 2H, OC*H*₂), 2.13 (m, br, 26H, C*H*₂COOH, OCC*H*₂), 1.89 (m, 28H, NHC(C*H*₂)₃, CH(C*H*₂)₂), 1.51 (m, br, 6H, C*H*₂), 1.25 (m, br, 24H, C*H*₂), 0.87 (m, br, 6H, C*H*₃) ppm. MS (FAB, NBA): *m/z* = 2092 [M]⁺, 720 [C₆₀]⁺. UV/Vis (DMSO): $\lambda_{max} = 254$, 324, 424.5 nm.

2-(2-(*tert***-Butyldimethylsilyloxy)ethoxy)ethoxy)-ethanol (54):** To a stirred solution of triethylenglycol (8.88 mL, 66.6 mmol) and imidazole (11.40 g, 166.5 mmol) in dry DMF (45

mL), *tert*-butyldimethylsilylchloride (10.04 g, 66.6 mmol) dissolved in dry DMF (30 mL) was slowly added at 0°C. The reaction mixture was stirred for 1 h at 0 °C followed by stirring for 15 h at room temperature and the progress of the reaction was monitored by TLC. The reaction mixture was diluted with water and successively washed with CH₂Cl₂ and Et₂O. The organic phases were combined and dried over MgSO₄. The product was purified by flash column chromatography (SiO₂; hexane/ethyl acetate, 75:25). The purified material was dried under vacuum to afford 8.50 g (32.1 mmol, 48%) of a pale yellow viscous oil. ¹H-NMR (300 MHz, RT, CDCl₃): δ = 3.71 (t, ³*J* = 5.3 Hz, 2H, SiOC*H*₂), 3.66 (dt, ³*J* = 4.6 Hz, 2H, HOC*H*₂), 3.61 (m, 4H, OC*H*₂), 3.55 (t, ³*J* = 4.6 Hz, 2H, OC*H*₂), 3.51 (t, ³*J* = 5.3 Hz, 2H, OC*H*₂), 2.73 (s, br, 1H, OH), 0.83 (s, 9H, C(C*H*₃)₃), 0.01 (s, 6H, Si(C*H*₃)₂) ppm. ¹³C-NMR (75 MHz, RT, CDCl₃): δ = 72.58 (1C, OCH₂), 72.44 (1C, OCH₂), 70.69 (1C, OCH₂), 70.36 (1C, OCH₂), 62.60 (1C, SiOCH₂), 61.64 (1C, HOCH₂), 25.83 (3C, (C(CH₃)₃),18.27 (1C, C(CH₃)₃), -5.38 (2C, SiCH₃) ppm. MS (FAB, NBA): *m*/*z* = 265 [M]⁺. C₁₂H₂₈O₄Si, calcd: C 54.50, H 10.67, O 24.20; found: C 54.62, H 10.75.

Malonic acid bis(2-(2-(1/2-(1/2-tert-butyldimethylsilyloxy)-ethoxy)ethoxy)ethyl ester (55): A solution of compound 54 (8.00 g, 30.25 mmol) in dry CH₂Cl₂ (400 mL) and NEt₃ (2.44 mL, 30.25 mmol) were cooled in the ice bath under nitrogen. Malonyl dichloride (1.47 mL, 15.13 mmol) was diluted in dry CH₂Cl₂ (20 mL) and added dropwise over a period of 2 h via a dropping funnel. The reaction mixture was stirred for another 2 h at 0°C followed by stirring for 20 h at room temperature. The mixture was extracted with saturated NH₄Cl (2 x 200mL) and saturated NaHCO₃ (2 x 200mL). After drying over MgSO₄ and rotary evaporation of the solvent, flash column chromatography on SiO₂ (hexane/ethyl acetate, 70:30) yielded 5.30 g (8.88 mmol, 59%) of a pale vellow oil. ¹H-NMR (300 MHz, RT, CDCl₃): δ = 4.25 (m, 4H, OCOCH2), 3.72 (m, 4H, OCH2), 3.66 (m, 4H, OCH2), 3.59 (m, 8H, OCH2), 3.51 (m, 4H, OCH₂), 3.39 (s, 2H, OCCH₂CO), 0.84 (s, 18H, C(CH₃)₃), 0.09 (s, 12H, Si(CH₃)₂) ppm. ¹³C-NMR (75 MHz, RT, CDCl₃): δ = 166.83 (2C, CO), 73.07 (2C, OCH₂), 71.08 (2C, OCH₂), 71.03 (2C, OCH₂), 69.22 (2C, OCH₂), 64.96 (2C, OCH₂), 63.08, (2C, OCH₂), 41.62 (1C OCCH₂CO), 26.30 (6C, (C(CH₃)₃),18.73 (2C, C(CH₃)₃), -4.89 (4C, SiCH₃) ppm. MS (FAB, NBA): $m/z = 597 \text{ [M]}^+$. C₂₇H₅₆O₁₀Si₂: calcd. C 54.33, H 9.46, O 26.80; found C 54.42, H 9.51.

 C_{60} monoadduct 60: DBU (141 µl, 0.95 mmol) was added dropwise to a solution of C_{60} (553 mg, 0.77 mmol), malonic acid bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl ester (250 mg, 0.63 mmol) and CBr₄ (208 mg, 0.63 mmol) in dry toluene (250 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 20 h and the progress of the reaction

was monitored by TLC. The product was isolated by flash column chromatography (SiO₂; toluene/ethyl acetate, 30:70) and dried under vacuum to afford 288 mg (0.26 mmol, 41%) of a red brownish solid. ¹H-NMR (400 MHz, RT, CDCl₃): δ = 4.62 (m, 4H, OCOC*H*₂), 3.85 (m, 4H, OC*H*₂), 3.68 (m, 4H, OC*H*₂), 3.62 (m, 8H, OC*H*₂), 3.52 (m, 4H, OC*H*₂), 3.35 (s, 6H, OC*H*₃) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 163.44 (2C, CO), 145.21, 145.13, 144.84, 144.63, 144.57, 143.83, 143.03, 142.97, 142.92, 142.15, 141.81, 140.86, 139.02 (58C, C₆₀-sp²) 71.87 (2C, CH₂OCH₃), 71.38 (2C, C₆₀-sp³), 70.64 (2C, OCH₂), 70.60 (2C, OCH₂), 70.57 (2C, OCH₂), 68.72 (2C, OCH₂) 66.18 (2C, OCOCH₂), 59.02 (2C, OCH₃), 52.00 (1C, OCCCO) ppm. MS (FAB, NBA): *m/z* = 1115 [M]⁺. UV/Vis (CH₂Cl₂): λ_{max} = 258, 326, 423 nm.

 C_{70} monoadduct 61: DBU (36 µl, 0.24 mmol) was added dropwise to a solution of C_{70} (200 mg, 0.24 mmol), malonate derivative 55 (109 mg, 0.18 mmol) and CBr₄ (64 mg, 0.19 mmol) in dry toluene (250 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 20 h and the progress of the reaction was monitored by TLC. The product was isolated by flash column chromatography (SiO₂; toluene/ethyl acetate 85:15) and dried under vacuum to afford 97 mg (0.068 mmol, 37%) of a red brownish solid. ¹H-NMR (400 MHz, RT, CDCl₃): $\delta = 4.57$ (t, ${}^{3}J = 4.8$ Hz, 4H, OCOCH₂), 3.84 (t, ${}^{3}J = 4.8$ Hz, 4H, OCH_2), 3.73 (t, ${}^{3}J = 5.4$ Hz, 4H, OCH_2), 3.65 (m, 8H, OCH_2), 3.53 (t, ${}^{3}J = 5.4$ Hz, 4H, OCH₂), 0.86 (s, 18H, C(CH₃)₃, 0.04 (s, 12H, Si(CH₃)₂) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): $\delta = 163.31$ (2C, CO), 155.00, 151.27, 151.09, 150.63, 150.51, 149.25, 149.19, 149.02, 148.66, 148.48, 148.43, 148.40, 147.54, 147.45, 147.23, 146.93, 146.37, 145.85, 145.20, 145.12, 144.81, 143.86, 143.77, 143.47, 142.77, 142.22, 141.56, 140.77, 136.84, 133.45, 132.75, 130.86, 130.73 (68C, C₇₀-sp²), 72.70 (2C, OCH₂), 70.73 (2C, OCH₂), 68.68 (2C, OCH₂), 66.71 (1C, C₇₀-sp³), 66.21 (2C, OCH₂), 66.10 (1C, C₇₀-sp³), 62.64 (2C, OCH₂), 36.90 (1C OCCCO), 25.94 (6C, (C(CH₃)₃), 18.35 (2C, (C(CH₃)₃), -5.21 (4C, Si-C) ppm. MS (FAB, NBA): $m/z = 1436 \text{ [M]}^+$. UV/Vis (CH₂Cl₂): $\lambda_{max} = 260$ (sh), 308 (sh), 323, 328 (sh), 352, 369, 403, 460, 535 (sh), 607 (sh) nm.

C₇₀ monoadduct 62: The protected alcohol 61 (50 mg, 0.038 mmol) was dissolved in THF (10 mL) and 2N HCl (1mL) was added under vigorous stirring. The progress of the reaction was monitored by TLC. After complete deprotection the solution was diluted with CH₂Cl₂ (50 mL), washed with a saturated solution of NaHCO₃ (100 mL) and water (100 mL). After drying over MgSO₄, filtrating and concentrating, the product was isolated as a red brownish solid. 32 mg (0.030 mmol, 80%). ¹H-NMR (400 MHz, RT, CDCl₃): δ = 4.59 (m, 4H, OCOCH₂), 3.87 (t, ³J = 4.8 Hz, 4H, OCH₂), 3.72 (m, 8H, OCH₂), 3.67 (m, 4H, OCH₂), 3.59

(m, 4H, OCH₂), 2.78 (s, br, 2H, OH) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 163.66 (2C, CO), 155.28, 151.55, 151.38, 150.93, 150.79, 149.55, 149.47, 149.33, 148.94, 148.78, 148.71, 148.68, 147.81, 147.71, 147.50, 147.20, 146.65, 146.16, 146.10, 145.06, 144.14, 144.02, 143.74, 143.03, 142.97, 142.49, 141.82, 141.05, 137.01, 133.69, 132.97, 131.08, 131.04, 130.95 (68C, C₇₀-sp²), 72.67, (2C, OCH₂), 70.69 (2C, OCH₂), 70.33 (2C, OCH₂), 68.59 (2C, OCH₂), 66.69 (2C, C₇₀-sp³), 66.06 (2C, OCH₂), 61.67 (2C, HOCH₂), 36.59 (1C OCCCO) ppm. MS (FAB, NBA): m/z = 1207 [M]⁺. UV/Vis (CH₂Cl₂): λ_{max} = 238, 261 (sh), 308 (sh), 322, 328 (sh), 352, 370, 405, 460, 534 (sh), 607 (sh) nm.

 C_{70} bisadducts 63a-c: DBU (113 µL, 0.75 mmol) was added dropwise to a solution of C_{70} (211 mg, 0.25 mmol), malonate derivative 55 (344 mg, 0.58 mmol) and CBr₄ (200 mg, 0.60 mmol) in dry toluene (250 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 20 h and the progress of the reaction was monitored by TLC. After chromatographic purification (SiO₂; toluene/ethyl acetate, 95:5 to 80:20; HPLC; toluene/ethyl acetate, 87:13) the pure regioisomers were obtained as dark solids. 63a (2'clock) 25 mg (12.5 μmol, 5%), **63b** (5'clock) 152 mg (75.0 μmol, 30%), **63c** (12'clock) 66 mg (32.5 μmol, 13%). **63a:** ¹H-NMR (400 MHz, RT, CDCl₃): δ = 4.55 (m, 8H, OCOCH₂), 3.83 (m, 8H, CH₂OSi), 3.74 (m, 8H, OCH₂), 3.66 (m, 16H, OCH₂), 3.54 (m, 8H, OCH₂), 0.87 (s, 36H, C(CH₃)₃), 0.04 (s, 24H, Si(CH₃)₂) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 163.43, 163.31 (4C, CO), 156.05, 155.34, 151.86, 151.18, 150.27, 149.87, 149.00, 148.37, 147.96, 147.35, 146.91, 146.84, 144.03, 143.95, 143.33, 142.95, 142.83, 142.36, 141.71, 140.96, 140.65, 140.40, 139.36, 137.53, 136.96, 133.57, 133.03, 132.52, 132.42, 130.67 (66C, C₇₀-sp²), 72.73, 70.76, 68.71 (16C, OCH₂), 67.45, 66.75 (4C, C₇₀-sp³), 66.19, 62.69 (8C, OCH₂), 36.41 (2C, OCCCO), 25.95 (12C, C(CH₃)₃), 18.38 (4C, C(CH₃)₃), -5.21 (8C, Si(CH₃)₂) ppm. MS (FAB, NBA): $m/z = 2030 \text{ [M]}^+$. UV/Vis (CH₂Cl₂): $\lambda_{max} = 256 \text{ (sh)}$, 282 (sh), 367, 401, 435 (sh), 467, 515 (sh), 635 (sh), 678 (sh) nm.

63b: ¹H-NMR (400 MHz, RT, CDCl₃): δ = 4.56 (m, 8H, OCOCH₂), 3.84 (m, 8H, CH₂OSi), 3.74 (m, 8H, OCH₂), 3.65 (m, 16H, OCH₂), 3.53 (m, 8H, OCH₂), 0.87 (s, 18H, C(CH₃)₃), 0.86 (s, 18H, C(CH₃)₃), 0.04 (s, 24H, Si(CH₃)₂), 0.04 (s, 24H, Si(CH₃)₂) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 163.44, 163.37 (4C, CO), 155.51, 154.97, 152.97, 152.14, 151.63, 151.21, 150.46, 149.93, 148.95, 147.51, 146.46, 146.36, 146.27, 145.06, 144.89, 144.44, 143.51, 143.28, 142.47, 142.13, 141.50, 141.37, 140.66, 140.43, 137.79, 135.79, 132.92, 132.84, 131.36, 131.08 (66C, C₇₀-sp²), 72.74, 70.78, 70.76, 70.73, 68.71 (16C, OCH₂), 67.06, 66.66 (4C, C₇₀-sp³), 66.23, 62.67 (8C, OCH₂), 37.82 (2C, OCCCO), 25.94 (12C, C(CH₃)₃),

18.36 (4C, $C(CH_3)_3$), -5.23 (8C, Si(CH_3)₂) ppm. MS (FAB, NBA): $m/z = 2030 \text{ [M]}^+$. UV/Vis (CH₂Cl₂): $\lambda_{max} = 255$ (sh), 306 (sh), 331 (sh), 396, 433, 461, 525 (sh), 635 (sh) nm.

63c: ¹H-NMR (400 MHz, RT, CDCl₃): δ = 4.58 (m, 4H, OCOC*H*₂), 4.13 (m, 2H, OCOC*H*₂), 4.08 (m, 2H, OCOC*H*₂), 3.84 (t, ³*J* = 4.8 Hz, 4H, C*H*₂OSi), 3.73, 3.68, 3.66 (3m, 20H, OC*H*₂), 3.62 (m 8H, OC*H*₂), 3.52 (m, 8H, OC*H*₂), 0.87 (s, 18H, C(C*H*₃)₃), 0.86 (s, 18H, C(C*H*₃)₃), 0.04 (s, 12H, Si(C*H*₃)₂), 0.03 (s, 12H, Si(C*H*₃)₂) ppm. ¹³C-NMR (100.5 MHz, RT, CDCl₃): δ = 163.48 (4C, CO), 154.38, 152.49, 151.39, 149.92, 140.45, 148.73, 147.45, 142.71, 142.13, 142.10, 141.89, 141.54, 137.35, 136.71, 135.24, 131.73, 131.20, 130.59 (66C, C₇₀-sp²), 72.73, 72.69, 70.78, 70.75, 70.71, 69.60, 68.71, (16C, OCH₂), 68.54, 65.94 (4C, C₇₀sp³), 66.23, 62.67, 61.29 (8C, OCH₂), 36.39 (2C, OCCCO), 25.94, 25.90 (12C, C(CH₃)₃), 18.36, 18.34 (4C, *C*(CH₃)₃), -5.23, -5.29 (8C, Si(*C*H₃)₂) ppm. MS (FAB, NBA): *m/z* = 2030 [M]⁺. UV/Vis (CH₂Cl₂): λ_{max} = 270, 326 (sh), 361, 399, 425 (sh), 475, 529 (sh), 613 (sh), 667 (sh) nm.

 C_{70} bisadducts 64a-c: The protected alcohol 63a-c (50 mg, 0.025 mmol) was dissolved in THF (5 mL) and 1N HCl (1 mL) was added under vigorous stirring. The progress of the reaction was monitored by TLC. After complete deprotection the solution was diluted with CH₂Cl₂ (50 mL), washed with a saturated solution of NaHCO₃ (100 mL) and with water (100 mL). After drying over MgSO₄ the solution was concentrated and dried under vacuum for further 24 h. 64a (2'clock) 28 mg (0.018 mmol, 72%), 64b (5'clock) 30 mg (0.019 mmol, 77%), 64c (12'clock) 26 mg (0.016 mmol, 65%).

64a: ¹H-NMR (400 MHz, RT, THF-d₈): δ = 4.56 (m, 8H, OCOC*H*₂), 3.85 (m, 8H, C*H*₂OH), 3.65 (m, 8H, OC*H*₂), 3.59 (m, 16H, OC*H*₂), 3.49 (m, 8H, OC*H*₂), 2.55 (s, 4H, O*H*) ppm. ¹³C-NMR (100.5 MHz, RT, THF-d₈): δ = 163.59, 163.45 (4C, CO), 157.06, 156.34, 152.70, 152.04, 151.17, 151.11, 149.84, 149.79, 149.17, 149.13, 148.73, 148.12, 147.60, 147.55, 144.72, 144.22, 143.71, 143.57, 143.24, 142.41, 142.07, 141.89, 141.41, 141.20, 140.49, 140.18, 138.76, 138.19, 134.36, 133.79, 133.31, 133.18, 131.37, (66C, C₇₀-sp²), 73.95, 71.39, 69.39, 67.85, 67.63, 67.42 (20C, OCH₂), 68.42, 68.00 (4C, C₇₀-sp³), 62.14 (4C, HOCH₂), 37.85 (2C, OCCCO) ppm. MS (FAB, NBA): *m/z* = 1573 [M]⁺. UV/Vis (CH₂Cl₂): λ_{max} = 258 (sh), 282 (sh), 366, 401, 435 (sh), 467, 518 (sh), 634 (sh), 675 (sh) nm.

64b: ¹H-NMR (400 MHz, RT, THF-d₈): δ = 4.57 (m, 8H, OCOC*H*₂), 3.85 (m, 8H, C*H*₂OH), 3.66 (m, 8H, OC*H*₂), 3.62 (m, 8H OC*H*₂), 3.57 (m, 8H, OC*H*₂), 3.48 (m, 8H, OC*H*₂), 2.52 (s, 4H, O*H*) ppm. ¹³C-NMR (100.5 MHz, RT, THF-d₈): δ = 164.17, 164.06 (4C, CO), 157.03, 156.47, 154.20, 153.52, 152.92, 152.58, 151.83, 151.16, 150.15, 148.83, 147.68, 147.64,

147.57, 146.71, 146.17, 145.78, 145.60, 144.68, 144.59, 144.17, 143.64, 143.30, 142.85, 142.51, 141.89, 141.73, 139.55, 137.09, 134.13, 134.00, 132.48, 132.23 (66C, C_{70} -sp²), 74.14, 71.58, 71.57, 69.57, 68.02, 67.80, 67.58 (20C, OCH₂), 68.25, 68.17 (4C, C_{70} -sp³), 62.27 (4C, HOCH₂), 39.35 (2C, OCCCO) ppm. MS (FAB, NBA): $m/z = 1573 \text{ [M]}^+$. UV/Vis (THF): $\lambda_{\text{max}} = 258$ (sh), 306 (sh), 331 (sh), 394, 433, 462, 524 (sh), 633 (sh) nm.

64c: ¹H-NMR (400 MHz, RT, THF-d₈): δ = 4.58 (m, 8H, OCOC*H*₂), 3.86 (m, 8H, C*H*₂OH), 3.67 (m, 8H, OC*H*₂), 3.62 (m, 8H OC*H*₂), 3.58 (m, 8H, OC*H*₂), 3.49 (m, 8H, OC*H*₂), 2.53 (s, 4H, O*H*) ppm. ¹³C-NMR (100.5 MHz, RT, THF-d₈): δ = 163.66 (4C, *C*O), 155.38, 153.38, 152.22, 150.63, 150.12, 149.52, 148.38, 143.51, 143.46, 143.07, 142.17, 138.65, 137.58, 136.11, 132.40, 131.94, 131.33 (66C, C₇₀-sp²), 73.95, 71.40, 69.40, 67.85, 67.63, 67.41, 67.16 (20C, OCH₂), 68.03 (4C, C₇₀-sp³), 62.14 (4C, HOCH₂), 37.87 (2C, OCCCO) ppm. MS (FAB, NBA): *m/z* = 1573 [M]⁺. UV/Vis (THF): λ_{max} = 270, 328 (sh), 361, 398, 425 (sh), 476, 529 (sh), 615 (sh), 664 (sh) nm.