General. Unless otherwise noted, all reactions performed in organic solvents were conducted under an atmosphere of argon with oven dried glassware using standard syringe and septa technique. Analytical thin layer chromatography (TLC) was performed using Whatman silica gel HF₂₅₄ plates or Selecto Scientific alumina B F₂₅₄ plates and UV light, 12- molybdophosphoric acid (PMA stain), or potassium permanganate (KMnO₄ stain) for analysis of the developed plates. Flash column chromatography (FCC) was performed using silica gel 60 (230-400 mesh) or Brockmann I alumina gel (150 mesh). H¹-NMR spectra were recorded on a Bruker 500 MHz spectrometer in CDCl₃ or C₆D₆ and the chemical shifts were reported in parts per million (ppm) relative to the residue of the solvent, i.e CD(H)Cl₃ at 7.27 ppm or C₆D(H)₆ at 7.16 ppm. ¹³C-NMR spectra were recorded on a Bruker 125 MHz spectrometer in CDCl₃ or C₆D₆ and the chemical shifts were reported in parts per million (ppm) relative to the solvent peak, i.e. CDCl₃ at 77.23 ppm or C₆D₆ at 128.39 ppm. High resolution mass spectra (HRMS) were obtained on an Ultima Micromass Q-TOF Mass Spectrometer at the Mass Spectrometry Laboratory of Hunter college, CUNY. # General procedure for cross metathesis A solution of olefin A (1.0 eq.) and olefin B (3.0 eq.) in anhydrous CH_2Cl_2 (0.02M) was degassed under N_2 for 30 min. Grubbs 2^{nd} generation catalyst (10-12 mol%) was then added and refluxed under N_2 for 2-3 hrs. When reaction is complete, the reaction mixture was cooled to r.t. and was quenched by adding few drops of DMSO. The solvent was evaporated under reduced pressure and purified by FCC using Pet./ EtOAc ## Synthesis of 29 via Wittig olefination To a flask containing phosphonium salt **18** (1.82g, 3.00 mmol, ca. E/Z=4:1) suspended in THF (20 mL) at -78 °C was dropwisely added sodium hexamethyldisilylamide (NaHMDS) (6.0mL, 0.6 M in toluene). The mixture was warmed up to room temperature for 30 min, cooled back to -78 °C and was dropwisely added aldehyde **11** (1.17 g, 9.0 mmol in 10 mL THF). After 30 min at -78 °C, the reaction mixture was warmed up to room temperature for 1 h. The reaction was dilute with Et₂O, quenched with saturated NH₄Cl solution. The mixture was extracted with Et₂O (3 x 100 mL) and the combined organic phase was washed with brine, water, dried with Na₂SO₄, filtered, concentrated *in vacuo* and purified by FCC to afford the diene **29** (0.758 g, 76%). (ca. E/Z= 4:1 as in **18**, newly formed double is pure Z). R_f = 0.44 (1.5:8.5 EtOAc /pet. ether). ## General procedure for iodoetherification To a stirred solution of olefin (1.0 eq.) and freshly activated molecular sieves (4A°) in anhydrous CH₂Cl₂ (0.008M) at r.t. was added IDCP (2.0 eq.) and stirring continued for 15 min. The reaction was then poured into sat. aq. solution of sod. thiosulfate and extracted with ether. The combined extracts was washed successively with water and brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and purified by FCC using Pet. Ether/EtOAc. ## General procedure for spiroketalization AgOTf (4.0 eq.) was added to a stirred solution of cyclization product (1.0 eq.) and 2,4,6 Collidine (4-5 eq) in anhydrous CH₂Cl₂ (0.005M) at r.t.. When the reaction is complete (approx. 15 min.) reaction mixture was poured into sat. aq. solution of sod. thiosulfate and extracted with EtOAc. The combined extracts was washed successively with water and brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and purified by FCC using Pet.Ether/ EtOAc. # Physical data for iodoetherification precursors The iodoetherification precursors were obtained as inseparable mixtures of E/Z alkenes. ¹H–NMR and ¹³C-NMR spectral charts for these compounds are provided in the appendix. The HRMS data is listed below. ## 19 HRMS [M+H] calcd. for C₂₂H₃₅O₅ 379.2479, found 379.2479. #### 21 HRMS [M+H] calcd. for C₃₁H₅₅O₆Si 551.3762, found 551.3762 #### 23 HRMS [M+Na] calcd. for C₃₁H₅₅O₆SiNa 573.3581, found 573.3577 ### 24 HRMS [M+Na] calcd. for C₃₇H₅₈O₆SiNa 649.3894, found 649.3901 #### 25 HRMS [M+Na] calcd. for C₂₆H₃₈O₈Si 501.2458, found 501.2469 ## 26 HRMS [M+Na] calcd. for C₃₁H₄₆O₁₀Na 601.2983, found 601.2983 ## 28 HRMS [M+Na] calcd. for C₃₅H₄₄O₆Na 583.3030, found 583.3034 ### 30 HRMS [M+Na] calcd. for C₂₂H₃₂O₅Na 399.2141, found 399.2142 Physical data for iodoetherification products and deprotected alcohol derivatives The iodoetherification products and their deprotected alcohol derivatives were obtained as inseparable mixtures of diastereomeric iodo-cyclic ethers. ¹H–NMR and ¹³C-NMR spectral charts for these compounds are provided in the appendix. The HRMS data is listed below. ### 31 HRMS [M+Na] calcd. for C₂₂H₃₃IO₅Na 527.1264, found 527.1268 ## 32 HRMS [M+H] calcd. for C₃₁H₅₄IO₆ 677.2728, found 677.2727 ## 33 HRMS [M+H] calcd. for C₃₁H₅₄IO₆ 677.2728, found 677.2732 ## 34 HRMS [M+Na] calcd. for C₃₇H₅₇IO₆Si 775.2861, found 775.2858 # 35 HRMS [M+H] calcd. for C₃₁H₄₄IO₆ 639.2177, found 639.2177 # 36 HRMS [M+Na] calcd. for C₂₆H₃₇IO₈Na 627.1425, found 627.1422 #### 37 HRMS [M+Na] calcd. for C₂₅H₃₅IO₇Na 585.1319, found 585.1325 #### 38 HRMS [M+Na] calcd. for C₃₁H₄₅IO₁₀Na 727.1947, found 727.1948 ## 39 HRMS [M+Na] calcd. for C₂₉H₄₃IO₉Na 685.1844, found 685.1843 #### 42 HRMS [M+Na] calcd. for C₂₂H₃₁IO₅Na 525.1108, found 525.1108 # Physical data for spiroketal products and bis-THF 47 ¹H-NMR and ¹³C-NMR spectral charts for these compounds are provided in the appendix. #### 43a ¹H NMR 500 MHz (CDCl₃) 1.25 (s, 9H), 1.5 (m, 1H), 1.7-2.2 (m, 9H), 3.55 (m, 2H), 4.07 (dd, J= 11.0, 5.3 Hz, 1H), 4.15 (dd, J= 11.0, 6.3 Hz, 1H), 4.2 (m, 1H), 4.25 (m, 1H), 4.6 (m, 2H), 7.25 (m, 2H), 7.3 (m, 3H). ¹³C NMR125 MHz (CDCl₃) 27.2, 27.6, 30.3, 34.4, 35.6, 35.8, 38.8, 67.7, 73.0, 75.4, 76.7, 77.2, 114.9. 127.5, 127.6, 128.3, 128.4, 138.6, 178.4. HRMS [M+H] calcd. for $C_{22}H_{33}O_5$ 377.2332, found 377.2319. R_f = 0.5 (4:1 Pet. Ether/ EtOAc) # 43b ¹H NMR 500 MHz (CDCl₃) 1.7 (m, 1H), 1.85 (m, 2H), 1.95-2.12 (m, 6H), 2.18 (m, 1H), 3.6 (2H), 4.06 (dd, *J*= 11.5, 4.9 Hz, 1H), 4.11 (dd, *J*= 11.5, 4.55 Hz, 1H), 4.2 (m, 1H), 4.5 (m, 2H), 7.25 (2H), 7.3 (m, 3H). ¹³C NMR 125 MHz (CDCl₃) 26.7, 27.2, 30.7, 34.5, 35.7, 37.4, 38.8, 66.0, 67.7, 72.9, 75.3, 77.2, 115.0, 127.5, 127.6, 128.3, 138.7, 178.4. HRMS [M+H] calcd. for $C_{22}H_{33}O_5$ 377.2332, found 377.2319. $R_f = 0.45$ (4:1 Pet. Ether/ EtOAc) ## 44a ¹H NMR 500 MHz (C_6D_6) 1.05 (m, 21H), 1.37-1.47 (m, 3H), 1.5 (m, 1H), 1.67 (m, 2H), 1.73 (m, 2H), 1.8 (m, 1H), 1.88 (dd, J= 14.8, 3.8 Hz, 1H), 1.9-2.0 (m, 4H), 2.08 (s, 3H), 3.5 (t, J= 6.7 Hz, 2H), 3.6 (dd, J= 9.6, 6.3 Hz, 1H), 3.8 (dd, J= 9.6, 6.4 Hz, 1H), 4.08 (m, 1H), 4.22 (m, 1H), 4.5 (s, 2H), 5.08 (bt, J= 3.0Hz, 1H), 7.35 (m, 5H). ¹³C NMR125 MHz (C_6D_6) 12.0, 17.9, 21.0, 22.6, 27.1, 30.3, 35.0, 35.8, 36.1, 39.2, 64.9, 67.3, 68.6, 70.2, 72.7, 81.8, 105.2, 126.7- 128.2, 139.3, 169.9. HRMS [M+Na] calcd. for $C_{32}H_{54}O_5$ NaSi 571.3425, found 571.3424. R_f = 0.6 (4:1 Pet. Ether/ EtOAc) ## 44b ^IH NMR 500 MHz (C_6D_6) 1.1 (m, 21H), 1.45 (m, 3H), 1.7 (m, 6H), 1.8 (s, 3H), 1.95 (m, 1H), 2.07 (dd, J= 11.2, 5.08 Hz, 1H), 2.2 (m, 2H), 2.3 (m, 1H), 3.3 (t, J= 6.2 Hz, 2H), 3.65 (m, 2H), 3.73 (m, 1H), 4.34 (s, 2H), 4.37 (m, 1H), 5.26 (m, 1H), 7.27 (m, 3H), 7.4 (m, 2H). ¹³C NMR125 MHz (C_6D_6) 12.1, 18.0, 20.6, 22.8, 26.4, 29.9, 34.8, 35.0, 35.8, 36.1, 38.2, 66.0, 68.0, 70.0, 70.2, 72.7, 78.8, 106.8, 126.8-128.3, 139.3, 169.0. HRMS [M+Na] calcd. for $C_{32}H_{54}O_5$ NaSi 571.3425, found 571.3424. $R_f = 0.7$ (4:1 Pet. Ether/ EtOAc) ### 45a ¹H NMR 500 MHz (CDCl₃) 1.2 (m, 21H), 1.3 (qt, J= 11.6 Hz, 1H), 1.4 (m, 1H), 1.5 (m, 1H), 1.56 (m, 2H), 1.8 (m, 3H), 1.95 (m, 1H), 2.1 (s, 3H), 2.2 (ddd, J= 11.9, 4.7, 1.6 Hz, 1H), 3.5 (t, J= 6.3 Hz, 1H), 3.77 (dd, J= 9.4, 7.6 Hz, 1H),3.9 (m, 1H), 4.1 ((dd, J= 9.4, 5.5 Hz, 1H), 4.3 (m, 1H), 4.5 (m, 2H), 5.6 (m, 1H), 7.1 (t, J= 7.4 Hz, 1H), 7.2 (t, J= 7.4 Hz, 2H), 7.3 (d, J= 7.4 Hz, 2H). ¹³C NMR125 MHz (C₆D₆) 12.0, 18.0, 21.3, 22.4, 27.5, 29.9, 35.8, 37.0, 38.5, 39.3, 67.6, 68.2, 68.8, 70.3, 72.9, 81.4, 106.5, 127.5, 127.6, 128.3, 138.7, 170.3. HRMS [M+Na] calcd. for C₃₂H₅₄O₅NaSi 571.3425, found 571.3427. R_f = 0.7 (8.5:.5 Pet. Ether/ EtOAc) #### 45h ¹H NMR 500 MHz (C_6D_6) 1.1 (m, 21H), 1.22 (m, 1H), 1.3 (m, 1H), 1.55 (m, 6H), 1.7 (s, 3H),1.8 (m, 2H), 1.9 (m, 1H), 1.95 (m, 1H), 2.0 (t, J=12Hz, 1H), 2.2 (m, 1H), 3.1 (m, 1H), 3.3 (t, J=6.0Hz, 2H), 3.6 (m, 2H), 4.3 (m, 3H), 4.9 (m, 1H), 7.1 (m, 3H), 7.3 (bd, J=7.0Hz, 2H). ¹³C NMR 125 MHz (CDCl₃) 11.9, 17.9, 21.3, 22.3, 26.2, 29.6, 29.7, 32.2, 35.7, 37.1, 40.0, 65.2, 69.3, 70.3, 70.5, 72.9, 79.0, 107.5, 127.5, 127.6, 128.3, 138.7, 170.5. HRMS [M+H] calcd. for $C_{32}H_{55}O_5Si$ 549.3605, found 549.3606. $R_f=0.6$ (8.5:.5 Pet. Ether/ EtOAc ## 47 $^{\rm I}$ H NMR 500 MHz (CDCl₃) 1.2 (s, 9H), 1.4 (m, 2H), 1.6 (m, 1H), 1.9 (m, 6H), 2.05 (m, 1H), 3.55 (m, 2H), 3.75 (m, 1H), 3.9 (m, 1H), 3.95 (m, 1H), 4.1 (m, 4H), 4.55 (m, 4H), 7.27 (m, 10H). $^{\rm 13}$ C NMR125 MHz (CDCl₃) 27.2, 27.6, 31.7, 31.8, 32.2, 35.9, 38.8, 67.0, 68.0, 70.2, 71.1, 77.2, 73.0, 74.6, 77.2, 80.4, 127.4-128.5, 138.5, 138.8, 178.3. HRMS [M+Na] calcd. for $C_{31}H_{42}O_6Na$ 533.2873, found 533.2870. $R_f=0.7$ (6.5:3.5 Pet. Ether/ EtOAc) ## 48a ¹H NMR 500 MHz (C_6D_6) 1.0 (s, 3H), 1.3 (m, 1H), 1.5 (s, 3H), 1.7 (m, 3H), 1.8-2.1 (m, 5H), 2.25 (m, 1H), 2.98 (s, 3H), 3.5 (t, J= 6.1 Hz, 2H), 4.2 (d, J= 10.5 Hz, 1H), 4.26 (m, 1H), 4.28 (s, 2H), 4.38 (m, 1H), 4.6 (d, J= 6.0 Hz, 1H), 5.0 (d, J= 6.0 Hz, 1H), 5.04 (s, 1H), 7.12 (m, 1H), 7.18 (m, 2H), 7.3 (t, J= 7.5 Hz, 1H). ¹³C NMR125 MHz (C_6D_6) 24.5, 26.4, 27.9, 30.5, 34.0, 34.5, 36.5, 54.1, 67.5, 72.7, 75.5, 77.7, 82.6, 85.5, 89.0, 109.7, 111.8, 115.4, 127.5-128.3, 139.1. HRMS [M+Na] calcd. for $C_{24}H_{34}O_7Na$ 457.2196, found 457.2202 R_f = 0.7 (4:1 Pet. Ether/ EtOAc) ### 48b ^IH NMR 500 MHz (C_6D_6) 1.1 (s, 3H), 1.5 (s, 3H), 1.62 (m, 2H), 1.75 (m, 1H), 1.82 (m, 1H), 1.95 (m, 4H), 2.15 (m, 1H), 2.25 (m, 1H), 3.05 (s, 3H), 3.62 (m, 2H), 4.05 (m, 1H), 4.22 (m, 1H), 4.35 (s, 2H), 4.55 (d, J=10.1 Hz, 1H), 4.65 (d, J=6.0 Hz, 1H), 5.05 (d, J=6.0 Hz, 1H), 5.06 (s, 1H), 7.1 (t, J=8.0 Hz, 1H), 7.18 (m, 2H), 7.32 (d, J=8.0 Hz, 1H). ¹³C NMR125 MHz (C_6D_6) 27.4, 26.4, 29.0, 31.0, 35.3, 35.7, 37.8, 54.2, 67.8, 72.6, 77.3, 79.1, 82.8, 85.6, 90.8, 109.7, 111.8, 114.8, 127.2-128.4, 139.7. HRMS [M+Na] calcd. for $C_{24}H_{34}O_7Na$ 457.2196, found 457.2202. $R_f=0.6$ (4:1 Pet. Ether/ EtOAc) #### 49a ^IH NMR 500 MHz (C_6D_6) 1.18 (m, 4H), 1.25(s, 9H), 1.48 (m, 4H), 1.6 (m, 2H), 1.85 (m, 1H), 2.0 (dd, J= 12.1, 7.7 Hz, 1H), 2.07 (m, 1H), 2.2 (m, 1H), 2.98 (s, 3H), 3.9 (m, 1H), 4.0 (dd, J= 10.8, 2.3 Hz, 1H), 4.1 (m, 1H), 4.3 (m, 2H), 4.4 (d, J= 9.9 Hz, 1H), 4.95 (d, J= 6.0 Hz, 1H), 5.02 (s, 1H), 7.2 (m, 3H), 7.3 (d, J= 8.0 Hz, 2H). ¹³C NMR125 MHz (C_6D_6) 24.9, 26.8, 27.7, 28.4, 33.9, 38.9, 40.3, 54.8, 67.4, 70.0, 72.7, 80.7, 83.3, 86.0, 90.7, 107.6, 110.5, 112.4, 127.5-128.6, 139.8, 177.9. HRMS [M+Na] calcd. for $C_{29}H_{42}O_9Na$ 557.2721, found 557.2722. R_f = 0.8 (4:1 Pet. Ether/ EtOAc) #### 49h ¹H NMR 500 MHz (C_6D_6) 1.25 (m, 5H), 1.5 (s, 3H), 1.66 (m, 2H), 1.85-1.95 (m, 3H), 2.05 (m, 1H), 3.0 (s, 3H), 3.2 (m, 1H), 3.3 (m, 1H), 4.06 (dd, J= 11.3, 4.1 Hz, 1H), 4.2 (m, 1H), 4.25-4,35 (m, 3H), 4.5 (d, J= 6.0 Hz, 1H), 4.95 (d, J= 6.0 Hz, 1H), 5.05 (s, 1H), 7.18 (m, 3H), 7.28 (d, J= 7.8 Hz, 2H).). ¹³C NMR125 MHz (C_6D_6) 24.4, 26.3, 27.0, 27.4, 31.5, 33.7, 38.5, 40.6, 54.5, 66.5, 69.1, 69.3, 72.7, 77.8, 82.5, 85.5, 88.7, 107.6, 109.9, 111.8, 127.5-128.3, 139.0, 177.2. HRMS [M+Na] calcd. for $C_{29}H_{42}O_9Na$ 557.2721, found 557.2722. R_f = 0.7 (4:1 Pet. Ether/ EtOAc) ### 50a ¹H NMR (500 MHz, CDCl₃) δ 1.50-1.47 (m, 1H), 1.71-1.58 (ovrlp m, 4H), 1.92-1.80 (ovrlp m, 3H), 2.03-1.98 (m, 1H), 2.10-2.06 (m, 2H), 2.27-3.24 (dd, J = 5.0, 12.5Hz, 1H), 3.62-3.59 (ovrlp m, 2H), 3.68-3.66(dd, J = 1.7, 10.7Hz, 1H), 3.80-3.75 (ovrlp m, 2H), 3.92-3.88 (ddd, J = 1.8, 4.1, 9.9 Hz, 1H), 4.08-4.05 (m, 1H), 4.71-4.52 (m, 5H), 4.95-4.93 (d, J = 11.1 Hz, 1H), 7.38-7.27 (m, 15H); ¹³C NMR (125 MHz, CDCl₃) δ 20.2, 25.1, 35.3, 35.9, 36.1, 40.4, 62.3, 69.2, 71.8, 72.1, 73.3, 75.0, 78.4, 79.0, 107.1, 107.2, 127.4, 127.5, 127.6, 127.7, 127.8, 128.0, 128.3, 128.4, 138.4, 138.6, 138.7, ESIHRMS (M+Na)⁺ calculated for $C_{34}H_{40}O_6Na$ 567.2717, found 567.2723. $R_f = 0.3$ (4:1 Pet. Ether/ EtOAc) ## 50b ¹H NMR (500 MHz, CDCl₃) δ 1.83-1.76 (ovrlp m, 3H),1.95-1.90 (m, 1H), 2.08-2.06 (m, 1H), 2.15-2.11 (m, 1H), 2.21-2.18 (m, 1H), 2.33-2.29 (m, 1H), 3.68-3.66 (m, 2H), 3.74-3.72(m, 1H), 3.86-3.84 (ovrlp m, 2H), 3.98 (m, 1H), 4.00 (m, 1H), 4.70-4.54 (m, 5H), 4.93-4.91 (d, J = 11.1 Hz, 1H), 7.38-7.07(m, 15H); 13C NMR (125 MHz, CDCl₃) δ 20.0, 25.1, 35.1, 36.7, 37.3, 40.6, 62.8, 69.1, 71.8, 73.3, 73.4, 75.0, 78.4, 78.8, 107.4, 107.6, 121.8, 127.5, 127.6, 127.7, 127.8, 128.0, 128.1, 128.3, 128.4, 138.8; ESIHRMS (M+Na)⁺ calculated for $C_{34}H_{40}O_6Na$ 567.2717, found 567.2723. $R_f = 0.2$ (4:1 Pet. Ether/ EtOAc) ### 51a/b $^1\mathrm{H}$ NMR (CDCl₃) δ 1.20 (s, 9 H, major), 1.21 (s, 9H, minor), 1.66-1.77 (m, 2H), 1.88-1.95 (m, 2H), 2.02-2.13 (m 5H), 2.32 (tdd, J=2.9, 4.3, 17.3 Hz, 1H), 2.40 (qd, J=3.0, 17.3 Hz, 1H), 2.53 (tdd, J=2.5, 4.0, 17.6 Hz, 1H), 3.89-4.05 (m, 2H), 4.07-4.13 (m, 2H), 4.21 (dd, J=6.1, 11.1 Hz, 1H), 4.29 (dd, J=7.3, 10.8 Hz, 1H), 4.43 (br. 1H), 5.67-5.73 (m, 2H), 5.84-5.94 (m, 2H). $^{13}\mathrm{C}$ NMR (CDCl₃) δ 23.8 (major), 24.0 (minor), 27.3 (major), 27.4 (minor), 33.0 (major), 33.3 (minor), 36.5 (minor), 37.4 (major), 38.0 (major + minor), 65.8, 66.6, 67.8, 67.9, 68.1, 71.4, 105.0 (major), 105.1 (minor), 124.6, 124.7, 124.9, 125.4, 178.5 (major + minor). HRMS [M+Na] calcd. for $\mathrm{C_{14}H_{22}O_4}$ Na 277.1410, found 277.1413. $\mathrm{R_f} = 0.4$ (85:15 Pet. Ether/ EtOAc).