Cholesterol-Diaryl ketone Stereoisomeric Dyads as Models for "Clean" Type I and Type II Photooxygenation Mechanisms

Inmaculada Andreu, Isabel M. Morera, Francisco Boscá, Laura Sanchez, Pelayo Camps, and Miguel A. Miranda*

Table of Contents:

1. Synthesis and characterization data of (\boldsymbol{R})-ketoprofen (($\boldsymbol{R})-\mathbf{K P})$ S2
2. Synthesis and characterization data of α-cholesterol (α - $\mathbf{C h}$) S3
3. Steady-state photolysis of dyad $\mathbf{1}$ under aerobic conditions S4
4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra of $\boldsymbol{\alpha}$ - $\mathbf{C h}$ S5
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 4 S6
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 5 S7
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of $\mathbf{6}$ S8
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 7 S9
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 7 -oxo derivative of (S)-KP- $\alpha-\mathrm{Ch}$ S10
10. Irradiation of the dyads $\mathbf{1}$ and $\mathbf{2}$ under aerobic and anaerobic conditions S11
11. Intermolecular irradiations of ketone/Ch mixtures under aerobic and anaerobic conditions S11
12. Circular dichroism spectra of the dyads, compared with (S) - and (R)-KP S12

A mixture of (\pm)-ketoprofen, $(1.5 \mathrm{~g}, 5.91 \mathrm{mmol})$ and $\mathrm{PCl}_{5}(1.35 \mathrm{~g}, 6.50 \mathrm{mmol}, 1.2 \mathrm{eq})$ in $\mathrm{CCl}_{4}(9 \mathrm{~mL})$ was heated at $40^{\circ} \mathrm{C}$ with magnetic stirring for 30 min . Evaporation of the volatile products under reduced pressure gave the corresponding acid chloride ($1.60 \mathrm{~g}, 99 \%$) as a brownish solid. ${ }^{1}$ To a solution of (R)-3-hydroxy-1-phenyl-4,4-dimethylpirrolidin-2-one ($1.10 \mathrm{~g}, 5.37 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (18 $\mathrm{mL})$, a solution of the above acid chloride ($1.60 \mathrm{~g}, 5.87 \mathrm{mmol}, 1.1$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ and a solution of anhydrous triethylamine ($1.81 \mathrm{~mL}, 1.32 \mathrm{~g}, 13.0 \mathrm{mmol}, 2.4$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(52 \mathrm{~mL})$ were successively added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . All of the above solutions were previously dried by stirring with $3 \AA$ molecular sieves $(3-4 \mathrm{~g} / \mathrm{mL})$ for 45 min . The reaction mixture was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give a brown oily residue (2.58 g). Column chromatography of this residue (eluent: hexane/diethyl ether mixtures) gave a diastereomeric mixture of (3R)-1-phenyl-4,4-dimethyl-2-oxopirrolidin-3-yl (αR)-2-(3benzoylphenyl)propionate, (7), and its isomer $\alpha S, 3 R$. (1.79 g, 73\%, dr $=95 / 5$, by $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$, as a brown oil. This product was subjected to a new column chromatography (eluent: hexane/diethyl ether 60:40) obtaining in order of elution the following fractions: (i) $(\alpha R, 3 R)-7(0.64 \mathrm{~g}, 24 \%)$, colorless foam, $>98 / 2$ dr , (ii) mixture of $(\alpha R, 3 R)$ - and ($\alpha S, 3 R$)-7, 0.46 g , colorless oil, $95 / 5 \mathrm{dr}$, (iii) mixture of $(\alpha R, 3 R)$ - and $(\alpha S, 3 R)-7,0.52 \mathrm{~g}$, colorless oil, $82 / 18 \mathrm{dr} . R_{f}=0.23$ (silica gel, 8 cm , hexane/diethyl ether 3:2). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $(\alpha R, 3 R)-7$ coincide with those of its enantiomer. ${ }^{1}$ Elemental analysis: calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{4}$ (441.53): C 76.17, H 6.16, N 3.17. Found: C 76.11, H 6.38, N 3.10. A suspension of $(\alpha R, 3 R)-$ $7(558 \mathrm{mg}, 1.27 \mathrm{mmol},>98 / 2 \mathrm{dr})$ in a mixture of acetic acid and 2 N HCl in the ratio of 2.5:1 (14 mL) was heated to $120^{\circ} \mathrm{C}$ for 2.5 h . The solution was concentrated in vacuo, water (10 mL) was added to the residue and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were treated with cyclohexylamine $(0.14 \mathrm{~mL}, 121 \mathrm{mg}, 1.27 \mathrm{mmol})$ and were concentrated in vacuo. The solid residue was extracted with diethyl ether $(10 \mathrm{~mL})$ to remove the chiral auxiliary, and the solid salt was
collected by filtration in vacuo. The filtrate was concentrated to give the chiral auxiliary ($250 \mathrm{mg}, 96 \%$, $>99 \%$ ee, by chiral HPLC) as a white solid. The precipitated salt was dissolved in $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and the aqueous solution was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give (\boldsymbol{R}) KP, (201 mg, 63\% yield, >99\% ee, by chiral HPLC) as a white solid, whose spectroscopic data coincide with those described for its enantiomer. ${ }^{1} R_{f}=0.09$ (silica gel, 8 cm , hexane / AcOEt $1: 1$); HPLC: Chiralcel OD-H, hexane / isopropanol / trifluoroacetic acid in the ratio of 99:1:0.1, flow: $0.8 \mathrm{~mL} / \mathrm{min}$; rt $32.68 \mathrm{~min} .^{1}$
${ }^{1}$ Camps, P.; Giménez, S. Tetrahedron: Asymmetry 1995, 6, 991-1000.

α-Cholesterol (α-Ch).

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of β-cholesterol $(1.00 \mathrm{~g}, 2.59 \mathrm{mmol})$, in THF (33 mL), triphenyl phosphine (748 $\mathrm{mg}, 2.85 \mathrm{mmol}, 1.1 \mathrm{eq}$), chloroacetic acid ($269 \mathrm{mg}, 2.85 \mathrm{mmol}, 1.1 \mathrm{eq}$) and diethyl azodicarboxylate $(0.55 \mathrm{~mL}, 0.57 \mathrm{~g}, 2.85 \mathrm{mmol}, 1.1 \mathrm{eq})$ were added and the mixture was stirred at room temperature for 16 h. The solvent was removed by distillation under reduced pressure and the residue was subjected to column chromatography (eluent: hexane/diethyl ether 95:5) to give a yellowish semisolid residue (500 mg). Crystallization of the above residue (900 mg , from two runs) from isopropanol (4 mL) gave a beige solid (680 mg), which was used as such in the next step. A mixture of the above crystallized product ($667 \mathrm{mg}, 1.44 \mathrm{mmol}$), $\mathrm{MeOH}(15 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(218 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.1 \mathrm{eq})$ was heated under reflux for 1 h . The solvent was distilled under reduced pressure, water $(10 \mathrm{~mL})$ was added to the residue and the mixture was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give a residue (649 mg) containing mainly α cholesterol and a small amount of β-cholesterol. Column chromatography of this residue (eluent: hexane/diethyl ether 1:1) gave $\boldsymbol{\alpha}$ - $\mathbf{C h}$ ($398 \mathrm{mg}, 20 \%$ global yield) as a beige solid, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data coincide with those described. ${ }^{2}$ TLC (silica gel, 8 cm , hexane /diethyl ether 50:50): β cholesterol: $R_{f} 0.27$; α-cholesterol: $R_{f} 0.41$
${ }^{2}$ Yan, J.; Bittman, R. J. Lipid Res. 1990, 31, 160-162.

Steady-state photolysis of dyad 1 under aerobic conditions.

A dichloromethane $(12 \mathrm{~mL})$ solution of $(S)-\mathrm{KP}-\alpha-\mathrm{Ch}(58 \mathrm{mg}, 0.09 \mathrm{mmol})$ was irradiated under oxygen, through Pyrex, with a 400 W medium pressure mercury lamp. The reaction was monitored by TLC. After 4 hours, the reaction mixture was concentrated under reduced pressure and submitted to silica gel column chromatography, using hexane/ethyl acetate/dichloromethane ($90: 5: 5 \mathrm{v} / \mathrm{v} / \mathrm{v}$) as eluent. This afforded in addition to $\mathbf{8}$ and $\mathbf{9}$, the 7 -oxo derivative of (S)-KP- $\alpha-\mathrm{Ch}$ as yellow oil ($15 \mathrm{mg}, 26 \%$). Selected NMR signals: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.59$ (olefinic $\mathrm{C} \underline{\mathrm{H}}-6$), $5.11(\mathrm{CH}-3), 3.78$ ($\mathrm{C} \underline{\mathrm{H}}-$ $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=201.2(\mathrm{C}=\mathrm{O}$ aliphatic ketone $), 196.6(\mathrm{C}=\mathrm{O}$ aromatic ketone $), 173.6$ ($\mathrm{C}=\mathrm{O}$ ester), 164.1 (olefinic C-6), 70.6 (C-3); HRMS (FAB) $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}$ calcd: $637.42424[\mathrm{M}+1]$; found 637.42568.

$\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

Irradiation of dyads 1 and 2 (ca. $10^{-5} \mathrm{M}$ in dichloromethane solution), at $\lambda_{\max }=350 \mathrm{~nm}$ (Gaussian distribution) with a multilamp photoreactor, both under anaerobic and aerobic conditions. The progress of the reaction was monitored by UV-spectrophotometry, following the disappearance of the benzophenone absorption band at 254 nm .

Irradiation of (S)-KP and racemic TPA in the presence of equimolar amounts of β - Ch (ca. $10^{-5} \mathrm{M}$ in dichloromethane solution), at $\lambda_{\max }=350 \mathrm{~nm}$ (Gaussian distribution) with a multilamp photoreactor, both under anaerobic and aerobic conditions. The progress of the reaction was monitored by UVspectrophotometry, following the disappearance of the decrease of absorbance at $254 \mathrm{~nm}(\mathrm{KP})$ or 301 nm (TPA).

Circular dichroism (CD) spectra of (S) - and $(R)-K P$, as well as dyads $\mathbf{1 - 3}$, in dichloromethane solution (ca. $2 \times 10^{-4} \mathrm{M}$).

