Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008 ELECTRONIC SUPPLEMENTARY INFORMATION

Propensity for local folding induced by the urea fragment

in short chain oligomers

Lucile Fischer, Claude Didierjean, Franck Jolibois, Vincent Semetey, Jose Manuel Lozano, Jean-Paul Briand, Michel Marraud, Romuald Poteau, and Gilles Guichard

Page S3, Figure S1: Influence of the concentration and the solvent on the N-H stretching absorption in compound V series.

Page S3, Figure S2: Influence of DMSO- d_6 content in CDCl₃/DMSO- d_6 mixtures on the N²H proton resonances for **VI.1** and **V.1a**.

Page S4, Figure S3: Influence of DMSO- d_6 content in CDCl₃/DMSO- d_6 mixtures on the NH proton resonances for II.3 and II.4 .

Page S4, Figure S4: NOESY correlations demonstrating the cis, trans conformation of the N, N'-disubstituted urea fragment for **III.1** in CDCl₃.

Page S5, Figure S5: formulae of model compounds I.M and V.M used for DFT calculations.

Page S5, Figure S6: Average dimension of the N, N'-disubstituted urea fragment in ureidopeptides of type **C** and **D** as measured by X-ray diffraction.

Page S5, Figure S7: Urea-urea H-bond stabilizing the helical structure in oligoureas of the $H-(NH-CHR-CH_2-NH)_n-CO-NH_2$ type (stereoview), and also present as a minor conformer in triurea **VII**.

Page S6, Figure S8: Nomenclature used for the description of residues in compounds VI-VIII.

Page S7, Table S1: Calculated energetics, backbone torsion angles and hydrogen bond parameters for urea-peptide derivatives containing a gem-diamino residue (type A)

S1

This journal is (c) The Royal Society of Chemistry 2008 **Page S8, Table S2**: Calculated energetics, backbone torsion angles and hydrogen bond parameters for urea-peptide derivatives having two sp3 carbons in the main chain (type **B**).

Page S9, Table S3: Crystal data and structure refinement

Pages S10-S13, Table S4-S12: NMR Chemical Shifts for VI.2, VII and VIII in DMSO- d_6 and CDCl₃/DMSO- d_6 (70:30) + TMS

Figure S1. Influence of the concentration and the solvent on the N-H stretching absorption in compound V series. NH stretch region FT-IR data for compound V.1b in CCl_4 at 2, 0.2 and 0.04 mM(left) and in CH_2Cl_2 at 2 mM (right).

Figure S2. Influence of DMSO- d_6 content in CDCl₃/DMSO- d_6 mixtures on the N²H proton resonances for VI.1 (heavy line) and V.1a (broken line).

Figure S3. Influence of DMSO- d_6 content in CDCl₃/DMSO- d_6 mixtures on the NH proton resonances for II.3 (left) and II.4 (right).

Figure S4. NOESY correlations demonstrating the cis, trans conformation of the N, N'-disubstituted urea fragment for III.1 in CDCl₃.

V.M

Figure S5: formulae of model compounds I.M and V.M used for DFT calculations.

Figure S6. Average dimensions of the N, N'-disubstituted urea fragment.

Figure **S7.** Urea-urea H-bond stabilizing the helical structure in oligoureas of the H-(NH-CHR-CH₂-NH)_n-CO-NH₂ type (stereoview), and also populated in tetraurea **VIII**.

RAS N B HRe H^{Si}

Figure S8. Nomenclature used for the description of residues in compounds VI-VIII

Table S1. Calculated energetics, backbone torsion angles and hydrogen bond parameters for ureapeptide derivatives containing a gem-diamino residue.

	u-I	u'-I	C6A-I	C6A'-I	C6B-I	C6B′-I	C6C-I	C6D-I	C6D′-I	C8-I	C8′-I
						I.M					
$\Delta ext{E}^{[a]}$			4.0	0.8	4.2	0.9	5.8	5.3	1.9	5.7	0.0
Δ G° ^[a]			3.1	0.3	3.6	0.1	5.6	4.6	1.3	5.8	0.0
φ ^r ^[b]			-55.5	53.3	-177.2	-75.0	55.6	-177.0	-81.4	75.4	-84.6
Ψ ^[b]			170.9	74.8	57.7	-55.1	71.2	56.9	-53.6	-100.3	108.1
r_{hb} (H•••O)			2.099	2.326	2.206	2.486	2.385	2.188	2.402	1.878	1.948
θ(N- H•••O) ^[b]			129.6	116.6	122.9	106.4	116.6	123.5	110.0	168.8	167.5
						I.3a					
$\Delta extsf{E}^{[a]}$	4.4	4.2	3.9	3.8	4.4	3.3	5.3	5.3	3.4	6.6	0.0
Δ.G° ^[a]	3.3	2.8	3.5	2.6	3.8	2.5	5.0	4.9	3.5	7.6	0.0
•	-161.5	-83.4	-52.6	52.8	-173.4	-93.3	53.9	-173.7	-102.4	70.0	-78.6
$\mathbf{\hat{\Psi}}^{\text{\tiny{[b]}}}$	112.8	154.7	168.3	75.4	60.5	-52.4	132.4	56.9	-57.2	-108.6	112.3
, γ _{hb} c] (H●●●O) [[]	-		2.004	2.438	2.079	2.269	2.390	2.036	2.134	1.898	1.998
θ (N- H•••O) ^[b]	_		133.7	112.8	126.9	116.2	115.3	128.8	120.7	166.5	164.8

[a] in kcal/mol

[b] in degrees [c] in Å

This journal is (c) The Royal Society of Chemistry 2008

Table S2. Calculated energetics, backbone torsion angles and hydrogen bond parameters for ureapeptide derivatives having two sp³ carbons in the main chain.

	u-V	C7A-V	C7B-V	C7C-V	C7D-V	//-V	C9-V
				v.1	м		
$\Delta extsf{E}^{ extsf{a}}$	0.3	-1.9	-3.0	1.6	-2.2	-2.7	0.0
$\Delta_{}$ G° ^[a]	2.5	-4.2	-4.4	-0.5	-3.4	-3.5	0.0
• ^[b]	-79.1	-74.9	-158.2	-90.1	-158.2	-86.9	-97.3
$v^{[b]}$	170.9	78.4	-71.8	60.7	-71.6	48.8	46.9
$\Psi^{\text{[b]}}$	107.5	116.3	82.0	167.3	82.6	-102.2	87.8
$r_{hh}(H \bullet \bullet \circ)^{[c]}$	-	1.954	1.976	2.144	1.968	2.310	1.965
θ (N-	-	148.9	150.5	143.0	150.7	128.5	164.2
H●●●O) ^[b]							
				v.2	a		
$\Delta extsf{E}^{ extsf{a}}$	-1.7	-1.5	-3.3	1.2	-2.4	-2.0	0.0
$\Delta_{}$ G° ^[a]	-2.7	-3.4	-3.3	-0.5	-2.2	-1.9	0.0
$\Phi_{[p]}$	-77.6	-80.1	-160.6	-89.2	-160.8	-84.8	-94.3
$v^{[b]}$	169.6	75.0	-62.5	60.5	-61.8	41.7	46.7
$\Psi^{\text{\tiny{[b]}}}$	104.4	125.6	84.5	172.2	85.2	-105.3	89.1
$r_{\rm hb} (\mathrm{H} \bullet \bullet \circ \mathrm{O})^{[\mathrm{c}]}$	-	2.030	2.048	2.189	2.020	2.279	1.993
θ (N-	-	150.1	148.4	141.5	149.1	132.2	161.9
H●●●O) ^[b]							

[a] in kcal/mol

[b] in degrees [c] in Å

This journal is (c) The Royal Society of Chemistry 2008

Table S3. Crystal data and structure refinement

	I.1b	I.3c	I.4b	II.1'a	II.2	V.la	V.1c	VI.2
formula	$C_{14}H_{29}N_{3}O_{3}$	$C_{17}H_{27}N_{3}O_{4}$	$C_{13}H_{25}N_{3}O_{3}$	$C_{17}H_{32}N_4O_3$	$C_{_{26}}H_{_{40}}N_{_4}O_{_6}$	$C_{16}H_{25}N_{3}O_{3}$	$C_{_{17}}H_{_{27}}N_{_{3}}O_{_{3}}$	$C_{_{19}}H_{_{24}}N_{_4}O_{_2}$
Mr	287.4	337.42	271.36	340.47	504.62	307.39	321.42	340.42
Wavelength λ (Å)	1.5406	0.71073	0.71073	0.71073	0.71073	0.71073	1.5406	1.5406
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	orthorhombic	monoclinic	orthorhombic	triclinic
space group	P2(1)/c	<i>P</i> 2(1)	P2(1)/c	<i>P</i> 2(1)	P2(1)2(1)2(1)	<i>C</i> 2	P2(1)2(1)2(1)	<i>P</i> 1
a (Å)	12.169(6)	10.1826(8)	9.4284(2)	10.1850(12)	9.3903(7)	20.565(5)	5.241(1)	4.675(2)
b (Å)	9.397(3)	9.5473(7)	15.8240(3)	9.4470(7)	16.069(1)	5.223(1)	17.883(3)	9.497(2)
<i>c</i> (Å)	16.467(2)	10.2926(11)	21.0020(5)	10.571(2)	19.446(2)	17.230(4)	19.356(2)	10.809(3)
α∙•deg•	90	90	90	90	90	90	90	76.78(2)
β ••deg•	103.86(3)	103.133(3)	98.536(1)	103.216(4)	90	105.921(8)	90	81.59(3)
γ••deg•	90	90	90	90	90	90	90	77.55(2)
Z / Z'	4 / 1	2 / 1	8 / 2	2 / 1	4 / 1	4 / 1	4 / 1	1 / 1
volume $(Å^3)$	1828(1)	974.4(2)	3098.7(1)	990.2(2)	2934.3(4)	1779.7(7)	1814.1(5)	453.8(3)
$D_{_{calc}}$ (g cm ⁻³)	1.044	1.15	1.163	1.142	1.142	1.147	1.177	1.246
μ (mm ⁻¹)	0.593	0.082	0.083	0.079	0.081	0.08	0.656	0.666
2θ scan range \bullet deg \bullet	7.48- 129.88	5.08-46.38	4.36-51.0	7.66-50.04	5.02-41.32	4.12-46.46	6.72-139.66	8.44- 139.58
range <i>h</i>	0 to 14	-11 to 11	-11 to 11	-12 to 12	-9 to 9	-22 to 22	0 to 6	-5 to 5
range k	0 to 11	-9 to 9	-19 to 19	-11 to 11	-15 to 15	-5 to 5	0 to 21	-11 to 11
range <i>l</i> reflns	-19 to 18	-11 to 11	-25 to 25	-12 to 12	-19 to 19	-18 to 18	0 to 23	-13 to 13
collected	3249	4334	11307	15160	7886	4290	2026	3348
unique reflns	3097	1461	5770	1857	1660	1410	2026	1723
R _{int} R1, wR2 [<i>I</i> >	0.09 0.0656, 0.1825	0.042 0.0642, 0.1654	0.044 0.0517, 0.128	0.043 0.045, 0.1102	0.079 0.0441, 0.0809	0.096 0.0856, 0.2327	0 0.0503, 0.1307	0.0518 0.0461, 0.1039

Table S4.	¹ H-NMR	Chemical	Shifts	(in ppm)	of	VI.2	in	DMSO-d	at 🕯	298K	(400	MHz))
-----------	--------------------	----------	--------	----------	----	------	----	--------	------	------	------	------	---

N <i>H</i> Bn	NH	Ν'Η	N <i>H</i> Me	lpha CH	$\Delta \delta$ (^{δ} CH)	$^{\beta}$ CH	CH_2 Ph (Bn)	$^{\gamma}$ CH	CH_3
6.38	6.00	5.90	5.85	3.07, 2.96	0.11	3.79	4.17	2.72, 2.62	2.54

¹H-NMR Chemical Shifts (in ppm) of **VI.2** in $CDCl_3/DMSO-d_6$ (70:30) at 298K (400 MHz) Table S5. $^{\alpha}$ CH $^{\beta}$ CH $\Delta \delta$ (^{α}CH) CH_2Ph (Bn) $^{\gamma}$ CH N*H*Bn NH Ν'Η N*H*Me CH_3 5.81 5.83 5.70 3.16, 2.96 0.20 3.92 4.27 2.77 (d) 2.66 6.22

Table S6. Evolution of the NH resonance (ppm) for **VI.2** in DMSO- d_6 and CDCl₃/DMSO- d_6 (70:30) at 298K

Δδ	(N <i>H</i> Bn)	$\Delta\delta$ (NH)	∆δ (NH′)	∆δ (N <i>H</i> Me)
	0.16	0.19	0.07	0.15

This journal is (c) The Royal Society of Chemistry 2008

Table S7. ¹H-NMR Chemical Shifts (in ppm) of VII in DMSO- d_6 at 298K (500 MHz)

Residue	N <i>H</i> Bn	NH	Ν'Η	N <i>H</i> Me	lpha CH	Δδ (^α CH)	^β CH	CH_2 Ph (Bn)	ΥCH	CH_3
1	-	5.94	5.92	5.86	3.13, 2.85	0.28	3.82	-	3.74	2.49
2	6.41	5.94	6.01	-	3.10, 2.86	0.24	3.88	4.28, 4.20	3.81	-

Table S8. ¹H-NMR Chemical Shifts (in ppm) of **VII** CDCl₃/DMSO- d_6 (70:30) at 298K (500 MHz)

Residue	NHBn	NH	Ν'Η	N <i>H</i> Me	°СН	∆ð (°CH)	^P CH	CH ₂ Ph (Bn)	'CH	CH ₃
1	-	5.83	5.80	5.73	3.30, 2.90	0.40	4.00	-	2.74	2.58
2	6.28	5.81	5.88	-	3.30, 2.86	0.44	3.92	4.31, 4.22	2.73	-

Table S9. Evolution of the NH resonance (ppm) for **VI.2** in DMSO- d_6 and CDCl₃/DMSO-d6 (70:30) at 298K

Residue $\Delta \delta$	(N <i>H</i> Bn)	$\Delta\delta$ (NH)	$\Delta \delta$ (NH')	∆δ (N <i>H</i> Me)
1	-	0.11	0.12	0.13
2	0.13	0.13	0.13	-

Table S10. ¹H-NMR Chemical Shifts (in ppm) of **VIII** in DMSO- d_6 at 298K (500 MHz)

Residue	N <i>H</i> Bn	NH	N′H	N <i>H</i> Me	lpha CH	Δδ (^α CH)	^β CH	CH ₂ Ph (Bn)	^ү СН	CH_3
1	_	5.93	6.02	5.96	3.27, 2.73	0.54	3.71	-	2.55, 2.43	2.55
2	-	5.93	5.84	-	3.24, 2.47	0.77	3.81	-	2.64, 2.55	-
3	6.47	6.02	6.13	_	3.20, 2.73	0.47	3.95	4.22, 4.11	2.68, 2.55	-
Table S1	1 . ¹ H-N	MR Chem	ical Shi	fts (in	ppm) of VII	I CDCl ₃ /D	MSO- <i>d6</i>	(70:30) at 2	298K (400 MHz)
Residue	N <i>H</i> Bn	NH	Ν'Η	N <i>H</i> Me	lpha CH	$\Delta \delta$ (^{α} CH)	^β CH	CH_2 Ph (Bn)	ΎСН	CH_3
1	-	5.91	6.07	6.01	3.59, 2.71	0.88	3.89	-	2.55, 2.48	2.70
2	_	5.68	5.77	-	3.53, 2.24	1.29	4.06	-	2.67, 2.60	-
3	6.37	5.85	6.19	_	3.46, 2.56	0.90	4.18	4.31, 4.16	2.72, 2.56	_

This journal is (c) The Royal Society of Chemistry 2008

Table S12. Evolution of the NH resonance (ppm) for **VIII** in DMSO-d6 and CDCl₃/DMSO- d_6 (70:30) at 298K

Residue A	∆δ (N <i>H</i> Bn)	$\Delta\delta$ (NH)	Δδ (NH′)	∆ð (N <i>H</i> Me)
1	_	0.02	-0.05	-0.05
2	_	0.25	0.07	_
3	0.10	0.17	-0.06	_