Three-component synthesis and anticancer evaluation of polycyclic indenopyridines lead to the discovery of a novel indenoheterocycle with potent apoptosis inducing properties

Madhuri Manpadi, Pavel Y. Uglinskii, Shiva K. Rastogi, Karen M. Cotter, Yin-Shan C. Wong, Lisa A. Anderson, Amber J. Ortega, Severine Van slambrouck, Wim F. A. Steelant, Snezna Rogelj, Paul Tongwa, Mikhail Yu. Antipin, Igor V. Magedov,^{*} and Alexander Kornienko^{*}

Departments of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA, E-mail: akornien@nmt.edu; Fax: +1 505 8355364; Tel: +1 505 8355884 Department of Organic Chemistry, Timiryazev Agriculture Academy, Moscow 127550, Russia, E-mail: ibs@timacad.ru Departments of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA Department of Natural Sciences, New Mexico Highlands University, Las Vegas, New Mexico 87701, USA Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Table of Contents

1.	X-ray Crystallographic Data for Compound 27	S2 – S11
2.	References	S11
3.	Characterization data for compounds $1 - 33$	S12 – S24
4.	Copies of ¹ H NMR spectra for compounds $1 - 33$	S25 – S57

X-ray Crystallographic Data for Compound 27.

X-ray structure determination. Details of the crystal data, data collection and structure refinement parameters for compound **27** presented in **Table 1**. Single crystal X-ray diffraction for **27** experiment was carried out with CCD area detector (graphite monochromated Mo K α radiation, $\lambda = 0.71073$ Å, ω -scans with a 0.3° step in ω and 10 s per frame exposure) at 250K. Semi-empirical method SADABS¹ was applied for absorption correction. The structure was solved by direct methods and refined by the full-matrix least-squares technique against F^2 with the anisotropic temperature parameters for all non-hydrogen atoms.

All H atoms (except H(1N1), H(1N2), H(2N2), H(1N5), H(2N5), H(1W) and H(2W), were geometrically placed (C—H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The H(1N1), H(1N2), H(2N2), H(1N5), H(2N5), H(1W) and H(2W) atoms were placed in idealized locations, then refined as riding with $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.2U_{eq}(O)$ respectively. Data reduction and further calculations were performed using SAINT+² and SHELXTL NT³ program packages.

X-ray structure of 27 (50% probability thermal ellipsoids).

Identification code	27
Empirical formula	C ₂₆ H ₁₇ N ₃ O ₃
Formula weight	419.43
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P bca
Unit cell dimensions	a = 11.3871(16) Å
	b = 18.131(3) Å
	c = 19.855(3) Å
Volume	4099.2(10) Å ³
Ζ	8
Density (calculated)	1.359 Mg/m ³
Absorption coefficient	0.091 mm ⁻¹
F(000)	1744
Crystal size	0.50 x 0.30 x 0.20 mm ³
Theta range for data collection	2.05 to 29.00°.
Index ranges	-15<=h<=15, -24<=k<=24, -27<=l<=27
Reflections collected	69722
Independent reflections	5418 [R(int) = 0.0911]
Completeness to theta = 29.00°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9720 and 0.9459
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5418 / 0 / 353
Goodness-of-fit on F ²	0.998
Final R indices [I>2sigma(I)]	R1 = 0.0448, wR2 = 0.0893
R indices (all data)	R1 = 0.0849, wR2 = 0.1028
Largest diff. peak and hole	0.466 and -0.522 e.Å ⁻³

Table 1. Crystal data and structure refinement for 27.

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **27**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom

у

Ζ

U(eq)

0(1)	-985(1)	1640(1)	3245(1)	29(1)	
O(2)	3188(1)	1752(1)	5109(1)	31(1)	
O(3)	2859(1)	-243(1)	2517(1)	32(1)	
N(1)	5729(1)	-510(1)	3049(1)	22(1)	
N(2)	6052(1)	198(1)	4037(1)	21(1)	
N(3)	4815(1)	-570(1)	2577(1)	22(1)	
C(1)	4177(2)	-1086(1)	1512(1)	27(1)	
C(2)	4159(2)	-1664(1)	1054(1)	32(1)	
C(3)	4815(2)	-2296(1)	1174(1)	32(1)	
C(4)	5490(2)	-2354(1)	1750(1)	29(1)	
C(5)	5503(2)	-1784(1)	2219(1)	25(1)	
C(6)	4840(1)	-1154(1)	2099(1)	21(1)	
C(9)	3826(1)	-197(1)	2795(1)	23(1)	
C(11)	5360(1)	-21(1)	3523(1)	20(1)	
C(12)	4292(1)	877(1)	4408(1)	20(1)	
C(13)	4194(1)	197(1)	3400(1)	20(1)	
C(15)	3604(1)	666(1)	3856(1)	20(1)	
C(16)	2385(1)	916(1)	3724(1)	21(1)	
C(17)	2083(1)	1158(1)	3077(1)	23(1)	
C(18)	952(2)	1394(1)	2936(1)	24(1)	
C(19)	95(1)	1379(1)	3437(1)	24(1)	
C(21)	-1918(2)	1608(1)	3734(1)	34(1)	
C(22)	375(2)	1132(1)	4082(1)	24(1)	
C(23)	1521(2)	909(1)	4221(1)	23(1)	
C(24)	5481(1)	639(1)	4459(1)	20(1)	
C(25)	6026(1)	974(1)	5060(1)	21(1)	
C(26)	5194(1)	1423(1)	5376(1)	22(1)	
C(27)	4072(2)	1395(1)	4984(1)	23(1)	
C(29)	7152(2)	900(1)	5322(1)	25(1)	
C(30)	7422(2)	1285(1)	5908(1)	29(1)	
C(31)	6595(2)	1734(1)	6223(1)	30(1)	
C(32)	5461(2)	1809(1)	5958(1)	26(1)	

O(1)-C(19)	1.3716(19)		
O(1)-C(21)	1.440(2)	C(18)-H(18A)	1.001(17)
O(2)-C(27)	1.2211(19)	C(19)-C(22)	1.393(2)
O(3)-C(9)	1.2351(19)	C(21)-H(21A)	0.96(2)
N(1)-C(11)	1.3596(19)	C(21)-H(21B)	1.01(2)
N(1)-N(3)	1.4048(18)	C(21)-H(21C)	1.03(2)
N(1)-H(1AA)	0.8800	C(22)-C(23)	1.394(2)
N(2)-C(24)	1.329(2)	C(22)-H(22A)	0.954(18)
N(2)-C(11)	1.3491(19)	C(23)-H(23A)	0.995(16)
N(3)-C(9)	1.383(2)	C(24)-C(25)	1.476(2)
N(3)-C(6)	1.423(2)	C(25)-C(29)	1.389(2)
C(1)-C(2)	1.389(2)	C(25)-C(26)	1.398(2)
C(1)-C(6)	1.393(2)	C(26)-C(32)	1.385(2)
C(1)-H(1A)	0.937(19)	C(26)-C(27)	1.496(2)
C(2)-C(3)	1.388(3)	C(29)-C(30)	1.391(2)
C(2)-H(2A)	0.96(2)	C(29)-H(29A)	0.987(18)
C(3)-C(4)	1.382(3)	C(30)-C(31)	1.394(3)
C(3)-H(3A)	1.003(19)	C(30)-H(30A)	0.935(19)
C(4)-C(5)	1.391(2)	C(31)-C(32)	1.400(3)
C(4)-H(4A)	0.984(19)	C(31)-H(31A)	0.954(19)
C(5)-C(6)	1.390(2)	C(32)-H(32A)	0.966(18)
C(5)-H(5A)	0.936(19)		
C(9)-C(13)	1.459(2)	C(19)-O(1)-C(21)	117.44(14)
C(11)-C(13)	1.407(2)	C(11)-N(1)-N(3)	106.42(12)
C(12)-C(15)	1.400(2)	C(11)-N(1)-H(1AA)	126.8
C(12)-C(24)	1.426(2)	N(3)-N(1)-H(1AA)	126.8
C(12)-C(27)	1.501(2)	C(24)-N(2)-C(11)	111.63(14)
C(13)-C(15)	1.412(2)	C(9)-N(3)-N(1)	110.90(12)
C(15)-C(16)	1.484(2)	C(9)-N(3)-C(6)	126.12(13)
C(16)-C(23)	1.394(2)	N(1)-N(3)-C(6)	119.20(13)
C(16)-C(17)	1.400(2)	C(2)-C(1)-C(6)	119.30(17)
C(17)-C(18)	1.386(2)	C(2)-C(1)-H(1A)	118.6(11)
C(17)-H(17A)	1.015(16)	C(6)-C(1)-H(1A)	122.0(11)
C(18)-C(19)	1.393(2)	C(3)-C(2)-C(1)	120.12(17)

Table 3. Bond lengths [Å] and angles $[\circ]$ for 27.

C(3)-C(2)-H(2A)	120.2(12)	C(17)-C(18)-H(18A)	118.3(10)
C(1)-C(2)-H(2A)	119.7(12)	C(19)-C(18)-H(18A)	121.5(10)
C(4)-C(3)-C(2)	120.30(16)	O(1)-C(19)-C(18)	115.08(14)
C(4)-C(3)-H(3A)	121.1(11)	O(1)-C(19)-C(22)	124.78(15)
C(2)-C(3)-H(3A)	118.6(11)	C(18)-C(19)-C(22)	120.12(15)
C(3)-C(4)-C(5)	120.19(17)	O(1)-C(21)-H(21A)	103.0(14)
C(3)-C(4)-H(4A)	120.0(10)	O(1)-C(21)-H(21B)	111.3(11)
C(5)-C(4)-H(4A)	119.8(10)	H(21A)-C(21)-H(21B)	114.0(18)
C(6)-C(5)-C(4)	119.36(16)	O(1)-C(21)-H(21C)	112.4(12)
C(6)-C(5)-H(5A)	118.9(12)	H(21A)-C(21)-H(21C)	104.5(18)
C(4)-C(5)-H(5A)	121.5(12)	H(21B)-C(21)-H(21C)	111.2(16)
C(5)-C(6)-C(1)	120.70(15)	C(19)-C(22)-C(23)	119.31(15)
C(5)-C(6)-N(3)	120.54(14)	C(19)-C(22)-H(22A)	122.0(11)
C(1)-C(6)-N(3)	118.75(15)	C(23)-C(22)-H(22A)	118.6(11)
O(3)-C(9)-N(3)	123.55(15)	C(22)-C(23)-C(16)	121.21(15)
O(3)-C(9)-C(13)	131.12(15)	C(22)-C(23)-H(23A)	119.7(10)
N(3)-C(9)-C(13)	105.28(13)	C(16)-C(23)-H(23A)	119.1(10)
N(2)-C(11)-N(1)	122.31(14)	N(2)-C(24)-C(12)	127.05(14)
N(2)-C(11)-C(13)	126.87(14)	N(2)-C(24)-C(25)	123.56(14)
N(1)-C(11)-C(13)	110.81(13)	C(12)-C(24)-C(25)	109.38(13)
C(15)-C(12)-C(24)	120.24(14)	C(29)-C(25)-C(26)	120.91(15)
C(15)-C(12)-C(27)	132.43(15)	C(29)-C(25)-C(24)	130.56(15)
C(24)-C(12)-C(27)	107.09(13)	C(26)-C(25)-C(24)	108.53(14)
C(11)-C(13)-C(15)	120.47(14)	C(32)-C(26)-C(25)	121.30(16)
C(11)-C(13)-C(9)	106.03(14)	C(32)-C(26)-C(27)	129.69(16)
C(15)-C(13)-C(9)	133.34(14)	C(25)-C(26)-C(27)	109.01(13)
C(12)-C(15)-C(13)	113.65(14)	O(2)-C(27)-C(26)	125.47(15)
C(12)-C(15)-C(16)	125.31(14)	O(2)-C(27)-C(12)	128.51(15)
C(13)-C(15)-C(16)	121.01(14)	C(26)-C(27)-C(12)	105.97(13)
C(23)-C(16)-C(17)	118.60(15)	C(25)-C(29)-C(30)	117.97(16)
C(23)-C(16)-C(15)	122.19(14)	C(25)-C(29)-H(29A)	120.5(10)
C(17)-C(16)-C(15)	119.21(14)	C(30)-C(29)-H(29A)	121.6(10)
C(18)-C(17)-C(16)	120.65(15)	C(29)-C(30)-C(31)	121.21(17)
С(18)-С(17)-Н(17А)	118.8(9)	C(29)-C(30)-H(30A)	121.5(11)
С(16)-С(17)-Н(17А)	120.5(9)	C(31)-C(30)-H(30A)	117.2(11)
C(17)-C(18)-C(19)	120.10(15)	C(30)-C(31)-C(32)	120.81(16)

C(30)-C(31)-H(31A)	119.8(11)	C(26)-C(32)-H(32A)	120.5(10)
C(32)-C(31)-H(31A)	119.3(11)	C(31)-C(32)-H(32A)	121.7(10)
C(26)-C(32)-C(31)	117.79(16)		

Symmetry transformations used to generate equivalent atoms.

Table 4. Anisotropic displacement parameters (Å²x 10³)for paul12. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^{*}b^{*}U^{12}]$

Atom	U11	U ²²	U33	U23	U13	U12	
O(1)	17(1)	39(1)	31(1)	3(1)	0(1)	5(1)	
O(2)	23(1)	36(1)	34(1)	-10(1)	2(1)	3(1)	
O(3)	19(1)	41(1)	36(1)	-13(1)	-10(1)	4(1)	
N(1)	14(1)	29(1)	22(1)	-5(1)	-3(1)	3(1)	
N(2)	19(1)	25(1)	20(1)	-1(1)	-1(1)	-2(1)	
N(3)	16(1)	29(1)	21(1)	-4(1)	-2(1)	0(1)	
C(1)	25(1)	31(1)	25(1)	-3(1)	-2(1)	2(1)	
C(2)	28(1)	41(1)	28(1)	-9(1)	-4(1)	-1(1)	
C(3)	31(1)	31(1)	33(1)	-12(1)	6(1)	-6(1)	
C(4)	28(1)	24(1)	33(1)	0(1)	9(1)	-1(1)	
C(5)	22(1)	30(1)	22(1)	2(1)	3(1)	-1(1)	
C(6)	17(1)	25(1)	21(1)	-1(1)	2(1)	-3(1)	
C(9)	18(1)	27(1)	24(1)	-1(1)	0(1)	1(1)	
C(11)	17(1)	23(1)	20(1)	1(1)	2(1)	-2(1)	
C(12)	18(1)	22(1)	20(1)	1(1)	2(1)	0(1)	
C(13)	16(1)	24(1)	21(1)	0(1)	0(1)	-2(1)	
C(15)	18(1)	22(1)	21(1)	2(1)	1(1)	-2(1)	
C(16)	18(1)	20(1)	24(1)	-2(1)	0(1)	-1(1)	
C(17)	20(1)	26(1)	22(1)	-2(1)	2(1)	0(1)	
C(18)	23(1)	27(1)	22(1)	1(1)	0(1)	1(1)	
C(19)	17(1)	26(1)	28(1)	-1(1)	-2(1)	2(1)	
C(21)	18(1)	45(1)	39(1)	3(1)	4(1)	4(1)	
C(22)	19(1)	29(1)	24(1)	0(1)	5(1)	1(1)	
C(23)	22(1)	26(1)	20(1)	0(1)	1(1)	1(1)	

C(24)	19(1)	21(1)	19(1)	2(1)	1(1)	-2(1)
C(25)	22(1)	22(1)	20(1)	2(1)	0(1)	-3(1)
C(26)	23(1)	22(1)	22(1)	2(1)	0(1)	-5(1)
C(27)	21(1)	24(1)	23(1)	0(1)	3(1)	-2(1)
C(29)	24(1)	25(1)	24(1)	0(1)	-2(1)	-3(1)
C(30)	27(1)	32(1)	27(1)	1(1)	-8(1)	-4(1)
C(31)	35(1)	31(1)	24(1)	-7(1)	-4(1)	-7(1)
C(32)	29(1)	25(1)	25(1)	-3(1)	2(1)	-3(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **27**.

Atom	Х	у	Z	U(eq)	
	6407	742	2040	26	
$\Pi(IAA)$	0407	-743	1400(0)	20(5)	
П(1А)	5762(10)	-034(11)	1409(9)	30(3)	
H(2A)	3712(18)	-1617(11)	645(11)	44(6)	
H(3A)	4797(16)	-2702(10)	831(9)	33(5)	
H(4A)	5945(16)	-2806(10)	1836(9)	29(5)	
H(5A)	5905(17)	-1828(10)	2628(9)	33(5)	
H(17A)	2684(15)	1148(9)	2699(8)	19(4)	
H(18A)	783(15)	1595(9)	2477(9)	24(4)	
H(21A)	-2560(20)	1844(13)	3507(11)	58(7)	
H(21B)	-2086(17)	1083(12)	3875(9)	39(6)	
H(21C)	-1755(18)	1940(12)	4148(11)	45(6)	
H(22A)	-189(16)	1125(10)	4437(9)	29(5)	
H(23A)	1731(14)	747(9)	4684(8)	21(4)	
H(29A)	7737(16)	587(9)	5093(8)	24(5)	
H(30A)	8158(17)	1242(10)	6114(9)	27(5)	
H(31A)	6807(16)	2005(10)	6616(9)	31(5)	
H(32A)	4886(16)	2129(10)	6165(9)	25(5)	

Table 6. Torsion angles [°] for **27**.

C(11)-N(1)-N(3)-C(9) -7.58(17)	C(11)-C(13)-C(15)-C(12) 0.4(2)
C(11)-N(1)-N(3)-C(6) -167.02(13)	C(9)-C(13)-C(15)-C(12) 175.01(17)
C(6)-C(1)-C(2)-C(3) -1.3(3)	C(11)-C(13)-C(15)-C(16)178.28(14)
C(1)-C(2)-C(3)-C(4) -0.1(3)	C(9)-C(13)-C(15)-C(16) -7.1(3)
C(2)-C(3)-C(4)-C(5) 1.0(3)	C(12)-C(15)-C(16)-C(23) -47.7(2)
C(3)-C(4)-C(5)-C(6) -0.6(2)	C(13)-C(15)-C(16)-C(23)134.64(17)
C(4)-C(5)-C(6)-C(1) -0.8(2)	C(12)-C(15)-C(16)-C(17)133.19(17)
C(4)-C(5)-C(6)-N(3) 178.52(15)	C(13)-C(15)-C(16)-C(17) -44.5(2)
C(2)-C(1)-C(6)-C(5) 1.7(3)	C(23)-C(16)-C(17)-C(18) 0.7(2)
C(2)-C(1)-C(6)-N(3) -177.56(16)	C(15)-C(16)-C(17)-C(18)179.88(15)
C(9)-N(3)-C(6)-C(5) -134.90(17)	C(16)-C(17)-C(18)-C(19) -1.2(2)
N(1)-N(3)-C(6)-C(5) 21.1(2)	C(21)-O(1)-C(19)-C(18) 177.39(16)
C(9)-N(3)-C(6)-C(1) 44.4(2)	C(21)-O(1)-C(19)-C(22) -4.5(2)
N(1)-N(3)-C(6)-C(1) -159.58(15)	C(17)-C(18)-C(19)-O(1) 178.65(15)
N(1)-N(3)-C(9)-O(3) -170.34(15)	C(17)-C(18)-C(19)-C(22) 0.4(3)
C(6)-N(3)-C(9)-O(3) -12.6(3)	O(1)-C(19)-C(22)-C(23)-177.31(15)
N(1)-N(3)-C(9)-C(13) 7.35(18)	C(18)-C(19)-C(22)-C(23) 0.7(3)
C(6)-N(3)-C(9)-C(13) 165.05(14)	C(19)-C(22)-C(23)-C(16) -1.2(3)
C(24)-N(2)-C(11)-N(1) -175.86(14)	C(17)-C(16)-C(23)-C(22) 0.4(2)
C(24)-N(2)-C(11)-C(13) 2.8(2)	C(15)-C(16)-C(23)-C(22)-178.68(15)
N(3)-N(1)-C(11)-N(2) -176.53(14)	C(11)-N(2)-C(24)-C(12) -0.2(2)
N(3)-N(1)-C(11)-C(13) 4.59(17)	C(11)-N(2)-C(24)-C(25)-178.68(14)
N(2)-C(11)-C(13)-C(15) -3.1(2)	C(15)-C(12)-C(24)-N(2) -2.2(2)
N(1)-C(11)-C(13)-C(15) 175.76(14)	C(27)-C(12)-C(24)-N(2)-177.31(15)
N(2)-C(11)-C(13)-C(9) -179.01(15)	C(15)-C(12)-C(24)-C(25)176.44(14)
N(1)-C(11)-C(13)-C(9) -0.19(18)	C(27)-C(12)-C(24)-C(25) 1.35(17)
O(3)-C(9)-C(13)-C(11) 173.12(18)	N(2)-C(24)-C(25)-C(29) -2.2(3)
N(3)-C(9)-C(13)-C(11) -4.33(17)	C(12)-C(24)-C(25)-C(29)179.13(16)
O(3)-C(9)-C(13)-C(15) -2.1(3)	N(2)-C(24)-C(25)-C(26) 177.97(14)
N(3)-C(9)-C(13)-C(15) -179.53(17)	C(12)-C(24)-C(25)-C(26)-0.74(17)
C(24)-C(12)-C(15)-C(13) 1.9(2)	C(29)-C(25)-C(26)-C(32) 0.0(2)
C(27)-C(12)-C(15)-C(13)175.58(16)	C(24)-C(25)-C(26)-C(32)179.86(14)
C(24)-C(12)-C(15)-C(16)-175.88(14)	C(29)-C(25)-C(26)-C(27)179.92(14)
C(27)-C(12)-C(15)-C(16) -2.2(3)	C(24)-C(25)-C(26)-C(27)-0.19(17)

Symmetry transformations used to generate equivalent atoms.

Table 7. Hydrogen bonds in 27.

D-H	d(D-H) d(HA)	<dha< th=""><th>d(DA)</th><th>А</th></dha<>	d(DA)	А
N1-H1AA	0.880 2.186	118.32	2.716	O3 [x+1/2, y, -z+1/2]

References

- 1. Sheldrick G.M. SADABS v.2.03, Bruker/Siemens Area Detector Absorption Correction Program, (2003) Bruker AXS, Madison, Wisconsin, USA.
- SAINTP+ for NT. Data Reduction and Correction Program v. 6.2, (2001) Bruker AXS, Madison, Wisconsin, USA.
- 3. Sheldrick G.M. SHELXTL NT v. 6.12, Structure Determination Software Suite, (2001) Bruker AXS, Madison, Wisconsin, USA.

Characterization Data

4-phenyl-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (1): 60%; ¹H NMR (DMSO-***d***₆) \delta 7.86 (d, 1H,** *J* **= 7.4 Hz, Ind-***H***), 7.71 (t, 1H,** *J* **= 7.1 Hz, Ind-***H***), 7.58 - 7.44 (m, 7H); ¹³C NMR \delta 189.3, 165.5, 157.1, 154.1, 146.8, 141.9, 137.4, 135.3, 132.0, 131.0, 130.6, 129.5, 127.5, 123.4, 121.2, 117.7, 102.5; HRMS** *m***/***z* **(ESI) calcd for C₁₉H₁₁N₃NaO₂ (M + Na)⁺ 336.0749, found 336.0744.**

4-(3,5-dioxo-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-4-yl)benzonitrile (2): 55%; ¹H NMR (DMSO-***d***₆) \delta 7.94 (d, 2H,** *J* **= 8.0 Hz, Ar-***H***), 7.84 (d, 1H,** *J* **= 7.1 Hz, Ind-***H***), 7.74 (d, 2H,** *J* **= 8.0 Hz, Ar-***H***), 7.69 (t, 1H,** *J* **= 7.3 Hz, Ind-***H***), 7.59 - 7.46 (m, 2H, Ind-***H***); ¹³C NMR \delta 189.3, 165.4, 156.9, 154.4, 144.2, 142.1, 137.3, 137.2, 135.6, 132.4, 131.5, 123.7, 121.4, 119.3, 117.9, 112.1, 102.2; HRMS** *m***/***z* **(ESI) calcd for C₂₀H₁₀N₆NaO₂ (M + Na)⁺ 361.0701, found 361.0699.**

4-(4-(trifluoromethyl)phenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5dione (3): 65%; ¹H NMR (DMSO-***d***₆) \delta 7.88 - 7.76 (m, 5H), 7.70 (t, 1H,** *J* **= 7.1 Hz, Ind-***H***), 7.58 - 7.51 (m, 2H); ¹³C NMR \delta 189.4, 165.5, 157.0, 154.5, 144.6, 142.1, 137.4, 136.4, 135.6, 132.3, 131.3, 129.9, 124.5, 123.6, 121.4, 117.9, 102.3; HRMS** *m***/***z* **(ESI) calcd for C₂₀H₁₀F₃N₃NaO₂ (M + Na)⁺ 404.0623, found 404.0615.**

4-(3-hydroxyphenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (4)**: 64%; ¹H NMR (DMSO-*d*₆) δ 9.44 (s, 1H, OH), 7.86 (d, 1H, J = 7.4 Hz, V), 7.68 (t, 1H, J = 6.6 Hz, Ind-*H*), 7.54 (m, 2H), 7.21 (t, 1H, J = 7.7 Hz, Ar-*H*), 6.86 (m, 3H); ¹³C NMR δ 189.3, 165.5, 157.1, 156.7, 154.9, 157.0, 142.0, 137.4, 135.4, 133.4, 132.2, 128.5, 123.5, 121.3, 121.1, 117.8, 117.3, 116.4, 102.5; HRMS *m*/*z* (ESI) calcd for C₁₉H₁₁N₃NaO₃ (M + Na)⁺ 352.0698, found 352.0681.

4-(3, 4-dimethoxyphenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (5): 63%; ¹H NMR (DMSO-***d***₆) δ 7.81 (d, 1H,** *J* **= 7.2 Hz, Ind-***H***), 7.67 - 7.51 (m, 3H), 7.21(s, 1H, Ar-***H***), 7.14 (d, 1H,** *J* **= 8.5 Hz, Ar-***H***), 6.98 (d, 1H,** *J* **= 8.5 Hz), 3.81 (s, 3H, OC***H***₃), 3.73 (s, 3H, OC***H***₃); ¹³C NMR δ 189.4, 172.6, 165.7, 157.0, 154.5, 150.3, 147.6, 147.1, 141.9, 137.5, 135.2, 132.0, 124.2, 123.9, 123.9, 123.4, 121.1, 117.6, 115.3, 110.6, 102.3, 56.1; HRMS** *m/z* **(ESI) calcd for C₂₁H₁₅N₃O₄ (M + H)⁺ 374.1141, found 374.1142.**

4-(4-(dimethylamino)phenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5dione (6): 67%; ¹H NMR (DMSO-***d***₆) \delta 7.83 (d, 1H,** *J* **= 7.2 Hz, Ind-***H***), 7.70 - 7.49 (m, 5H), 6.74 (m, 2H,** *J* **= 8.2 Hz, Ar-***H***), 3.01 (s, 6H, N(CH₃)₂); ¹³C NMR \delta 189.4, 165.8, 157.2, 154.7, 151.7, 148.1, 141.9, 137.6, 135.1, 132.8, 132.0, 123.3, 121.1, 118.7, 117.0, 110.5, 102.1, 40.5; HRMS** *m***/***z* **(ESI) calcd for C₂₁H₁₆N₄O₂ (M + H)⁺ 357.1351, found 357.1352.**

4-(3, 4-dihydroxyphenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (7): 70%; ¹H NMR (DMSO-***d***₆) \delta 9.22 (s, 1H, O***H***), 8.94 (s, 1H, O***H***), 7.83 (d, 1H,** *J* **= 7.3 Hz, Ind-***H***), 7.69 - 7.51 (m, 3H), 6.99 (s, 1H, Ar-***H***), 6.89 (d, 1H,** *J* **= 8.3 Hz, Ar-***H***), 6.75 (d, 1H,** *J* **= 8.3 Hz, Ar-***H***); ¹³C NMR \delta 189.4, 166.0, 157.1, 154.6, 148.1, 147.3, 144.3, 142.0, 137.7, 135.3, 132.1, 123.4, 122.9, 121.2, 118.7, 117.5, 114.7, 102.4; HRMS** *m***/***z* **(ESI) calcd for C₁₉H₁₁N₃O₄ (M + H)⁺ 346.0828, found 346.0826.**

4-[4-(3,5-dioxo-1,2,3,5-tetrahydroindeno[1,2-*b***]pyrazolo[4,3-***e*]**pyridin-4-yl)phenyl]-1,2-dihydroindeno[1,2-***b***]pyrazolo[4,3-***e*]**pyridine-3,5-dione (8)**: 80%; ¹H NMR (DMSO-*d*₆) δ 7.89 - 7.47 (m, 12H); HRMS *m*/*z* (ESI) calcd for C₃₂H₁₆N₆O₄ (M + Na)⁺ 571.1131, found 571.1119.

4-(4-chlorophenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (9): 52%; ¹H NMR (DMSO-***d***₆) \delta 7.84 (d, 1H,** *J* **= 7.2 Hz, Ind-***H***), 7.70 - 7.49 (m, 7H); ¹³C NMR \delta 189.4, 165.5, 157.0, 154.4, 145.2, 142.0, 137.4, 135.5, 134.5, 132.7, 132.3, 130.8, 127.6, 123.6, 121.3, 117.8, 102.3; HRMS** *m***/***z* **(ESI) calcd for C₁₉H₁₀ClN₃O₂ (M + H)⁺ 348.0540, found 348.0546.**

4-(4-nitrophenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (10): 42%; ¹H NMR (DMSO-***d***₆) \delta 8.30 (d, 2H,** *J* **= 8.5 Hz, Ar-***H***), 7.89 - 7.83 (m, 3H), 7.73 - 7.69 (m, 1H, Ind-***H***), 7.60 - 7.52 (m, 2H); ¹³C NMR \delta 189.4, 172.7, 165.5, 156.9, 154.5, 148.3, 143.7, 142.1, 139.2, 137.3, 135.7, 131.9, 123.7, 122.7, 121.5, 118.0, 102.2; HRMS** *m***/***z* **(ESI) calcd for C₁₉H₁₀N₄O₄ (M + H)⁺ 359.0780, found 359.0780.**

4-(4-bromothiophen-2-yl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5dione (11): 68%; ¹H NMR (DMSO-d_6) \delta 7.97 (s, 1H, Net-***H***), 7.86 (d, 1H,** *J* **= 6.9 Hz, Ind-***H***), 7.74 - 7.69 (m, 1H), 7.65 - 7.62 (m, 1H), 7.57 (d, 1H,** *J* **= 7.2, Ind-***H***), 7.53 - 7.51 (m, 1H); ¹³C NMR \delta 189.0, 167.5, 165.8, 156.8, 154.3, 141.9, 137.3, 135.7, 133.8, 132.4, 127.3, 123.7, 121.4, 118.2, 108.3, 102.1; HRMS** *m***/***z* **(ESI) calcd for C₁₇H₈BrN₃O₂S (M + H)⁺ 397.9599, found 397.9598.**

4-(pyridin-4-yl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione** (12): 61%; ¹H NMR (DMSO-*d*₆) δ 8.68 (d, 2H, *J* = 7.3 Hz, Het-*H*), 7.89 (d, 2H, *J* = 7.4 Hz, Ind-*H*), 7.75 - 7.48 (m, 6H); HRMS m/z (ESI) calcd for C₁₈H₁₀N₄O₂ (M + H)⁺ 315.0882, found 315.0875.

4-(pyridin-3-yl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (13): 55%; ¹H NMR (DMSO-***d***₆) \delta 8.80 - 8.76 (m, 1H, Het-***H***), 8.67 (m, 1H, Het-***H***), 8.00 (m, 1H, Het-***H***), 7.89 (d, 1H,** *J* **= 7.4 Hz, Ind-***H***), 7.75 - 7.48 (m, 6H); ¹³C NMR \delta 189.6, 165.4, 157.0, 154.2, 150.8, 143.2, 141.9, 138.2, 135.6, 132.5, 128.0, 123.9, 121.4, 118.1, 102.6; HRMS** *m/z* **(ESI) calcd for C₁₈H₁₀N₄O₂ (M + H)⁺ 315.0882, found 315.0883.**

4-(thiophen-2-yl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione** (14): 53%; ¹H NMR (DMSO-*d*₆) δ 7.85 - 7.83 (m, 7H), 7.20 - 7.17 (m, 1H, Het-*H*); ¹³C NMR δ 189.1, 165.7, 157.1, 154.6, 141.8, 137.3, 135.5, 132.8, 132.3, 130.1, 126.9, 123.6, 121.3, 117.8, 109.8, 102.3; HRMS *m*/*z* (ESI) calcd for C₁₇H₉N₃O₂S (M + H)⁺ 320.0493, found 320.0503.

4-(benzofuran-2-yl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (15)**: 46%; ¹H NMR (DMSO-*d*₆) δ 7.89 (d, 1H, *J* = 7.2 Hz, Ind-*H*), 7.82 (d, 1H, *J* = 7.7 Hz, Het-*H*), 7.75 - 7.65 (m, 4H), 7.60 - 7.55 (m, 1H), 7.45 (t, 1H, *J* = 7.7 Hz, Het-*H*), 7.37 - 7.32 (m, 1H, Het-*H*); ¹³C NMR δ 188.8, 165.6, 156.9, 155.5, 154.7, 147.6, 141.9, 137.6, 135.9, 132.4, 128.3, 126.5, 123.8, 122.6, 121.5, 119.3, 112.5, 112.0, 104.9, 100.8; HRMS *m/z* (ESI) calcd for C₂₁H₁₁N₃O₂ (M + H)⁺ 354.0878, found 354.0887.

4-(1-methyl-1*H***-pyrazol-4-yl)-1,2-dihydro-5H-indeno[1,2-***b***]pyrazolo[4,3-***e***]pyridin-3,5dione (16): 55%; ¹H NMR (DMSO-***d***₆) δ 8.42 (s, 1H, Het-***H***), 8.09 (s, 1H, Het-***H***), 7.82 (d,**

1H, J = 7.2 Hz, Ind-H), 7.71 - 7.52 (m, 3H), 3.95 (s, 3H, N-CH₃); ¹³C NMR δ 189.5, 165.4, 157.4, 154.9, 152.2, 142.7, 142.0, 137.9, 135.4, 132.5, 123.8, 121.3, 118.9, 116.5, 112.1, 101.4; HRMS *m*/*z* (ESI) calcd for C₁₇H₁₂N₅O₂ (M + H)⁺ 318.0991, found 318.0987.

4-(1*H***-imidazol-2-yl)-1,2-dihydro-5H-indeno[1,2-***b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (17): 73%; ¹H NMR (DMSO-***d***₆) \delta 9.39 (s, 1H, Het-***H***), 8.38 (s, 1H, Het-***H***), 7.80 - 7.52 (m, 4H, Ind-***H***); ¹³C NMR \delta 186.8, 175.5, 157.2, 154.6, 144.9, 141.7, 136.9, 135.2, 133.7, 132.0, 125.7, 123.4, 121.0, 119.3, 114.6; HRMS** *m***/***z* **(ESI) calcd for C₁₆H₉N₅O₂ (M + H)⁺ 304.0834, found 304.0842.**

4-ethyl-1,2-dihydro-5H-indeno[1,2-b]pyrazolo[4,3-e]pyridin-3,5-dione (18): 33%; ¹H NMR (DMSO- d_6) & 7.79 (d, 1H, J = 7.2 Hz, Ind-H), 7.68 - 7.62 (m, 2H, Ind-H), 7.54 - 7.50 (m, 1H, Ind-H), 3.34 (q, 2H, J = 7.4 Hz, CH_2CH_3), 1.25 (t, 3H, J = 7.4 Hz, CH_2CH_3); ¹³C NMR & 191.1, 166.3, 158.2, 154.4, 152.2, 142.5, 137.7, 135.4, 132.1, 123.5, 121.3, 118.0, 103.5, 20.8, 15.2; HRMS m/z (ESI) calcd for $C_{15}H_{11}N_3O_2$ (M + H)⁺ 266.0929, found 266.0935.

4-propyl-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (19): 43%; ¹H NMR (DMSO-***d***₆) \delta 7.81 - 7.53 (m, 4H, Ind-***H***), 3.29 (t, 2H,** *J* **= 7.4 Hz, C***H***₂CH₂CH₃), 1.70 (m, 2H, CH₂CH₂CH₃), 0.95 (t, 3H,** *J* **= 7.4 Hz, CH₂CH₂CH₃); ¹³C NMR \delta 191.6, 165.9, 157.8, 155.3, 151.2, 142.3, 137.6, 132.2, 131.0, 121.2, 118.3, 104.2, 29.0, 23.8, 14.2; HRMS** *m/z* **(ESI) calcd for C₁₆H₁₃N₃O₂ (M + H)⁺ 280.1086, found 280.1088.**

1,2-dihydro-5H-indeno[1,2-b]pyrazolo[4,3-e]pyridin-3,5-dione (20): 34%; ¹H NMR (DMSO- d_6) δ 8.24 (s, 1H, C-H), 7.84 (d, 1H, J = 7.2 Hz, Ind-H), 7.73 - 7.68 (m, 2H, Ind-H), 7.55 (m, 1H, Ind-H); ¹³C NMR δ 190.8, 190.2, 141.9, 139.7, 138.9, 137.2, 135.8, 128.7, 127.1, 124.2, 122.7, 118.7, 113.7; HRMS m/z (ESI)) calcd for C₁₃H₈N₃O₂ (M + H)⁺ 238.0614, found 238.0617.

11-(4-methoxyphenyl)-10*H*-[**1,3**]dioxolo[**4,5-***g*]indeno[**1,2-***b*]quinolin-10-one (**21**): 34%; ¹H NMR (DMSO-*d*₆) δ 8.38 (d, 1H, *J* = 7.2 Hz, Ar-*H*), 7.94 (s, 1H, Ar-*H*), 7.75 - 7.49 (m, 3H), 7.36 (s, 1H, Ar-*H*), 7.01 (d, 2H, *J* = 8.5 Hz, Ar-*H*), 6.29 (s, 2H, OC*H*₂O), 3.84 (s, 3H, OC*H*₃); ¹³C NMR δ 192.1, 160.9, 153.3, 151.2, 150.1, 141.5, 135.2, 131.9, 130.9, 128.0, 125.3, 123.7, 118.9, 113.3, 107.0, 103.2, 99.9, 62.2, 57.5, 55.7, 84.5, 49.9; HRMS *m*/*z* (ESI) calcd for C₂₄H₁₅NO₄ (M + H)⁺ 382.1079, found 382.1075.

7,8-dimethoxy-10-(4-methoxyphenyl)-11*H***-indeno[1,2-***b***]quinolin-11-one (22)**: 35%; ¹H (DMSO-*d*₆) δ 7.91 (d, 1H, *J* = 7.7 Hz, Ind-*H*), 7.70 (t, 1H, *J* = 3.4 Hz, Ind-*H*), 7.59 - 7.43 (m, 5H), 7.10 (d, 2H, *J* = 7.7, Ar-*H*), 6.92 (s, 1H, Ar-*H*), 3.97 (s, 3H, OC*H*₃), 3.89 (s, 3H, OC*H*₃),

3.66 (s, 3H, OCH₃); ¹³C NMR δ 190.2, 160.7, 155.7, 154.3, 150.1, 147.8, 146.2, 143.2, 136.9, 135.8, 133.3, 131.7, 128.9, 123.9, 122.5, 121.1, 116.3, 114.0, 109.8, 106.7, 56.3, 56.1, 56.0; HRMS *m*/*z* (ESI) calcd for C₂₅H₁₉NO₄ (M + H)⁺ 398.1393, found 398.1393.

7,9-dimethoxy-10-(4-methoxyphenyl)-11*H***-indeno[1,2-***b***]quinolin-11-one (23)**: 30%; ¹H NMR (DMSO-d6) δ : 7.96 (d, 1H, *J* = 8.0 Hz, Ind-*H*), 7.72 (m, 1H, Ind-*H*), 7.58 (s, 2H), 7.16 (m, 3H), 6.95 (d, 2H, *J* = 8.0, Ar-*H*), 6.55 (s, 1H, Ar-*H*), 3.95 (s, 3H, OC*H*₃), 3.85 (s, 3H, OC*H*₃), 3.40 (s, 3H, OC*H*₃); HRMS m/z (ESI) calcd for C₂₅H₁₉NO₄ (M + H)⁺ 398.1393, found 398.1400.

2-phenyl-4-(4-methoxyphenyl)-5H-indeno[1,2-b]pyrazolo[4,3-e]pyridin-5-one (24): 41%; ¹H NMR (DMSO-*d*₆) δ 9.07 (s, 1H, Pyr-*H*), 8.13 (d, 2H, *J* = 8.3 Hz, Ar-*H*), 8.00 (d, 1H, *J* = 7.4 Hz, Ind-*H*), 7.84 - 7.74 (m, 4H), 7.68 - 7.56 (m, 4H), 7.48 (d, 1H, *J* = 7.4 Hz, Ind-*H*), 7.11 (d, 2H, *J* = 8.3 Hz, Ar-*H*), 3.89 (s, 3H, OC*H*₃); ¹³C NMR δ 189.7, 165.6, 161.3, 160.4, 146.1, 142.7, 139.8, 138.1, 135.9, 132.6, 132.3, 130.2, 128.9, 127.1, 125.3, 123.8, 121.7, 120.8, 119.3, 116.3, 114.1, 55.8; HRMS *m*/*z* (ESI) calcd for C₂₆H₁₇N₃O₂ (M + H)⁺ 404.1399, found 404.1398.

3-methyl-4-(4-methoxyphenyl)-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-5(1***H***)-one (25): 30%; ¹H NMR (DMSO-***d***₆) \delta 7.88 (d, 1H,** *J* **= 7.2 Hz, Ind-***H***), 7.70 (m, 1H, Ind-***H***), 7.56 - 7.44 (m, 4H), 7.06 (d, 2H,** *J* **= 8.3 Hz, Ar-***H***), 3.86 (s, 3H, OC***H***₃), 1.97 (s, 3H, C***H***₃); ¹³C NMR \delta 189.7, 164.7, 160.4, 155.2, 146.1, 144.8, 142.3, 137.4, 135.6, 132.2, 131.2, 125.4, 123.6, 121.4, 119.0, 113.6, 55.7, 15.4; HRMS** *m***/***z* **(ESI) calcd for C₂₁H₁₅N₃O₂ (M + H)⁺ 342.1242, found 342.1243.**

1-phenyl-3-methyl-4-(4-methoxyphenyl)-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-5(1***H***)-one (26): 72%;¹H NMR (DMSO-***d***₆) \delta 8.2 (d, 1H,** *J* **= 7.6 Hz, Ind-***H***), 7.91 (d, 1H,** *J* **= 6.6 Hz, Ind-***H***), 7.71 - 7.37 (m, 10H), 7.06 (d, 1H,** *J* **= 7.6 Hz), 3.86 (s, 3H, OCH₃), 2.00 (s, 3H, CH₃); ¹³C NMR \delta 189.5, 165.1, 160.7, 153.0, 146.4, 146.0, 142.1, 139.1, 137.4, 135.7, 133.5, 132.5, 131.2, 129.7, 126.9, 124.7, 123.7, 121.7, 120.2, 115.8, 113.8, 55.8, 15.2; HRMS** *m***/***z* **(ESI) calcd for C₂₇H₁₉N₃O₂ (M + H)⁺ 418.1555, found 418.1547.**

2-phenyl-4-(4-methoxyphenyl)-1,2-dihydro-5H-indeno[1,2-*b***]pyrazolo[4,3-***e***]pyridin-3,5-dione (27)**: 63%; ¹H NMR (DMSO-*d*₆) δ 7.95 - 7.85 (m, 3H), 7.74 - 7.61(m, 5H), 7.47 (m, 2H), 7.24 (m, 1H, Ind-*H*), 6.99 (d, 2H, *J* = 8.8 Hz, Ar-*H*), 3.86 (s, 3H, OC*H*₃); ¹³C NMR δ 188.5, 180.4, 161.1, 158.5, 151.3, 144.3, 137.9, 136.9, 135.2, 133.2, 133.0, 129.4, 125.7, 123.5, 122.3, 121.9, 120.0, 117.0, 112.7, 106.7, 106.1, 55.7; HRMS *m/z* (ESI) calcd for C₂₆H₁₇N₃O₃ (M + H)⁺ 420.1348, found 420.1357.

4-[3-(methylsulfanyl)-5-oxo-5*H***-indeno[1,2,4]triazolo[4,3-***a*]**pyrimidin-5-yl]benzonitrile** (**28**): 48%; ¹H NMR (DMSO-*d*₆) δ 8.54 (d, 1H, *J* = 8.5 Hz, Ind-*H*), 8.09 - 7.71 (m, 7H), 2.60 (s, 3H, SC*H*₃); ¹³C NMR δ 183.3, 142.9, 140.4, 138.8, 136.8, 136.7, 134.3, 134.0, 132.8, 132.2, 124.5, 123.9, 123.8, 122.9, 118.9, 114.6, 31.2; HRMS m/z (ESI) calcd for C₂₀H₁₂H₅OS (M + H)⁺ 370.0763, found 370.0779.

4-(1-methyl-2,4,6-trioxo-2,3,4,6-tetrahydro-1*H***-indeno[2',1':5,6]pyrido[2,3-***d***]pyrimidin-5-yl)benzenecarbonitrile** (**29**): 51%; ¹H NMR (DMSO-*d*₆) δ 11.62 (s, 1H, N*H*), 7.94 (d, 1H, J = 7.4 Hz, Ind-*H*), 7.85 (d, 2H, J = 8.0 Hz, Ar-*H*), 7.77 - 7.28 (m, 5H), 3.65 (s, 3H, NC*H*₃); ¹³C NMR δ 188.5, 168.0, 160.5, 150.7, 140.9, 140.7, 136.5, 136.0, 133.6 131.6, 129.2, 124.0, 122.3, 119.4, 111.0, 108.2, 93.9, 70.0, 29.8, 29.4; HRMS *m*/*z* (ESI) calcd for C₂₂H₁₂N₄O₃ (M+H)⁺ 381.0987, found 381.0984.

5-(4-methoxyphenyl)-1-methyl-1*H***-indeno[2',1':5,6]pyrido[2,3-***d***]pyrimidine-2,4,6(3***H***)-trione (30)**: 56%; ¹H NMR (DMSO-*d*₆) δ 7.96 (d, 1H, *J* = 7.4 Hz, Ind-*H*), 7.80 - 7.59 (m, 3H), 7.20 (d, 2H, *J* = 8.7 Hz, Ar-*H*), 6.93 (d, 2H, *J* = 8.7 Hz, Ar-*H*), 3.89 (s, 3H, , OC*H*₃), 3.73 (s, 3H, , NC*H*₃); HRMS m/z (ESI)) calcd for C₂₂H₁₆N₃O₄ (M + H)⁺ 386.1144, found 386.1141.

4-(3-(thiophen-2-yl)-5-oxo-1,4,10-trihydro-5*H***-indeno[1,2-***b***]pyrazolo[4,3-***e***]pyridin-4yl)benzonitrile (31): 65%; ¹H NMR (DMSO-***d***₆) \delta 11.4 (s, 1H, N***H***), 7.67 - 7.61 (m, 3H), 7.52 (d, 1H,** *J* **= 6.1 Hz, Het-***H***), 7.39 - 7.28 (m, 5H), 7.20 (d, 1H,** *J* **= 6.1 Hz, Het-***H***), 7.04 (m, 1H), 5.29 (s, 1H, C-***H***); ¹³C NMR \delta 189.9, 156.9, 151.2, 136.5, 135.2, 132.5, 131.9, 131.2, 129.4, 128.1, 127.8, 127.6, 126.4, 120.6, 119.5, 119.2, 109.29, 105.1, 102.8, 102.0, 69.5, 35.7; HRMS** *m***/***z* **(ESI) calcd for C₂₄H₁₄N₄OS (M + H)⁺ 407.0966, found 407.1005.**

4-(3-(furan-2-yl)-5-oxo-1,4,10-trihydro-5*H***-indeno[1,2-***b***]pyrazolo[4,3-***e***]pyridin-4yl)benzonitrile (32): 61%; ¹H NMR (DMSO-***d***₆) δ 11.49 (s, 1H, N***H***), 7.69 - 7.63 (m, 4H),** 7.45 - 7.31 (m, 4H), 7.21 (d, 1H, J = 6.9 Hz), 6.54 - 6.49 (m, 2H, Het-*H*), 5.32 (s, 1H, C-*H*); ¹³C NMR δ 189.9, 157.2, 151.8, 148.9, 144.1, 143.6, 136.8, 135.0, 132.4, 131.7, 130.8, 129.4, 120.3, 119.8, 122.2, 109.3, 108.5, 105.1, 102.4, 82.9, 63.1; HRMS *m*/*z* (ESI) calcd for C₂₄H₁₄N₄O₂ (M + H)⁺ 391.1195, found 391.1202.

5-(4-methoxyphenyl)-1*H***-indeno[2',1':5,6]pyrido[2,3-***d***]pyrimidine-2,4,6(3***H***)-trione (33)**: 72%; ¹H NMR (DMSO-*d*₆) δ 10.83 (s, 1H, N*H*), 7.46 - 7.14 (m, 8H), 6.77 (d, 2H, *J* = 7.7 Hz, Ar-*H*), 4.62 (s, 1H, C-*H*), 3.67 (s, 3H, , OC*H*₃); ¹³C NMR δ 191.4, 163.3, 158.2, 153.7, 150.3, 144.9, 138.0, 136.4, 133.1, 132.6, 130.8, 129.1, 121.3, 119.4, 117.1, 113.9, 110.4, 91.8, 55.5; HRMS *m*/*z* (ESI) calcd for C₂₁H₁₅N₃O₄ (M + H)⁺ 374.1141, found 374.1151.

k.

1

12

ŝ

