Electronic supplementary information

Metastable porous phase of *tert*-butylcalix[6]arene with large tunable free volume for nonthreshold enclathration of volatiles

Alexey V. Yakimov,^a Marat A. Ziganshin,^a Aidar T. Gubaidullin^b and Valery V. Gorbatchuk^{*a}

^a Institute of Chemistry, Kazan State University, Kremlevskaya 18, Kazan, 420008, Russia; Fax:
+7 843 2927418; Tel: +7 843 2315309; E-mail: Valery.Gorbatchuk@ksu.ru
^bA.E. Arbuzov Institute of Organic and Physical Chemistry, KSC RAS, 8 ul. Akad. Arbuzova,
420088 Kazan, Russia

Supplemental XRPD and TG-DSC data for different forms of *tert*-butylcalix[6]arene and its clathrates, vapor sorption isotherms of guests on α and β_0 forms of *tert*-butylcalix[6]arene.

All powder X-ray diffraction data (**XRPD**) were collected on Bruker *D*8 Advance diffractometer equipped with Vantec linear PSD, using Cu K α radiation (40 kV, 40 mA). No monochromation was employed. Room-temperature data were collected in the Bragg–Brentano mode with a flatplate sample. The sample was lightly grounded and loaded into a standard sample holder, which was kept spinning (30 rpm) throughout the data collection. Patterns were recorded in the 2 Θ range between 5 and 40°, in 0.007° steps, with a step time of 2 s. Five powder patterns were collected and summed for each sample.

Fig. S1 XRPD diffractogram of *tert*-butylcalix[6]arene clathrate with benzene (β -phase) prepared by saturation of host powder with guest vapor at 298 K.

Fig. S2 XRPD diffractogram of *tert*-butylcalix[6]arene clathrate with benzene (β-phase) calculated from single crystal X-ray data [M. Halit, D. Oehler, M. Perrin, A. Thozet, R. Perrin, J. Vicens, M. Bourakhouadar, *J. Inclusion Phenom. Macrocyclic Chem*, 1988, **6**, 613-623].

Fig. S3 XRPD diffractogram of *tert*-butylcalix[6]arene (α-phase).

Fig. S4 XRPD diffractogram of *tert*-butylcalix[6]arene (β_0 -phase).

Fig. S5 XRPD diffractogram of *tert*-butylcalix[6]arene (α'-phase).

Fig. S6 Isotherms of dichloromethane vapor sorption at 298 K by powder of (\triangle) α -phase of *tert*-butylcalix[6]arene (1), and (\blacktriangle) β_0 -phase of 1 prepared by heating of 1•3.49CCl₄ clathrate under vacuum (0.1 kPa) at 150°C for 8 h.

Fig. S7 The data of simultaneous TG/DSC analysis of pure *tert*-butylcalix[6]arene (α -phase). Heating rate 10 K min⁻¹

Fig. S8 The data of simultaneous TG/DSC analysis of *tert*-butylcalix[6]arene clathrate with Me₂CO. Heating rate 4 K min⁻¹

Fig. S9 The data of simultaneous TG/DSC analysis of *tert*-butylcalix[6]arene clathrate with CH₂Cl₂. Heating rate 4 K min⁻¹

Fig. S10 The data of simultaneous TG/DSC analysis of *tert*-butylcalix[6]arene clathrate with CH₃CN. Heating rate 4 K min⁻¹

Fig. S11 The data of simultaneous TG/DSC analysis of *tert*-butylcalix[6]arene clathrate with CCl₄. Heating rate 10 K min⁻¹

Fig. S12 The data of simultaneous TG/DSC analysis of *tert*-butylcalix[6]arene clathrate with CCl₄. Heating rate 4 K min⁻¹