Electronic Supplementary Information

Cyclen-based bismacrocycles for biological anion recognition. A potentiometric and NMR study of AMP, ADP and ATP nucleotide complexation.

UMR CNRS 6521, "Chimie, Electrochimie Moléculaire et Analytique", Université de Bretagne Occidentale, C. S. 93837, 6 avenue Victor Le Gorgeu, 29238 Brest Cedex 3, France. Fax: 33 2 98016138; Tel: 33 2 98017001; E-Mail: Henri.Handel@univ-brest.fr.

Figure 1: Species distribution diagrams for the *BMC* and *BPyC* ligands as a function of p[H] (H₂O ; I = 0.1 M (NaCl) ; T = $25.0\pm0.2^{\circ}$ C ; [L]_{tot} = 10^{-3} M)

Figure 2: Species distribution diagrams for substrates (H_2O ; I = 0.1 M (*NaCl*); $T = 25.0 \pm 0.2 \degree C$; [*Anion*]_{tot} = $10^{-3} M$)

Table 1: Logarithm recognition constants, log K_{alh} , for the two bismacrocycles with AMP, ADP and ATP (I = 0.1 M (NaCl); T = 25°C).

Table 2: Logarithm recognition constants, log K_{alh} , for the two bismacrocycles with inorganic phosphates: orthophosphate, pyrophosphate, triphosphate (I = 0.1 M (NaCl); T = 25°C).

Figure 3: Species distribution diagrams for AMP with (a) BMC and (b) BPyC as a function of p[H]

Figure 4: Species distribution diagrams for *ADP* with (a) *BMC* and (b) *BPyC* as a function of p[H]

Figure 5: Species distribution diagrams for ATP with (a) BMC and (b) BPyC as a function of p[H]

Figure 6: Experimental ¹H chemical shifts for the proton of the *BMC*: ligand free and in presence of triphosphate.

Figure 7: Experimental ¹H chemical shifts for the proton of the *BPyC*: ligand free and in presence of triphosphate.

Figure 1: Species distribution diagrams for the *BMC* and *BPyC* ligands as a function of p[H] (H₂O; I = 0.1 M (NaCl); T = $25.0\pm0.2^{\circ}$ C; [L]_{tot} = 10^{-3} M)

Figure 2: Species distribution diagrams for substrates H_2O ; I = 0.1 M (NaCl); $T = 25.0 \pm 0.2 \,^{\circ}C$; $[Anion]_{tot} = 10^{-3} M$

BMC	AMP	ADP	ATP
A+L = AL			
A+L+H = ALH			
A+LH = ALH			
A+L+2H=ALH ₂	24.45	23.71	
A+LH ₂ =ALH ₂	3.18	2.44	
A+L+3H=ALH ₃	33.62(9.17)	32.76(9.05)	33.13
A+LH ₃ =ALH ₃	3.45	2.59	2.98
A+L+4H=ALH ₄	42.05(8.43)	41.44(8.68)	41.87(8.74)
A+LH ₄ =ALH ₄	3.91	3.30	3.73
A+L+5H=ALH5	48.20(6.15)	47.46(6.02)	47.83(5.96)
A+LH ₅ =ALH ₅			
AH+LH ₄ =ALH ₅	3.65	2.91	2.93
A+L+6H=ALH ₆	52.41(4.21)	52.12(4.66)	52.47(4.64)
AH+LH ₅ =ALH ₆			
AH ₂ +LH ₄ =ALH ₆	4.11	3.31	3.26
A+L+7H=ALH7	55.51(3.10)	54.53(2.41)	55.38(2.91)
AH ₂ +LH ₅ =ALH ₇	5.14	3.65	4.10
ВРуС			
A+L =AL			
A+L+H = ALH		14.01	
A+LH = ALH		2.93	
A+L+2H=ALH ₂	24.65	24.63(10.62)	24.56
A+LH ₂ =ALH ₂	3.43	3.41	3.34
A+L+3H=ALH ₃	34.01(9.36)	34.25(9.62)	34.83(10.27)
A+LH ₃ =ALH ₃	3.82	4.06	4.64
A+L+4H=ALH ₄	42.20(8.19)	42.92(8.67)	43.67(8.84)
A+LH ₄ =ALH ₄	4.17	4.89	5.64
A+L+5H=ALH5	48.38(6.18)	49.60(6.68)	51.58(7.91)
A+LH ₅ =ALH ₅			
AH+LH ₄ =ALH ₅	3.94	5.01	6.79
A+L+6H=ALH ₆	52.29(3.91)	54.02(4.42)	57.73(6.15)
AH+LH ₅ =ALH ₆			
AH ₂ +LH ₄ =ALH ₆	4.10	5.32	8.63
A+L+7H=ALH7	54.80(2.51)	56.76(2.74)	61.66(3.93)
AH2+LH5=ALH7	4.31	5.76	10.26

Table 1: Logarithm recognition constants, log K_{alh} , for the two bismacrocycles with AMP, ADP and ATP (I = 0.1 M (NaCl); T = 25°C).

		Ref 11	
ВМС	PO_{4}^{3-}	$P_2O_7^{4-}$	$P_{3}O_{10}^{5}$
A+LH = ALH		2.88	4.87
A+LH ₂ =ALH ₂		3.12	4.10
AH+LH=ALH ₂	3.19		
A+LH ₃ =ALH ₃		2.88	4.03
AH+LH ₂ =ALH ₃	2.92		
A+LH ₄ =ALH ₄			
AH+LH ₃ =ALH ₄	2.89	3.52	4.19
A+LH ₅ =ALH ₅			
AH+LH ₄ =ALH ₅	2.90	3.23	1.90
AH+LH5=ALH6			
AH ₂ +LH ₄ =ALH ₆		3.11	3.18
AH2+LH5=ALH7		4.24	4.33
BPyC			
A+LH = ALH		4.65	
A+LH ₂ =ALH ₂		4.52	3.71
AH+LH=ALH ₂	4.02		
A+LH ₃ =ALH ₃		4.47	4.22
AH+LH ₂ =ALH ₃	3.83		
A+LH ₄ =ALH ₄			
AH+LH ₃ =ALH ₄	3.80	4.45	5.18
A+LH5=ALH5			
AH+LH ₄ =ALH ₅	3.88	3.60	5.42
AH+LH5=ALH6			
AH ₂ +LH ₄ =ALH ₆	3.56	3.49	6.69
AH ₂ +LH ₅ =ALH ₇			10.10
AH3+LH5=ALH8			10.71

Table 2: Logarithm recognition constants, log K_{alh} , for the two bismacrocycles with inorganic phosphates: orthophosphate, pyrophosphate, triphosphate (I = 0.1 M (NaCl); T = 25°C).

Ref 11: S. Develay, R. Tripier, M. Le Baccon, V. Patinec, G. Serratrice, H. Handel, J. Chem. Soc. Dalton Trans. 2005, 3016.

Figure 3 Species distribution diagrams for AMP with (a) BMC and (b) BPyC as a function of

p[H]

Figure 4 Species distribution diagrams for ADP with (a) BMC and (b) BPyC as a function of p[H]

Figure 5 Species distribution diagrams for ATP with (a) BMC and (b) BPyC as a function of p[H]

Figure 6: Experimental ¹H chemical shifts for the proton of the *BMC*: ligand free and in presence of triphosphate.

Figure 7: Experimental ¹H chemical shifts for the proton of the *BPyC*: ligand free and in presence of triphosphate.