SUPPORTING INFORMATION

Metallo-Nucleosides: Synthesis and Biological Evaluation of Hexacarbonyl Dicobalt 5-Alkynyl-2'-Deoxyuridines †

Craig D. Sergeant,^{*a*} Ingo Ott,^{*,*b*} Adam Sniady,^{*a*} Srinivasarao Meneni,^{*a*} Ronald Gust,^{*b*} Arnold L. Rheingold,^{*c*} and Roman Dembinski^{*,*a*}

^a Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N.
Squirrel Rd., Rochester, Michigan 48309-4477, USA
E-mail: dembinsk@oakland.edu
^b Institute of Pharmacy, Free University of Berlin, Königin Luise Str. 2+4, 14195 Berlin, Germany
E-mail: ottingo@zedat.fu-berlin.de
^c Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla,
California 92093-0358, USA

Table of Contents:

Table S1. Comparison of ¹ H NMR shifts for compounds 8a-h	S2
Table S2. Comparison of ¹³ C NMR shifts for compounds 8a-h	S 3
¹ H NMR spectrum for 8a	S 4
¹³ C NMR spectrum for 8a	S5
¹ H NMR spectrum for 8b	S 6
¹³ C NMR spectrum for 8b	S 7
¹ H NMR spectrum for 8c	S 8
¹³ C NMR spectrum for 8c	S 9
¹ H NMR spectrum for 8e	S 10
¹³ C NMR spectrum for 8e	S11
¹ H NMR spectrum for 8f	S12
¹³ C NMR spectrum for 8f	S13
¹ H NMR spectrum for 8g	S14
¹³ C NMR spectrum for 8g	S15
¹ H NMR spectrum for 8h	S16
¹³ C NMR spectrum for 8h	S17
Comparison of R_f for pairs of nucleosides $7g/8g$ and $7h/8h$ with the use of HPLC	S18
Table S3. Crystal data and structure refinement for 8c	S 19
Figure S1. Packing diagrams for 8c	S20

Organic & Biomolecular Chemistry doi: 10.1039/b713371e

	N-3	9-H	H-1'	.S-HO	.е-но	Н-3'	H-4'	H-5'	Н-2'	Other signals
8a	10.28	8.37	6.39	4.53 ^a	4.43	4.32	4.04	3.82 ^a	2.30 ^a	3.09 (2H, H-1"), 1.71 (2H, H-2"), 1.06 (3H, H-3")
8b	10.27	8.35	6.39	4.53 ^a	4.43	4.31	4.03 ^a	3.77 ^a	2.29 ^a	2.51 ^a (1H, H-1"), 1.15 ^a and 0.80 ^a (4H, H-2", H-3")
8c	10.60	8.47	6.38	4.53	4.45	4.34	4.06 ^a	3.81 ^a	2.30 ^a	5.59 (<u>H</u> OC ₆ H ₁₀), 1.72 ^a (9H, <i>c</i> -C ₆ H ₁₀), 1.22 ^a (1H, <i>c</i> -C ₆ H ₁₀)
8d	10.32	8.43	6.43	4.52	4.43	4.24	4.04 ^a	3.75 ^a	2.32 ^a	7.53 (2H, <i>o</i> -C ₆ H ₄ CH ₃), 7.19 (2H, <i>m</i> -C ₆ H ₄ CH ₃), 2.32 (3H, CH ₃)
%	10.34	8.43	6.43	4.53 ^a	4.46	4.26	4.06 ^a	3.78 ^a	2.30 ^a	7.56 (2H, <i>o</i> -C ₆ H ₄), 7.22 (2H, <i>m</i> -C ₆ H ₄), 2.61 (2H, H-1"), 1.64 ^a (2H, H-2"), 1.34 ^a (4H, H-3", H-4"), 0.89 (3H, H-5")
8f	10.33	8.44	6.44	4.52 ^a	4.43	4.21 ^a	4.05 ^a	3.77 ^a	2.29 ^a	7.60 (2H, <i>o</i> -C ₆ H ₄ C(CH ₃) ₃), 7.44 (2H, <i>m</i> -C ₆ H ₄ C(CH ₃) ₃), 1.35 (9H, C(CH ₃) ₃)
8g	10.38	8.29	6.38	4.56 ^a	4.44	4.26	4.05	3.85 ^a	2.30 ^a	0.37 (9H, Si(CH ₃) ₃)
8h	10.25	8.57	6.35	4.53	4.44	4.36	4.02 ^a	3.84 ^a	2.29 ^a	6.71 (1H, C≡C-H)
a) cen	tter of the n	nultiplet.	Ranges giv	en in exper	rimental pa	ırt.				

Table S1. Comparison of ¹H NMR shifts for compounds **8a-h** (acetone- d_6).³⁶

	CO	C-4	C-2	C-6	C-5	dUC≡ <u>C</u>	C-4′	C-1′	dU <u>C</u> ≡C	C-3′	C-5'	C-2'	Other signals
8a	201.0	161.5	150.8	140.2	113.3	104.8	89.3	86.6	85.6	73.0	63.3	41.9	37.4 (C-1"), 26.0 (C-2"), 14.4 (C-3")
8b	200.8	161.3	150.8	139.6	113.2	109.2	89.2	86.4	85.0	73.0	63.2	41.8	16.3 (C-1"), 13.1 and 12.9 (C-2", C-3")
8c	200.8	162.9	150.3	142.2	113.1	112.6	89.4	86.7	84.4	73.0	63.1	42.0	73.2 (C-1"), 40.6 and 40.4 (C- 2"), 26.5 (C-4"), 23.9 and 22.8 (C-3")
8d	200.5	160.8	150.8	139.8	113.6	96.7	89.2 ^a	86.4 ^a	86.2	73.1	63.3	41.9	138.8 (<i>p</i> -C ₆ H ₄ CH ₃), 136.3 (<i>i</i> -C ₆ H ₄ CH ₃), 130.6 (<i>o</i> -C ₆ H ₄ CH ₃), 130.2 (<i>m</i> -C ₆ H ₄ CH ₃), 21.4 (CH ₃)
8e	200.6	160.8	150.8	143.8	113.6	96.7	89.2	86.4	86.2	73.1	63.2	41.8	139.8 (<i>p</i> -C ₆ H ₄), 136.5 (<i>i</i> -C ₆ H ₄), 130.6 (<i>o</i> -C ₆ H ₄), 129.5 (<i>m</i> -C ₆ H ₄), 36.4 (C-1"), 32.3 (C-3"), 31.8 (C- 2"), 23.2 (C-4"), 14.3 (C-5")
8f	200.5	160.9	151.0	139.8	113.6	96.5	89.2	86.4	86.2	73.1	63.3	41.9	151.8 (<i>p</i> -C ₆ H ₄), 136.3 (<i>i</i> -C ₆ H ₄), 130.4 (<i>o</i> -C ₆ H ₄), 126.5 (<i>m</i> -C ₆ H ₄), 35.3 <u>C</u> (CH ₃) ₃ , 31.5 C(<u>C</u> H ₃) ₃
8g	201.1	160.8	150.6	140.7	113.7	98.1	89.2	86.5	85.7	73.0	63.1	41.7	1.0 Si(CH ₃) ₃
8h	200.9	161.5	150.8	141.0	111.9	76.6	89.2	86.6	83.1	72.5	62.9	41.9	I
a) r	eversed a	ssignmen	t to that o	ne reporte	3d in ref. 3	32.							

Table S2. Comparison of 13 C NMR shifts for compounds **8a-h** (acetone- d_6).³⁶

¹H NMR spectrum for **8a** (acetone- d_6)

¹³C NMR spectrum for **8a** (acetone- d_6)

¹H NMR spectrum for **8b** (acetone- d_6)

¹³C NMR spectrum for **8b** (acetone- d_6)

¹H NMR spectrum for **8c** (acetone- d_6)

¹³C NMR spectrum for **8c** (acetone- d_6)

¹H NMR spectrum for **8e** (acetone- d_6)

¹³C NMR spectrum for **8e** (acetone- d_6)

¹H NMR spectrum for **8f** (acetone- d_6)

¹³C NMR spectrum for **8f** (acetone- d_6)

¹H NMR spectrum for **8g** (acetone- d_6)

¹³C NMR spectrum for **8g** (acetone- d_6)

¹H NMR spectrum for **8h** (acetone- d_6)

¹³C NMR spectrum for **8h** (acetone- d_6)

Comparison of R_f for pairs of nucleosides 7g/8g and 7h/8h with the use of HPLC.

Instrument: Kontron System 522 equipped with an autosampler (Kontron 565) and diode array detector (Kontron 540). Stationary phase: Eurospher 100-5 C18, 250 x 4 mm. Mobile phase: MeOH/H₂O 80:20. Mode: isocratic, flow rate: 0.8 mL/min.

Samples: Methanolic solutions of compounds were injected.

Compounds pair: 7g/8g

Compounds pair: 7h/8h

Empirical formula	C23 H22 Co2 N2 O12		
Formula weight	636.29		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 8.7674(9) Å	$\alpha = 90^{\circ}$	
	b = 9.3303(9) Å	$\beta = 90^{\circ}$	
	c = 31.529(3) Å	$\gamma=90^\circ$	
Volume	2579.1(4) Å ³		
Z	4		
Density (calculated)	1.639 g/cm ³		
Absorption coefficient	1.354 mm ⁻¹		
F(000)	1296		
Crystal size	0.11 x 0.06 x 0.04 mm ³		
Theta range for data collection	1.29 to 28.27°		
Index ranges	-11<=h<=11, -12<=k<=	12, -41<=l<=40	
Reflections collected	22063		
Independent reflections	5984 [R(int) = 0.0564]		
Completeness to theta = 25.00°	100.0 %		
Absorption correction	Multi-scan		
Refinement method	Full-matrix least-square	s on F ²	
Data / restraints / parameters	5984 / 0 / 355	5984 / 0 / 355	
Goodness-of-fit on F ²	1.026	1.026	
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0	760	
R indices (all data)	R1 = 0.0431, wR2 = 0.0	786	
Absolute structure parameter	0.010(12)		
Largest diff. peak and hole	0.804 and -0.276 e Å $^{\text{-3}}$		

 Table S3. Crystal data and structure refinement for 8c.

Figure S1. Packing diagrams for 8c.

