Trans-(4-butyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (10a).

Copper(I) Iodide ($0.05 \mathrm{~g}, 0.026 \mathrm{mmol}$) was added to a solution of n-butylmagnesium bromide prepared from n-butyl bromide ($2.05 \mathrm{~g}, 15.0 \mathrm{mmol}$) and magnesium ($0.389 \mathrm{~g}, 16 \mathrm{mmol}$) in tetrahydrofuran (10 ml) and then a solution of lactone $8 \mathbf{a}(1.10 \mathrm{~g}, 5.0 \mathrm{mmol})$ in tetrahydrofuran (25 ml) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm up to room temperature and then stirred at this temperature for 2.5 h . The reaction was acidified to pH 1 with 1 N HCl and tetrahydrofuran was evaporated under reduced pressure. The residue was extracted with dichloromethane (3 x 15 ml). The combined organic layers were washed with water (20 ml) and then dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography (hexane-AcOEt 50:50, $\mathrm{R}_{\mathrm{f}}=0.23$) to give the lactone 10a as colourless oil (0.89 g , 64%); $v_{\max } 1748,1224,1042 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 20.76 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}\right) ; 1.27 \div 1.34$ ($\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{xCH}$) ; 1.36 (t, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$); $1.37\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$); $1.60 \div$ $1.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CP}) ; 2.76$ (dd, $\left.{ }^{2} J_{\mathrm{PH}}=22.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}\right) ; 4.01\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=9.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}) ; 4.12 \div 4.28\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 4.56\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=9.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 13.41\left(\mathrm{~s}, C \mathrm{H}_{3}\right) ; 15.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 15.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 21.94$ (s, $C \mathrm{H}_{2}$); $28.20\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ; 33.19\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.7 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 37.28\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, C \mathrm{H}\right) ; 44.68\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=141.0\right.$ $\mathrm{Hz}, C \mathrm{HP}) ; 62.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 63.16\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 72.26\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{2} \mathrm{O}\right) ; 171.63\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, C=\mathrm{O}\right) . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$: requires C 51.79, H 8.33; found C 51.90, H 8.31.

Trans-(4-phenyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (10b).

Starting from bromobenzene $(2.35 \mathrm{~g}, 15.0 \mathrm{mmol})$ and following the procedure described above the lactone 10b was obtained ($0.86 \mathrm{~g}, 58 \%$) as colourless oil. (hexane-AcOEt $50: 50, \mathrm{R}_{\mathrm{f}}=0.18$); $v_{\max } 1764,1262$, 1040; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 19.52 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.26\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.31\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 3.16\left(\mathrm{dd},{ }^{2} J_{\mathrm{PH}}=23.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}\right) ; 3.65(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CP}\right) ; 4.08 \div 4.19\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH} \mathrm{OP}_{2}\right) ; 4.33\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=9.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=\right.$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}) ; 4.76\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=9.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right) ; 7.21 \div 7.37(\mathrm{~m}, 5 \mathrm{H}, A r) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $15.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 15.87\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 43.24\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=1.8 \mathrm{~Hz}, C \mathrm{H}\right)$; $46.77\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=142.2 \mathrm{~Hz}, C \mathrm{HP}\right) ; 62.90\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 63.70\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 73.47$ (d, $\left.{ }^{3} J_{\mathrm{PC}}=7.5 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{O}\right) ; 126.53\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 128.97\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right) ; 129.10\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 139.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=7.3\right.$ $\mathrm{Hz}, C_{\mathrm{Ar}}$); 171.27 (s, $C=\mathrm{O}$). $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{P}$: requires $\mathrm{C} 56.38, \mathrm{H} 6.42$; found $\mathrm{C} 56.52, \mathrm{H} 6.45$.

Trans-(5,5-Dimethyl-2-oxo-4-phenyltetrahydrofuran-3-yl)-phosphonic acid diethyl ester (10c).

Copper(I) iodide $(0.05 \mathrm{~g}, 0.026 \mathrm{mmol})$ was added to a solution of phenylmagnesium bromide, prepared from bromobenzene ($2.35 \mathrm{~g}, 15.0 \mathrm{mmol}$) and magnesium ($0.389 \mathrm{~g}, 16.0 \mathrm{mmol}$) in diethyl ether (15 ml) and then a solution of lactone $\mathbf{8 b}$ in diethyl ether (25 ml) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm up to room temperature and then stirred at this temperature for 2.5 h . The reaction was then acidified to pH 1 with 1 N HCl and diethyl ether was evaporated under reduced pressure. The residue was extracted with dichloromethane ($3 x 15 \mathrm{ml}$). The combined organic layers were washed with water (20 ml) and then dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was chromatographed (hexane-AcOEt $50: 50, \mathrm{R}_{\mathrm{f}}=0.31$) to give the lactone $\mathbf{1 0 c}$ as colourless oil ($1.34 \mathrm{~g}, 82 \%$); $v_{\max } 1768,1260,1024 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 20.47; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.97\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right) ; 1.21\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$); 1.56 (s, 3H, CH3); 3.66 (dd, ${ }^{2} J_{\mathrm{PH}}=22.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}$); $3.83\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=15.7\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HH}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H\right) ; 3.80 \div 3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right) ; 4.03 \div 4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right) ; 7.22 \div 7.40(\mathrm{~m}$, $5 \mathrm{H}, A r) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 16.13\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 20.96(\mathrm{~s}$, $C \mathrm{H}_{3}$); $27.14\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 44.54\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=151.2 \mathrm{~Hz}, \mathrm{CHP}\right) ; 53.70(\mathrm{~s}, \mathrm{CH}) ; 62.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.6 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right)$; $63.59\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 86.42\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=13.6 \mathrm{~Hz}, C \mathrm{O}\right) ; 127.91\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 128.13\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right)$; $128.52\left(\mathrm{~s}, \mathrm{CH}_{\mathrm{Ar}}\right) ; 135.09\left(\mathrm{~s}, C_{\mathrm{Ar}}\right) ; 170.08(\mathrm{~s}, C=\mathrm{O}) . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$: requires C 58.89, H 7.10; found C 58.70, H 7.14.

Diethyl 3,3-diethoxybutylphosphonate (12).

To a solution of oxophosponate $11(15.0 \mathrm{~g}, 0,072 \mathrm{~m})$ in triethyl orthoformate ($60 \mathrm{ml}, 0.360 \mathrm{~m}$) Amberlist 15 $(3.5 \mathrm{~g})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 h . Then Amberlist was removed by filtration and the residue was purified by distillation (b.p. $114 \div 120{ }^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$) to give the phosphonate 12 as light yellow oil ($20.00 \mathrm{~g}, 97 \%$); $v_{\text {max }} 1248,1042 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 32.70 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.16(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.68 \div 1.97$ $\left(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right) ; 3.44\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.45\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.09\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}=\right.$ $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{2} \mathrm{OP}\right) ; 4.10\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OP}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.33(\mathrm{~s}$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$); 14.42 ($\mathrm{d},{ }^{3} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}$); $16.02\left(\mathrm{~s}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$); $19.00\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=143.2 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{2} \mathrm{P}\right) ; 28.02\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.3 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 34.32\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 53.65\left(\mathrm{~s}, 2 \times \mathrm{H}_{2} \mathrm{O}\right) ; 59.41\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}\right.$, $2 \mathrm{xCH}_{2} \mathrm{OP}$); $98.75\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=20.1 \mathrm{~Hz}, C\right) . \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}$: requires C 51.05, H 9.64; found C 51.21, H 9.66.

Diethyl 2-(2-phenyl-1,3-dioxolan-2-yl)ethylphosphonate (16).

A mixture of oxophosphonate $15(20.0 \mathrm{~g}, 0.075 \mathrm{~m})$, ethylene glycol ($12.5 \mathrm{ml}, 0.022 \mathrm{~m}$) and p-toluenesulfonic acid $(1.2 \mathrm{~g}, 7.5 \mathrm{mmol})$ in toluene $(200 \mathrm{ml})$ was heated at reflux under Dean-Stark water separator. After the phosphonate was completely consumed, the reaction mixture was washed with $10 \% \mathrm{NaHCO}_{3}(50 \mathrm{ml})$ and water (50 ml). Organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by distillation (b.p. $146 \div 150{ }^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) to give phosphonate $\mathbf{1 6}$ as light yellow oil (22.40 g , 95%); $v_{\max }$ 1248, 1024; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 32.79 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.88\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=22.5\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right) ; 2.13\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=15.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H_{2}\right)$; $3.76 \div 3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.99 \div 4.11\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OP}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.28 \div 7.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $15.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 19.49\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=143.0 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right) ; 32.90\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.4 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 60.84$ (d, ${ }^{2} J_{\mathrm{PC}}=6.2 \mathrm{~Hz}, 2 \mathrm{xCH}_{2} \mathrm{OP}$); $64.17\left(\mathrm{~s}, 2 \mathrm{xCH}_{2} \mathrm{O}\right) ; 108.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=19.2 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$); $125.05\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 127.52$ (s, $C \mathrm{H}_{\mathrm{Ar}}$); $127.64\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 141.38$ (s, C_{Ar}). $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$: requires C 57.32, H 7.38; found C 57.46, H 7.36.

General procedure for the preparation of ethyl alkanoates 13,17 and 20.

A solution of ketal 12, $\mathbf{1 6}$ or $\mathbf{2 0}(0.070 \mathrm{~m})$ in tetrahydrofuran $(15 \mathrm{ml})$ was added at $-78^{\circ} \mathrm{C}$ to a stirred solution of LDA prepared from $\mathrm{n}-\mathrm{BuLi}(12.0 \mathrm{ml}, 0.075 \mathrm{~m})$ and diisopropylamine ($10.0 \mathrm{ml}, 0.076 \mathrm{~m}$) in tetrahydrofuran (50 ml). Stirring was continued for 0.5 h at this temperature. Then diethyl carbonate ($8.5 \mathrm{ml}, 0.070 \mathrm{~m}$) in tetrahydrofuran (20 ml) was added and the reaction mixture was allowed to warm up to room temperature and stirred for 20 h then the mixture was acidified to pH 2 with 3 N HCl and tetrahydrofuran was evaporated under reduced pressure. The residue was extracted with chloroform ($3 x 35 \mathrm{ml}$). The combined organic layers were washed with saturated NaCl solution (25 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The crude products were purified by vaccum distillation.

2-(Diethoxy-hosphoryl)-4,4-diethoxypentanoic acid ethyl ester (13).

Purification (bp $=150 \div 154^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) gave the phosphonate 13 as light yellow oil ($21.20 \mathrm{~g}, 85 \%$); $v_{\text {max }} 1764,1248,1042 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 23.73 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.18\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ; 1.30\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH} \mathrm{CH}_{3} \mathrm{OP}\right) ; 1.68 \div 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2}\right) ; 3.30\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=23.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}\right) ; 3.45\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2} \mathrm{O}\right) ; 3.46\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.08\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{OP}\right) ; 4.10\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{2} \mathrm{OP}\right) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 13.28\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 14.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 16.02\left(\mathrm{~s}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 30.00\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}\right.$ $\left.=3.2 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 34.32\left(\mathrm{~s}, C_{3}\right) ; 40.08\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=128.55 \mathrm{~Hz}, C \mathrm{HP}\right) ; 52.65\left(\mathrm{~s}, 2 \times C \mathrm{H}_{2} \mathrm{O}\right) ; 58.89\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right)$; $60.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 167.75\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.8 \mathrm{~Hz}, C=\mathrm{O}\right) . \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{P}$: requires C 50.84 , H 8.82; found C 51.00, H 8.78.

2-(Diethoxyphosphoryl)-3-(2-phenyl-[1,3]dioxolan-2-yl)-propionic acid ethyl ester (17).

Purification ($\mathrm{bp}=178 \div 182^{\circ} \mathrm{C} / 0.05 \mathrm{mmHg}$) gave the phosphonate 17 as light yellow oil ($24.30 \mathrm{~g}, 90 \%$); $v_{\max } 1764,1240,1020 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 23.53 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.31\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xC} H_{3} \mathrm{CH}_{2} \mathrm{OP}$); 2.35 (ddd, ${ }^{2} J_{\mathrm{HH}}=14.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$); 2.69 (ddd, $\left.{ }^{2} J_{\mathrm{HH}}=14.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right) ; 3.30\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=23.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=\right.$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}) ; 3.69 \div 3.81\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{O}\right) ; 4.08 \div 4.18\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 4.24\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.27 \div 7.48\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.71\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 15.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}\right.$, $2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}$); $37.03\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.7 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 40.47\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=129.7 \mathrm{~Hz}, C \mathrm{HP}\right) ; 60.67\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 62.12(\mathrm{~d}$, ${ }^{2} J_{\mathrm{PC}}=6.6 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$); $62.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 64.21\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 64.30\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 108.61\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $=18.1 \mathrm{~Hz}, C) ; 125.16\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 127.21\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right) ; 127.76\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 141.35\left(\mathrm{~s}, C_{\mathrm{Ar}}\right) ; 168.75\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=\right.$ $5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$). $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{P}$: requires C 55.95, H 7.04; found C 55.80, H 7.07.

2-(Diethoxyphosphoryl)-4,4-diethoxybutyric acid ethyl ester (20).

Purification (bp $=142 \div 144^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) gave the phosphonate 20 as light yellow oil ($20.20 \mathrm{~g}, 85 \%$); $v_{\max } 1744,1264,1042 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 23.14 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.18\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.30\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.85 \div 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}) ; 2.24 \div$ $2.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H) ; 3.08\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=20.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}\right) ; 3.50\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{HO}) ; 3.52\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{O}\right)$; $3.63\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{HO}\right) ; 3.66\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{O}) ; 4.11 \div 4.23\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 4.50\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $13.78\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 14.86\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 16.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.2 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 16.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 30.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.5 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 41.10\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=131.2 \mathrm{~Hz}, C \mathrm{HP}\right) ; 60.96\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 61.31(\mathrm{~s}$, $C \mathrm{H}_{2} \mathrm{O}$); $61.84\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 62.31\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 62.47\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.4 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 100.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $=16.7 \mathrm{~Hz}, C \mathrm{H})$; $168.64\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.2 \mathrm{~Hz}, C=\mathrm{O}\right) . \mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{P}$: requires C 49.41, H 8.59; found C 49.30, H 8.62.

General procedure for the preparation of oxoalkanoates 14,18 and 21.

A solution of ketal 13, $\mathbf{1 7}$ or $20(0.05 \mathrm{~m})$ in tetrahydrofuran (20 ml) and $3 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ was stirred at room temperature for 24 h . Then tetrahydrofuran was evaporated under reduced pressure and the residue was extracted with chloroform ($3 \times 20 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the product which was spectroscopically pure.

2-(Diethoxyphosphoryl)-4-oxopentanoic acid ethyl ester (14). ${ }^{10}$

Light yellow oil (13.70g, 96%); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right)$ 22.72; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.33$ $\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.36\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$); $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{3}\right) ; 2.90$ (ddd, $\left.{ }^{2} J_{\mathrm{HH}}=18.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right) ; 3.26\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=18.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=\right.$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}) ; 3.49\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=23.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}\right) ; 4.12\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.2\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{O}$); $4.14\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right) ; 4.17\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OP}\right)$.
2-(Diethoxyphosphoryl)-4-oxo-4-phenylbutyric acid ethyl ester (18). ${ }^{11}$
Light yellow oil (23.50g, 95 \%); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 23.10 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.30\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.35$ $\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.38\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 3.45\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=16.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=11.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right) ; 3.64\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=16.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=8.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}\right)$; 3.82 (ddd, $\left.{ }^{2} J_{\mathrm{PH}}=22.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}\right) ; 4.18\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{O}\right)$; 4.21 (dq, $\left.{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{2} \mathrm{OP}\right) ; 4.22\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{OP}_{2}\right.$); $7.44 \div 7.50(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}$); $7.56 \div 7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}_{\mathrm{Ar}}\right) ; 7.97 \div 8.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} H_{\mathrm{Ar}}\right)$.
2-(Diethoxyphosphoryl)-4-oxobutyric acid ethyl ester (21). ${ }^{12}$
Light yellow oil (13.00g, 95%); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 22.72 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.32$ (td, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$); $1.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$); 3.00 (ddd, ${ }^{3} J_{\mathrm{PH}}$ $\left.=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}\right) ; 3.29\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=18.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CHP}$); 3.46 (ddd, $\left.{ }^{3} J_{\mathrm{PH}}=22.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right) ; 4.10 \div 4.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{O}\right.$, $2 \mathrm{xCH} \mathrm{H}_{2} \mathrm{OP}$); $9.76\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=3.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right)$.

General procedure for the preparation of phosphonates 23a and 23b.
To a stirred suspension of sodium hydride ($1.2 \mathrm{~g}, 0.05 \mathrm{~m}$) in tetrahydrofuran (30 ml) alkanoate 22a or 22b $(0.05 \mathrm{~m})$ was added followed by allyl bromide $(4.35 \mathrm{ml}, 0.05 \mathrm{~m})$ in tetrahydrofuran (10 ml) at room temperature .The reaction mixture was stirred for 24 h and then acidified to pH 2 with 1 N HCl . Tetrahydrofuran was evaporated under reduced pressure and the residue was extracted with chloroform $(3 \times 25 \mathrm{ml})$. The combined organic layers were washed with saturated NaCl solution (20ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of solvent afforded a crude product, which was purified by vacuum distillation.

2-(Diethoxyphosphoryl)-2-methylbut-3-enoic acid ethyl ester (23a).

Purification ($\mathrm{bp}=82 \div 86^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) gave the phosphonate 23a as light yellow oil ($11.40 \mathrm{~g}, 82 \%$); $v_{\text {max }} 1740$, $12481020 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 26.48$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.28\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.30\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.41\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=14.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}\right) ; 2.40\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=13.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}\right) ; 2.84 \div 2.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H) ; 4.09 \div 4.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 5.10\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}\right) ; 5.12\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right) ; 5.60 \div 5.74(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.82\left(\mathrm{~s}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 16.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.7 \mathrm{~Hz}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 16.83\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.4 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{3}\right) ; 38.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=3.6 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 47.68\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=134.9 \mathrm{~Hz}, C \mathrm{P}\right) ; 61.18\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 62.64\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.2\right.$ $\mathrm{Hz}, C \mathrm{H}_{2} \mathrm{OP}$); $62.91\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.1 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 118.61\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ; 131.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=13.7 \mathrm{~Hz}, C \mathrm{H}\right) ; 170.48(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PC}}=3.5 \mathrm{~Hz}, C=\mathrm{O}\right) . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$: requires C 51.79, H 8.33; found C 51.57 , H 8.35.

2-(Diethoxyphosphoryl)-2-phenylbut-3-enoic acid ethyl ester (23b).

Purification (bp $=146 \div 150^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg}$) gave the phosphonate 23b as light yellow oil ($14.50 \mathrm{~g}, 85 \%$); $v_{\text {max }}$ 1764, 1660, 1224, 1048; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 22.46 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.19\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH} \mathrm{C}_{2} \mathrm{OP}\right)$; $1.20\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.28\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.96 \div 3.11(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} H \mathrm{H}) ; 3.15 \div 3.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H) ; 3.94 \div 4.10\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH} \mathrm{H}_{2} \mathrm{OP}\right) ; 4.27\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{O}\right) ; 5.04$ (dd, $\left.{ }^{3} J_{\mathrm{HH}}=10.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}\right) ; 5.09\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=17.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right.$); 5.90 (ddt, $\left.{ }^{3} J_{\mathrm{HH}}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H\right) ; 7.28 \div 7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.62(\mathrm{~s}$, $C H_{3} \mathrm{CH}_{2} \mathrm{O}$); 15.87 (d, ${ }^{3} J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, 2 \mathrm{xCH} \mathrm{CH}_{2} \mathrm{OP}$); $37.91\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.4 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$); $58.18\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=137.6 \mathrm{~Hz}\right.$, $C \mathrm{P}) ; 61.16$ (s, $C \mathrm{H}_{2} \mathrm{O}$); 62.62 (d, ${ }^{2} J_{\mathrm{PC}}=7.1 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$); 62.98 ($\mathrm{d},{ }^{2} J_{\mathrm{PC}}=7.3 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$); $118.00\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$; $127.02\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.3 \mathrm{~Hz}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 127.57\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right) ; 128.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 133.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.0 \mathrm{~Hz}\right.$, $C \mathrm{H}) ; 135.22\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C_{\mathrm{Ar}}\right.$); $169.86\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.5 \mathrm{~Hz}, C=\mathrm{O}\right) . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}$: requires C 59.95, H 7.40; found C 60.12, H 7.36.

2-(Diethoxyphosphoryl)-2-methyl-4-oxobutyric acid ethyl ester (24a).

Starting from phosphonate 23a ($5.56 \mathrm{~g}, 0.02 \mathrm{~m}$) and following the procedure described in ref. 12, the phosphonate 24a was obtained as light yellow oil ($5.45 \mathrm{~g}, 95 \%$). The crude product was spectroscopically pure. $v_{\max }$ 1748, 1724, 1240, 1032; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 24.75 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.32$ $\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=12.2\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); $2.78\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=18.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right.$); $3.30\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=18.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH} H) ; 4.10 \div 4.27\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 9.52\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}={ }^{4} J_{\mathrm{PH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.49(\mathrm{~s}$, $C H_{3} \mathrm{CH}_{2} \mathrm{O}$); $14.69\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=19.1 \mathrm{~Hz}, C \mathrm{H}_{3}\right) ; 15.87\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 36.90\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.2 \mathrm{~Hz}\right.$, $C \mathrm{H}_{2}$); $45.65\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=130.9 \mathrm{~Hz}, C \mathrm{P}\right) ; 60.66\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{O}\right) ; 62.13\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 62.24\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 170.60\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=\right.$ $4.0 \mathrm{~Hz}, C=O)$; $197.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=15.0 \mathrm{~Hz}, C \mathrm{HO}\right) . \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{P}$: requires C 47.14, H 7.55; found C 47.00, H 7.59.

2-(Diethoxyphosphoryl)-4-oxo-2-phenylbutyric acid ethyl ester (24b).

Starting from phosphonate $\mathbf{2 3 b}(6.80 \mathrm{~g}, 0.02 \mathrm{~m})$ and following the procedure described in ref. 12, the phosphonate 24b was obtained as light yellow oil ($6.65 \mathrm{~g}, 95 \%$). The crude product was spectroscopically pure. $v_{\max }$ 1764, 1732, 1240, 1024; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 20.93 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.17\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.23\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$); $1.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 3.30\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=12.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; $4.03(\mathrm{q}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{O}\right) ; 4.05\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H_{2} \mathrm{OP}\right) ; 4.08\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{OP}$); $7.30 \div 7.51\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) ; 9.57\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}={ }^{4} J_{\mathrm{PH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.74\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; $15.97\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 16.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.8 \mathrm{~Hz}, C H_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 46.07\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=8.1 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 54.64$ (d, $\left.{ }^{1} J_{\mathrm{PC}}=196.7 \mathrm{~Hz}, C \mathrm{P}\right) ; 61.76\left(\mathrm{~s}, \mathrm{CH}_{3} C \mathrm{H}_{2} \mathrm{O}\right) ; 63.53\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.4 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 63.83\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.3 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{2} \mathrm{OP}\right) ; 127.37\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 127.56\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right) ; 127.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.8 \mathrm{~Hz}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 134.34\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.6 \mathrm{~Hz}, C_{\mathrm{Ar}}\right)$; $171.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=3.9 \mathrm{~Hz}, C=\mathrm{O}\right)$; $198.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.3 \mathrm{~Hz}, C H O\right) . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{P}$: requires C 56.14 , H 6.77; found C 56.31, H 6.74.

General procedure for the preparation of lactones $26 a$ and $26 b$.

To a stirred solution of phosphonate 14 or $18(0.035 \mathrm{~m})$ in methanol (20 ml) potasium borohydride (2.70 g , 0.05 m) was added at $0^{\circ} \mathrm{C}$. Stirring was continued for 75 min . The resulting mixture was neutralized to pH 2 with 3 N HCl . Methanol was evaporated under reduced pressure and the residue was extracted with chloroform ($4 \times 20 \mathrm{ml}$). The combined organic layers were washed with water (20 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent under reduced pressure afforded a crude product.
2-Oxo-5-methyltetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26a).
Purification by vaccum distillation (b.p. $158 \div 160^{\circ} \mathrm{C} / 0.05 \mathrm{mmHg}$) gave the lactone $\mathbf{2 6 a}$ as light yellow oil ($8.0 \mathrm{~g}, 96 \%$) diaA : diaB = $56: 44 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 21.12$ (diaA); 20.96 (diaB); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0\right.$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 2 \mathrm{xCH} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}\right) ; 1.37\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaB}\right) ; 1.42\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}, diaA); 1.48 (d, $\left.{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}, \operatorname{diaB}\right) ; 2.02 \div 2.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \operatorname{diaA}+\operatorname{diaB}) ; 2.56 \div 2.81$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} H$, diaA + diaB); 3.14 (ddd, ${ }^{2} J_{\mathrm{PH}}=23.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}, \operatorname{diaA}$); $3.18\left(\mathrm{dt},{ }^{2} J_{\mathrm{PH}}=23.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}, \operatorname{diaB}\right) ; 4.14 \div 4.31(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH} 2 \mathrm{OP}$, diaA $+\operatorname{diaB}) ; 4.60$ (ddq, $\left.{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H, \mathrm{diaB}\right) ; 4.83\left(\mathrm{ddq},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H$, diaA).

(2-Oxo-5-phenyltetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26b).

Purification by column chromatography (hexane-AcOEt $50: 50, \mathrm{R}_{\mathrm{f}}=0.35$) gave the lactone 26b as light yellow oil (10.2g, 96\%) diaA : diaB = $55: 45 ; v_{\text {max }} 1768,1248,1020 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 20.84$ (diaA); 21.09 (diaB); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA); $1.35\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA); $1.39\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaB}\right) ; 2.42 \div 2.61(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCHH}$, diaA $+\operatorname{diaB}) ; 2.78$ (dddd, ${ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$, diaA); 3.00 (dddd, ${ }^{3} J_{\mathrm{PH}}=$ $\left.17.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H, \operatorname{diaB}\right) ; 3.24\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=23.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.9.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}, \operatorname{diaB}\right) ; 3.32\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=23.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}\right.$, diaA); $4.21\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 4.22 \div 4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 5.43$ (dd, ${ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$, diaB); $5.72\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=9.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$, diaA); $7.35 \div 7.40\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{xCH} \mathrm{Ar}\right.$, diaA + diaB); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA + diaB); $30.10\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.5 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{diaA}\right) ; 30.15\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{diaB}\right) ; 40.01\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=145.1 \mathrm{~Hz}, C \mathrm{HP}\right.$, diaB); $40.02\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=152.1 \mathrm{~Hz}, C \mathrm{HP}\right.$, diaA); $62.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.6 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right.$, diaA); $62.86\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7\right.$ $\mathrm{Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaB); 63.26 (d, ${ }^{2} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaA); 63.53 (d, ${ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaB); 80.05 (d, $\left.{ }^{3} J_{\mathrm{PC}}=11.9 \mathrm{~Hz}, C \mathrm{HO}, \operatorname{diaA}\right) ; 80.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, C \mathrm{HO}, \mathrm{diaB}\right) ; 125.14\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}, \mathrm{diaB}\right) ; 125.52(\mathrm{~s}$, $2 \times C \mathrm{H}_{\mathrm{Ar}}$, diaA); 128.44 (s, $C \mathrm{H}_{\mathrm{Ar}}$, diaB); 128.53 (s, $C \mathrm{H}_{\mathrm{Ar}}$, diaA); 128.54 (s, $2 \times C \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaB}$); 128.59 (s, $\left.2 \times \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaA}\right) ; 138.17\left(\mathrm{~s}, C_{\mathrm{Ar}}, \operatorname{diaB}\right) ; 138.43\left(\mathrm{~s}, C_{\mathrm{Ar}}, \operatorname{diaA}\right) ; 170.99(\mathrm{~s}, C=\mathrm{O}, \operatorname{diaA}) ; 171.21\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.3\right.$ $\mathrm{Hz}, \mathrm{C}=\mathrm{O}, \operatorname{diaB}$). $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{P}$: requires C 56.38 , H 6.42 ; found $\mathrm{C} 56.51, \mathrm{H} 6.45$.

General procedure for the preparation of lactones 26 c-h.

To a stirred solution of alkylmagnesium bromide (15.0 mmol) in diethyl ether (15 ml) a solution of phosphonate 21, 24a or 24b (5.0 mmol) in diethyl ether (25 ml) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and stirred for 2.5 h . Then the reaction mixture was acidified to pH 1 with 3 N HCl and extracted with methylene chloride (4 x 15 ml). The combined organic layers were washed with water $(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product, which was purified by column chromatography.

5-Butyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26c).

Purification (AcOEt, $\mathrm{R}_{\mathrm{f}}=0.36$) gave the lactone 26c as light yellow oil ($0,97 \mathrm{~g}, 70 \%$) diaA : diaB $=56$: 44; $v_{\text {max }} 1748,1248,1040 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 21.22$ (diaA); 21.03 (diaB); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.92\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}, diaA + diaB); 1.36 (td, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA +diaB); $1.24 \div 1.40(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{xCH}$, diaA +diaB); $1.50 \div 1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, diaA +diaB$) ; 2.05 \div 2.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}, \mathrm{diaA}+\operatorname{diaB})$; 2.59 (dddd, ${ }^{3} J_{\mathrm{PH}}=19.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$, diaA); 2.70 (dddd, ${ }^{3} J_{\mathrm{PH}}$ $\left.=19.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H, \operatorname{diaB}\right) ; 3.12\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=23.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}$, diaA +diaB$) ; 4.08 \div 4.30\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH} \mathrm{C}_{2} \mathrm{OP}\right.$, diaA +diaB$) ; 4.38 \div 4.48$ (m, $1 \mathrm{H}, \mathrm{CH}, \operatorname{diaB}$); $4.62 \div 4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \operatorname{diaA}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.57\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 16.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $=5.9 \mathrm{~Hz}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA $\left.+\operatorname{diaB}\right) ; 22.08\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 26.97\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 30.23(\mathrm{~d}$, ${ }^{2} J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, C \mathrm{H}_{2}$, diaB); $30.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.9 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{diaA}\right) ; 34.77\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaB); $34.82\left(\mathrm{~s}, C \mathrm{H}_{2}, \operatorname{diaA}\right)$; $39.58\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=151.3 \mathrm{~Hz}, C \mathrm{HP}, \mathrm{diaB}\right) ; 39.85\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=138.6 \mathrm{~Hz}, C \mathrm{HP}, \operatorname{diaA}\right) ; 62.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}\right.$, $C \mathrm{H}_{2} \mathrm{OP}$, diaA); $62.66\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaB}\right) ; 63.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.8 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right.$, diaB); $63.25(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PC}}=7.0 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaA}\right) ; 79.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.8 \mathrm{~Hz}, C \mathrm{HO}, \operatorname{diaB}\right) ; 79.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, C \mathrm{HO}, \operatorname{diaA}\right)$; 171.20 (s, $C=\mathrm{O}$, diaA); 171.36 (d, ${ }^{2} J_{\mathrm{PC}}=4.3 \mathrm{~Hz}, C=\mathrm{O}$, diaB). $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$: requires C 51.79 , H 8.33; found C 51.99, H 8.36.

(5-Benzyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26d).

Purification ($\mathrm{AcOEt}, \mathrm{R}_{\mathrm{f}}=0.30$) gave the lactone $\mathbf{2 6 d}$ as colourless oil ($1.06 \mathrm{~g}, 68 \%$) diaA : diaB $=67$: 33; $v_{\max } 1760$, 1248, 1032; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 20.95(\mathrm{diaA}) ; 20.70(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=\right.$ $0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); $1.36\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA); $1.38\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaB}\right) ; 1.39\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaB}\right) ; 2.39 \div 2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}$, diaA + diaB); 2.49 (dddd, ${ }^{3} J_{\mathrm{PH}}=16.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=10.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$, diaA + diaB); 2.58 (dddd, ${ }^{3} J_{\mathrm{PH}}=17.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{P}, \mathrm{diaA}$); $2.90 \div$ 3.37 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$, diaA + diaB, CHP, diaB); $4.18\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OP}\right.$, diaA + diaB); $4.20\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA +diaB$) ; 4.60 \div 4.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{diaB}) ; 4.87 \div 4.97(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$, diaA $) ; 7.21 \div 7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$, diaA $\left.+\operatorname{diaB}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.07\left(\mathrm{~s}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right)$; $29.40\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 38.21\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaB); $38.48\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA); $39.47\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=\right.$ $158.4 \mathrm{~Hz}, C \mathrm{HP}, \operatorname{diaB}$); $39.61\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=141.6 \mathrm{~Hz}, C \mathrm{HP}, \operatorname{diaA}\right) ; 62.72\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}, 2 \mathrm{xCH} \mathrm{H}_{2} \mathrm{OP}\right.$, diaB$)$; 63.22 (d, ${ }^{2} J_{\mathrm{PC}}=6.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{2} \mathrm{OP}$, diaA); $79.42(\mathrm{~s}, C \mathrm{HO}, \operatorname{diaB}) ; 79.58\left(\mathrm{~s}, \mathrm{CHO}\right.$, diaA); $126.68\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaB); 126.78 (s, $2 \times$ CH $_{\mathrm{Ar}}$, diaA); 128.30 (s, $C \mathrm{H}_{\mathrm{Ar}}$, diaB); 128.39 (s, $C \mathrm{H}_{\mathrm{Ar}}$, diaA); 129.11 (s, $2 \times C \mathrm{H}_{\mathrm{Ar}}$, diaB); 129.19 (s, $2 \times \mathrm{CH}_{\mathrm{Ar}}$, diaA); 135.14 (s, C_{Ar}, diaB); 135.48 (s, $C_{\mathrm{Ar}}, \operatorname{diaA}$); 171.00 (s, $C=\mathrm{O}$, diaA); 171.16 (d, $\left.{ }^{2} J_{\mathrm{PC}}=4.1 \mathrm{~Hz}, C=\mathrm{O}, \operatorname{diaB}\right) . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P}$: requires C 57.69, H 6.78; found C 57.45, H 6.80.

(5-Butyl-3-methyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26e).

Purification (AcOEt, $\mathrm{R}_{\mathrm{f}}=0.25$) gave the lactone 26e as colourless oil ($0.99 \mathrm{~g}, 68 \%$) diaA : diaB $=67$: 33; $v_{\max } 1748,1224,1032 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 24.30(\mathrm{diaA}) ; 24.12(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $\operatorname{diaA}+\operatorname{diaB}) ; 1.30\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 1.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $1.24 \div 1.48\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right.$, diaA + diaB); $1.52\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HP}}=18.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.54 \div 1.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{diaA}+\mathrm{diaB}) ; 2.23\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=22.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right.$, $\operatorname{diaA}+\operatorname{diaB}) ; 3.40\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=17.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right.$, diaA + diaB); 4.10 (dq, $\left.{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H O P, \operatorname{diaA}+\mathrm{diaB}\right) ; 4.11\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H O P, \operatorname{diaA}+\mathrm{diaB}\right)$; $4.14\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{OP}_{2}\right.$, diaA + diaB $) ; 4.52 \div 4.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}$, diaA $+\operatorname{diaB}) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 12.85\left(\mathrm{~s}, C \mathrm{H}_{3}, \operatorname{diaA}+\operatorname{diaB}\right) ; 15.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 15.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=\right.$ $6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $18.21\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=12.2 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 21.00\left(\mathrm{~s}, C \mathrm{H}_{2}, \operatorname{diaA}+\operatorname{diaB}\right) ; 26.14$ (s, $C \mathrm{H}_{2}$, diaA + diaB); 34.19 (s, $C \mathrm{H}_{2}$, diaA +diaB); 38.75 (d, ${ }^{2} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{2}$, diaA +diaB); $52.42\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}\right.$ $=140.2 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaA}+\operatorname{diaB}) ; 62.24\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.5 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 63.27\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.6 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right) ; 77.99(\mathrm{~s}, C \mathrm{HO}, \operatorname{diaA}+\operatorname{diaB}) ; 171.48\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.7 \mathrm{~Hz}, C \mathrm{HO}, \operatorname{diaA}+\operatorname{diaB}\right)$. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}$: requires C 53.42, H 8.62; found C 53.65, H 8.60.

5-Benzyl-3-methyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26f).

Purification (AcOEt, $\mathrm{R}_{\mathrm{f}}=0.42$) gave the lactone $\mathbf{2 6 f}$ as colourless oil $(0.99 \mathrm{~g}, 68 \%)$ diaA : diaB $=90: 10$; $v_{\text {max }} 1764,1224,1044 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 25.11(\mathrm{diaA}) ; 24.70(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.28\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $1.30\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA + diaB); $1.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=17.0 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, \operatorname{diaA}+\operatorname{diaB}\right) ; 2.50 \div 2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \operatorname{diaA}+\operatorname{diaB}) ; 2.78\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=18.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$, diaA $+\operatorname{diaB}$); $2.94 \div 3.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2, \operatorname{diaA}+\operatorname{diaB}) ; 4.09 \div 4.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CHO}$, $2 \mathrm{xCH} \mathrm{O}_{2} \mathrm{OP}$, diaA + diaB); $7.23 \div 7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH} \mathrm{Ar}\right.$, diaA +diaB); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.08\left(\mathrm{~s}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA $+\mathrm{diaB}) ; 18.04\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=8.5 \mathrm{~Hz}, C \mathrm{H}_{3}\right.$, diaA +diaB$) ; 36.87\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$, diaA + diaB); $38.96\left(\mathrm{~S}, \mathrm{CH}_{2}\right) ; 45.86(\mathrm{~d}$, ${ }^{1} J_{\mathrm{PC}}=132.1 \mathrm{~Hz}, C \mathrm{P}$, diaA +diaB$) ; 62.51\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.5 \mathrm{~Hz}, 2 \mathrm{xCH} \mathrm{H}_{2} \mathrm{OP}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 67.28(\mathrm{~s}, C \mathrm{HO}, \operatorname{diaA}+$ diaB); $126.57\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA $+\operatorname{diaB}$); $127.51\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA $+\operatorname{diaB}$); $128.01\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaA}+\operatorname{diaB}\right)$; 137.32 (s, $C_{\text {Ar }}$, diaA + diaB); 170.77 (s, $C=\mathrm{O}$, diaA $+\operatorname{diaB}$). $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}$: requires C 59.99, H 7.40; found C 60.15, H 7.36.

(5-Butyl-2-oxo-3-phenyltetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26g).

Purification (AcOEt, $\mathrm{R}_{\mathrm{f}}=0.29$) gave the lactone $\mathbf{2 6 g}$ as colourless oil ($0.99 \mathrm{~g}, 68 \%$) diaA : diaB $=80: 20$; $v_{\max } 1748,1224,1032 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 20.39$ (diaA); $20.52(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $\operatorname{diaA}+\operatorname{diaB}) ; 1.10\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right) ; 1.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $1.26 \div 1.48\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right.$, diaA +diaB); $1.54 \div 1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right.$, diaA + diaB); 2.38 (ddd, $\left.{ }^{3} J_{\mathrm{PH}}=22.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}, \operatorname{diaA}+\operatorname{diaB}\right) ; 3.40\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=\right.$ $\left.17.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H, \operatorname{diaA}+\operatorname{diaB}\right) ; 4.15\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHHOP, diaA + diaB); $4.16\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H O P, \operatorname{diaA}+\operatorname{diaB}\right) ; 4.20\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}={ }^{3} J_{\mathrm{HH}}=\right.$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $4.73\left(\mathrm{ddt},{ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}, \operatorname{diaA}+\right.$ diaB); $7.33 \div 7.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 7.77 \div 7.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}, \operatorname{diaA}+\operatorname{diaB}\right) ; \delta_{\mathrm{C}_{3}}\left(\mathrm{CDCl}_{3}\right) 12.85$ (s, $C \mathrm{H}_{3}$, diaA + diaB); $15.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA + diaB); $15.25\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.1 \mathrm{~Hz}\right.$, $C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $21.36\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA + diaB); $26.28\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA + diaB); $34.29\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA + diaB); $38.93\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.1 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 52.42\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=129.7 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaA}+\operatorname{diaB}\right) ; 62.81(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PC}}=7.5 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right) ; 63.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.6 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right) ; 76.68(\mathrm{~s}, C \mathrm{HO}, \operatorname{diaA}+$ $\operatorname{diaB}) ; 126.50\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA + diaB); $126.84\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA + diaB); $127.28\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.6 \mathrm{~Hz}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA + diaB); $134.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.3 \mathrm{~Hz}, C_{\mathrm{Ar}}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 171.48\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.2 \mathrm{~Hz}, C=\mathrm{O}, \operatorname{diaA}+\operatorname{diaB}\right)$. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}$: requires C 61.94, H 7.93; found C 61.75, H 7.96.

(5-Benzyl-2-oxo-3-phenyltetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26h).

Purification (AcOEt, $\mathrm{R}_{\mathrm{f}}=0.42$) gave the lactone 26 h as colourless oil $(1.50 \mathrm{~g}, 75 \%$) diaA : diaB $=92: 8$; $v_{\max } 1768,1224,1022 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 20.54(\mathrm{diaA}) ; 20.21(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.12\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=\right.$ $0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); $1.27\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA $+\operatorname{diaB}$); $2.68 \div 2.86$ (m, 1H, CHH, diaA + diaB); $2.88 \div 3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, diaA + diaB); $3.40\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=19.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.7\right.$ $\mathrm{Hz},{ }^{3} J_{\mathrm{HH}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$, diaA +diaB); $4.00 \div 4.22\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH} \mathrm{O}_{2} \mathrm{O}\right) \mathrm{P}$, diaA +diaB$) ; 4.60 \div 4.70(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHO}, \operatorname{diaA}+\operatorname{diaB}) ; 7.21 \div 7.71\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}, \operatorname{diaA}+\operatorname{diaB}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.19\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA + diaB); 15.29 (d, ${ }^{3} J_{\mathrm{PC}}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA $+\operatorname{diaB}$); 32.98 (s, $C \mathrm{H}_{2}$, diaA $+\operatorname{diaB}$); $38.25\left(\mathrm{~s}, C \mathrm{H}_{2}, \operatorname{diaA}+\operatorname{diaB}\right) ; 50.78\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=146.2 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaA}+\operatorname{diaB}\right) ; 63.07\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right.$, diaA + diaB); 63.41 (d, ${ }^{2} J_{\mathrm{PC}}=6.6 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaA $+\operatorname{diaB}$); 74.26 (s, CHO , diaA $+\operatorname{diaB}$); 126.48 (s, $\left.4 \times C \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaA}+\operatorname{diaB}\right) ; 126.94\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA +diaB$) ; 127.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, 4 \times \mathrm{CH}_{\mathrm{Ar}}, \mathrm{diaA}+\mathrm{diaB}\right)$; $134.11\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.6 \mathrm{~Hz}, 2 \times C_{\mathrm{Ar}}\right.$, diaA $+\operatorname{diaB}$); $171.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.2 \mathrm{~Hz}, C=\mathrm{O}\right.$, diaA $\left.+\operatorname{diaB}\right) . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}$: requires C 65.66, H 6.76; found C 65.81, H 6.80 .

General procedure for the preparation of lactones 26i-l.

A solution of lactone $\mathbf{2 6 b}, \mathbf{2 6}$, or $\mathbf{2 6 d}(0.01 \mathrm{~m})$ in tetrahydrofuran $(15 \mathrm{ml})$ was added dropwise at $-70^{\circ} \mathrm{C}$ to a stirred solution of LDA prepared from n-BuLi $(1.6 \mathrm{M}, 0.62 \mathrm{ml}, 0.01 \mathrm{~m})$ and diisopropyloamine $(1.06 \mathrm{ml}$, 0.01 m) in tetrahydrofuran (15 ml). The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then cooled to $70^{\circ} \mathrm{C}$. Alkyl bromide $(0.01 \mathrm{~m})$ in tetrahydrofuran $(10 \mathrm{ml})$ was added and stirring was continued for 1 h at $70^{\circ} \mathrm{C}$ and then for 20 h at room temperature. The reaction mixture was acidified to pH 1 with 3 N HCl solution and tetrahydrofuran was evaporated under reduced pressure. The residue was extracted with chloroform ($3 \times 20 \mathrm{ml}$). The combined organic layers were washed with saturated NaCl solution, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product, which was purified by column chromatography.

(3-Benzyl-5-butyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26i).

Purification (hexane-AcOEt 70:30, $\mathrm{R}_{\mathrm{f}}=0.20$) gave the lactone $\mathbf{2 6 i}$ as colourless oil $(1.44 \mathrm{~g}, 70 \%)$ diaA : diaB $=84: 16 ; v_{\max } 1724,1224,1042 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 24.22(\mathrm{diaA}) ; 23.96(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.82\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=\right.$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$, diaA); $0.82\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}, \operatorname{diaB}\right) ; 1.10 \div 1.23(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}, \mathrm{diaA}+\operatorname{diaB})$; $1.33\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaB); $1.36\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaB); 1.38 (td, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); $1.39\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, ${ }^{4} J_{\mathrm{PH}}=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); $1.54 \div 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2\right.$, diaA +diaB); 2.32 (ddd, ${ }^{3} J_{\mathrm{PH}}=24.2 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{HH}}=13.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \operatorname{diaA}\right) ; 2.37\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=13.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH} H$, diaA); $2.41 \div 2.48$ (m, $2 \mathrm{H}, \mathrm{CH}$, diaB); 2.95 (dd, ${ }^{2} J_{\mathrm{HH}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H, \operatorname{diaB}$); 2.97 (dd, ${ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$, diaA); $3.51\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C} H \mathrm{H}$, diaA); $3.60\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \mathrm{diaB}\right) ; 4.07 \div 4.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{2} \mathrm{OP}\right.$, diaA + diaB); $4.20 \div 4.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA + diaB); $4.38 \div 4.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}$, diaB); $7.22 \div 7.32(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Ar}}, \operatorname{diaA}+\operatorname{diaB}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.30\left(\mathrm{~s}, \mathrm{CH}_{3}, \operatorname{diaA}\right) ; 13.43\left(\mathrm{~s}, C \mathrm{H}_{3}, \operatorname{diaB}\right) ; 15.57\left(\mathrm{~s}, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaB$)$; 15.68 (s, $C_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaB); 15.93 (s, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); 16.02 (s, $C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); 21.69 (s, $C \mathrm{H}_{2}$, diaA); 21.78 (s, $C \mathrm{H}_{2}$, diaB); 26.46 (s, $C \mathrm{H}_{2}$, diaB); 26.51 ($\mathrm{s}, C \mathrm{H}_{2}$, diaA); 32.12 (d, ${ }^{2} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, C \mathrm{H}_{2}$, diaB); $33.68\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=1.9 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$, diaA); $34.27\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaB); $34.84\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaA); $36.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.75\right.$ $\mathrm{Hz}, C \mathrm{H}_{2}$, diaB); $38.04\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.95 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$, diaA); $50.62\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=145.7 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaA}\right) ; 51.02\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=\right.$ $134.2 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaB}$); 62.73 ($\mathrm{d},{ }^{2} J_{\mathrm{PC}}=7.1 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaA}$); 63.07 ($\mathrm{d},{ }^{2} J_{\mathrm{PC}}=7.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaB); 63.36 (d, ${ }^{2} J_{\mathrm{PC}}=7.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaA); $63.41\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \mathrm{diaB}\right) ; 77.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.0 \mathrm{~Hz}, C \mathrm{HO}\right.$, diaA); 78.03 (d, ${ }^{3} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}, C \mathrm{HO}$, diaB); $126.86\left(\mathrm{~s}, 2 \times \mathrm{H}_{\mathrm{Ar}}\right.$, diaB); $127.16\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA); 128.12 (s, $2 \times C \mathrm{H}_{\mathrm{Ar}}$, diaB $)$; $128.31\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA); $129.39\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right.$, diaB); $130.09\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaA}\right) ; 134.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=\right.$ $15.85 \mathrm{~Hz}, C_{\mathrm{Ar}}$, diaB); 134.87 (d, ${ }^{3} J_{\mathrm{PC}}=19.7 \mathrm{~Hz}, C_{\mathrm{Ar}}$, diaA); $173.92\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.3 \mathrm{~Hz}, C=\mathrm{O}, \operatorname{diaB}\right) ; 174.55$ (s, $C=\mathrm{O}$, diaA). $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}$: requires C 61.94, H 7.93; found C 62.10, H 7.96.
(3-Benzyl-2-oxo-5-phenyltetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26j).
Purification (hexane-AcOEt 70:30, $\mathrm{R}_{\mathrm{f}}=0.36$) gave the lactone $\mathbf{2 6 j}$ as light yellow oil ($1.45 \mathrm{~g}, 75 \%$) diaA : $\operatorname{diaB}=93: 7 ; v_{\text {max }} 1732,1240,1024 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 23.91$ (diaA); $23.52(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, only diaA) 1.36 (t , $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 1.39\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 2.67\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=\right.$ $20.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}$); 2.73 (ddd, ${ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}$); $3.04\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H\right) ; 3.60\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}\right) ; 3.98$ (dd, $\left.{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) ; 4.21 \div 4.34\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OP}\right) ; 7.11 \div 7.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}\right)$; $7.27 \div 7.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$, only diaA) $16.37\left(\mathrm{~s}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; 37.11\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ; 38.45\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$; $51.42\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=147.8 \mathrm{~Hz}, C \mathrm{P}\right) ; 63.22\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 62.86\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{OP}\right) ; 79.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=4.0 \mathrm{~Hz}, C \mathrm{HO}\right) ; 125.66$ (s, $2 \times C \mathrm{H}_{\mathrm{Ar}}$); $127.81\left(\mathrm{~s}, C \mathrm{H}_{\mathrm{Ar}}\right) ; 128.47\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 128.92\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 129.92\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right) ; 128.59(\mathrm{~s}$, $\left.C \mathrm{H}_{\mathrm{Ar}}\right) ; 135.13\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=15.6 \mathrm{~Hz}, C_{\mathrm{Ar}}\right) ; 139.01\left(\mathrm{~s}, C_{\mathrm{Ar}}\right) ; 174.93(\mathrm{~s}, C=\mathrm{O}) . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}$: requires C 64.94, H 6.49; found C 64.75, H 6.45.

[3-(3-Methylbut-2-enyl)-2-oxo-5-phenyltetrahydrofuran-3-yl]-phosphonic acid diethyl ester (26k).

Purification (hexane-AcOEt 80:20, $\mathrm{R}_{\mathrm{f}}=0.15$) gave the lactone $\mathbf{2 6 k}$ as colourless oil ($1.63 \mathrm{~g}, 89 \%$) diaA : diaB $=70: 30 ; v_{\max } 1760,1648,1248,1040 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 24.59(\mathrm{diaA}) ; 24.07(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}\right) ; 1.35\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}\right) ; 1.38\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaB}$); $1.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaB); $1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, diaA $\left.+\operatorname{diaB}\right) ; 1.80$ (s, 3H, CH_{3}, diaA + diaB); 2.27 (ddd, ${ }^{3} J_{\mathrm{PH}}=24.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=13.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$, diaA + diaB); $2.54 \div 3.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHH}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$, diaA $+\operatorname{diaB}$); $4.21\left(\mathrm{dq},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{xCH} \mathrm{H}_{2} \mathrm{OP}\right.$, diaB); 4.24 (dq, ${ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OP}$, diaA); $4.93 \div 5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}$, diaB); $5.04 \div 5.12(\mathrm{~m}, 1 \mathrm{H}$, CHO , diaA); $5.59\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=9.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$, diaA $+\operatorname{diaB}$); $7.31 \div 7.51\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C} H_{\mathrm{Ar}}\right.$, diaA $+\operatorname{diaB}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.20\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.8 \mathrm{~Hz}, 2 \mathrm{XCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaB); $16.25\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=5.8 \mathrm{~Hz}, 2 \mathrm{XCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA); 17.91 (s, $2 \mathrm{xCH}_{3}$, diaA + diaB); $25.67\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, diaB); $25.87\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, diaA); $30.11\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.4 \mathrm{~Hz}\right.$, $C \mathrm{H}_{2}$, diaB); 31.51 (d, ${ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, C \mathrm{H}_{2}$, diaA); $36.85\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=1.9 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$, diaB); $37.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=1.3\right.$ $\mathrm{Hz}, C \mathrm{H}_{2}$, diaA); 49.74 (d, $\left.{ }^{1} J_{\mathrm{PC}}=147.3 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaA}\right)$; $50.38\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=135.4 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaB}\right) ; 62.99\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=\right.$ $7.1 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaA); 63.15 (d, ${ }^{2} J_{\mathrm{PC}}=7.4 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaB}$); $63.35\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.8 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right.$, diaA); 63.65 (d, ${ }^{2} J_{\mathrm{PC}}=7.0 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}$, diaB); $78.96(\mathrm{~s}, C \mathrm{HO}, \operatorname{diaB}) ; 79.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.5 \mathrm{~Hz}, C \mathrm{HO}, \operatorname{diaA}\right) ; 116.72$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}=13.4 \mathrm{~Hz}, C \mathrm{H}\right) ; 117.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=12.5 \mathrm{~Hz}, C \mathrm{H}\right) ; 125.63\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaB}\right) ; 125.67\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaA); 128.37 (s, $C \mathrm{H}_{\mathrm{Ar}}$, diaA); 128.40 (s, $C \mathrm{H}_{\mathrm{Ar}}$, diaB); 128.50 (s, $2 \times C \mathrm{H}_{\mathrm{Ar}}, \operatorname{diaB}$); 128.55 (s, $2 \times C \mathrm{H}_{\mathrm{Ar}}$, diaA); 137.54 (s, C, diaA); $137.60(\mathrm{~s}, C, \operatorname{diaB}) ; 139.23\left(\mathrm{~s}, C_{\mathrm{Ar}}, \operatorname{diaB}\right) ; 139.30\left(\mathrm{~s}, C_{\mathrm{Ar}}, \operatorname{diaA}\right) ; 174.09\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.5\right.$ $\mathrm{Hz}, C=\mathrm{O}, \operatorname{diaB}$); 174.78 (s, $C=\mathrm{O}$, diaA). $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}$: requires C 62.29, H 7.43; found C 62.41, H 7.48.

(3-Allyl-5-benzyl-2-oxotetrahydrofuran-3-yl)-phosphonic acid diethyl ester (26l).

Purification ($\mathrm{AcOEt}, \mathrm{R}_{\mathrm{f}}=0.35$) gave the lactone 261 as colourless oil ($1.00 \mathrm{~g}, 79 \%$) diaA : diaB $=84: 16$; $v_{\text {max }} 1748,1664,1248,1044 ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 21.85(\mathrm{diaA}) ; 21.70(\mathrm{diaB}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.30\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, ${ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); 1.31 (td, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaA); 1.32 ($\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$, diaB); $1.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaB); $2.40 \div 2.53(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} H \mathrm{H}$, diaA + diaB); 2.54 (dddd, ${ }^{3} J_{\mathrm{PH}}=16.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} H \mathrm{H}$, diaA +diaB); 2.54 (ddd, ${ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=8.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$, diaA $+\operatorname{diaB}$); 2.57 (dd, $\left.{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H, \operatorname{diaB}\right) ; 2.60\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=12.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH} H, \operatorname{diaA}) ; 4.11\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}=7.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right) ; 4.12\left(\mathrm{dq},{ }^{3} J_{\mathrm{PH}}=7.0\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}, \operatorname{diaA}+\operatorname{diaB}\right) ; 4.54 \div 4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}, \operatorname{diaB}) ; 4.76 \div 4.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}$, diaA); $7.18 \div 7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$, diaA +diaB); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.12\left(\mathrm{~s}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, diaA +diaB); 31.56 (d, $\left.{ }^{2} J_{\mathrm{PC}}=2.3 \mathrm{~Hz}, C \mathrm{H}_{2}, \operatorname{diaA}\right) ; 32.00\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, C \mathrm{H}_{2}\right.$, diaA); $37.21\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$, diaB); $37.48\left(\mathrm{~s}, C \mathrm{H}_{2}, \operatorname{diaA}\right)$; $37.55\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.8 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ; 38.47\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=158.5 \mathrm{~Hz}, C \mathrm{P}, \operatorname{diaB}\right) ; 38.61\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=141.0 \mathrm{~Hz}, C \mathrm{P}, \mathrm{diaA}\right)$; $62.24\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.0 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}, \operatorname{diaB}\right) ; 62.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.8 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{OP}\right.$, diaA); $78.42(\mathrm{~s}, C \mathrm{HO}$, diaB); 78.50 (s, CHO, diaA); 126.24 (s, $2 \times$ H $_{\text {Ar }}$, diaB); 126.36 (s, $2 \times \mathrm{CH}_{\mathrm{Ar}}$, diaA); 128.30 (s, $\mathrm{CH}_{\mathrm{Ar}}$, diaB); 128.32 (s, $C H_{\mathrm{Ar}}$, diaA); $129.20\left(\mathrm{~s}, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right.$, diaB); 129.25 (s, $2 \times \mathrm{CH}_{\mathrm{Ar}}$, diaA); 135.14 (s, C_{Ar}, diaB); 135.21 (s, C_{Ar}, diaA); 171.02 (s, $C=O$, diaA); 171.16 (d, ${ }^{2} J_{\mathrm{PC}}=3.2 \mathrm{~Hz}, C=\mathrm{O}$, diaB). $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{P}$: requires C 59.98, H 9.23; found C 59.77, H 9.18.

