Supplementary data for:

Synthesis of 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones; selective antagonists of muscarinic $\left(\mathbf{M}_{3}\right)$ receptors

Benjamin Bradshaw, Paul Evans, Jane Fletcher, Alan T. L. Lee, Paul G. Mwashimba, Daniel Oehlrich and Eric J. Thomas*
The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
e-mail: e.j.thomas@manchester.ac.uk
Robin H. Davies and Benjamin C. P. Allen
Muscagen Limited, 10, North Road, Cardiff, CF10 3DY
Kenneth J. Broadley, Amar Hamrouni, Christine Escargueil
The Welsh School of Pharmacy, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB

Experimental

General

Flash column chromatography was performed using Merck silica gel ($60 \mathrm{H} ; 40-60 \mu, 230-240$ mesh $)$. Light petroleum was redistilled before use and refers to the fraction boiling between 40 and $60^{\circ} \mathrm{C}$. Tetrahydrofuran was dried over sodium-benzophenone and was distilled prior to use. Dichloromethane was dried over CaH_{2} and was distilled before use. Ether refers to diethyl ether. Reactions under nonaqueous conditions were carried out under an atmosphere of nitrogen or argon.

Electron impact (EI) or chemical ionisation using ammonia (CI) mass spectra were recorded using a Fisons VG Trio 200 spectrometer and high resolution mass spectra on a Kratos Concept IS spectrometer. Infra-red spectra were measured using a Genesis FTIR spectrometer on NaBr plates, either neat or as evaporated films unless otherwise stated. Nuclear magnetic resonance spectra were recorded in deuteriated chloroform unless otherwise indicated on either a Varian Unity 500 (500 MHz), Varian INOVA $300(300 \mathrm{MHz})$, or a Varian Gemini $200(200 \mathrm{MHz})$ spectrometer. Coupling constants (J) are given in Hertz (Hz) and chemical shifts relative to tetramethylsilane.

2-(tert-Butoxycarbonylaminomethyl)-1,3-dithiane 5

1,3-Propanedithiol ($2 \mathrm{~cm}^{3}, 19.92 \mathrm{mmol}$) then boron trifluoride diethyl etherate ($11 \mathrm{~cm}^{3}, 89.44 \mathrm{mmol}$) were added to 2,2-diethoxyethylamine $\mathbf{8}(3 \mathrm{~g}, 22.52 \mathrm{mmol})$ in dichloromethane ($50 \mathrm{~cm}^{3}$). After 15 h ,
aqueous sodium hydroxide ($2.5 \mathrm{M}, 100 \mathrm{~cm}^{3}$) was added and the mixture stirred vigorously for 1 h . The aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$) and the combined organic extracts washed with brine $\left(100 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration under reduced pressure, the residue was dissolved in dichloromethane ($50 \mathrm{~cm}^{3}$) then Boc-anhydride ($5.4 \mathrm{~g}, 24.74 \mathrm{mmol}$) and triethylamine ($3.5 \mathrm{~cm}^{3}, 25.11 \mathrm{mmol}$) in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ were added. After 2 days, water (50 cm^{3}) and aqueous hydrogen chloride $\left(1 \mathrm{M}, 25 \mathrm{~cm}^{3}\right)$ were added, the phases were separated and the aqueous phase was extracted with dichloromethane $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography using light petroleum : ethyl acetate ($5: 1$) as eluent gave the carbamate 5 as a white solid ($3.54 \mathrm{~g}, 63 \%$), further purified by recrystallisation from hexane, m.p. $71{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{5} 75-76{ }^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.85 and 1.99 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.67(2 \mathrm{H}$, ddd, $J 3,9,14)$, $2.82(2 \mathrm{H}$, ddd, $J 3,7,14), 3.43(2 \mathrm{H}, \mathrm{t}, J$ $\left.6.5, \mathrm{CH}_{2}\right), 3.92(1 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH})$ and $4.92(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}) ; m / z(\mathrm{CI}) 250\left(\mathrm{M}^{+}+1,10 \%\right), 211(50), 150$ (75) and 119 (100).

2-tert-Butyldimethylsilyloxymethyl- N -methoxy- N -methylbenzamide 6

Trimethylaluminium (2 M in hexane, $32 \mathrm{~cm}^{3}, 64.5 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ dropwise over ca. 0.25 h to a suspension of N, O-dimethylhydroxylamine hydrochloride ($6.29 \mathrm{~g}, 64.5 \mathrm{mmol}$) in dichloromethane (60 cm^{3}). During the addition a vigorous gas evolution ensued. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, phthalide ($4.32 \mathrm{~g}, 32.2 \mathrm{mmol}$) in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added and the stirring was continued for 7 h . The mixture was allowed to warm to room temperature before saturated aqueous sodium potassium tartrate ($100 \mathrm{~cm}^{3}$) was added. After extraction with dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$), the organic extracts were washed with brine $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was dissolved in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ and tert-butyldimethylsilyl chloride ($4.9 \mathrm{~g}, 32.2$ mmol) and imidazole ($4.4 \mathrm{~g}, 64.5 \mathrm{mmol}$) were added. After stirring for 15 h , water ($100 \mathrm{~cm}^{3}$) and dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ were added. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($5: 1 \rightarrow 3: 1$) gave the title compound $6\left(5.93 \mathrm{~g}, 60 \%\right.$) as a clear liquid (Found: $\mathrm{M}^{+}+\mathrm{H}, 310.1835 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{Si}$ requires $M, 310.1838$); $v_{\max } 3064,1650,1463,1416,1383,1257,1119$ and $1081 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.00\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.84\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.44\left(3 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NCH}_{3}\right)$, $4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.16-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31(1 \mathrm{H}, \mathrm{dt}, J 2.5,7.5, \mathrm{ArH})$ and $7.45(1 \mathrm{H}, \mathrm{d}, J 7.5$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.40,18.39,25.92,33.64,61.00,62.54,126.43,126.86,129.38,132.70$, 138.80 and $169.71 ; m / z(\mathrm{CI}) 310\left(\mathrm{M}^{+}+1,100 \%\right)$.

2-(tert-Butoxycarbonyamino)methyl-2-[(2-tert-butyldimethylsilyloxymethyl)phenyl]cyclobutyl-hydroxymethyl-[1,3]-dithiane 10

n-Butyllithum (1.35 M in hexanes, $2.65 \mathrm{~cm}^{3}, 3.58 \mathrm{mmol}$) was added to the dithiane $5(446 \mathrm{mg}, 1.79$ mmol) in THF $\left(9 \mathrm{~cm}^{3}\right)$ under argon at $-40^{\circ} \mathrm{C}$ and the solution stirred for 2 h gradually being warmed to $-20{ }^{\circ} \mathrm{C}$. N, N-Dimethylpropyleneurea (DMPU) $\left(0.76 \mathrm{~cm}^{3}, 6.26 \mathrm{mmol}\right)$ was added and the mixture stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ then transferred via cannula into a solution of the cyclobutyl ketone $7(247 \mathrm{mg}$, $0.895 \mathrm{mmol})$ in THF $\left(4.5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ gradually being warmed to room temperature. After 15 h , saturated aqueous ammonium chloride ($25 \mathrm{~cm}^{3}$) was added and the mixture was extracted with ethyl acetate $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate as eluent $(9: 1)$ gave recovered ketone $7(127 \mathrm{mg}, 51 \%)$ and the title compound $10(209 \mathrm{mg}, 42 \%)$ as a clear viscous oil (Found: $\mathrm{M}^{+}, 553.2716 . \mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Si}$ requires M, 553.2716); $v_{\max } 3435,3361,3060,1712,1495$, $1365,1255,1171,1029$ and $839 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.04$ and 0.21 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}$), 0.87 $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.32-1.41(2 \mathrm{H}, \mathrm{m}), 1.38\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.46-1.58(2 \mathrm{H}, \mathrm{m}), 1.71(1 \mathrm{H}, \mathrm{sex}, J 9$, $\mathrm{CH}), 1.79$ and 1.95 (each $1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{dt}, J 4.5,14.5, \mathrm{CH}), 2.37-2.52(2 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{ddd}, J$ $3.5,10.5,14, \mathrm{SCH}), 2.92(1 \mathrm{H}$, ddd, $J 3,11,14, \mathrm{SCH}$), 3.52 ($1 \mathrm{H}, \mathrm{dd}, J 3,14.5$, CHN), 3.53 (1 H , pent, J 9), 3.76 ($1 \mathrm{H}, \mathrm{dd}, J 8,14.5, \mathrm{CHN}$), 4.41 and 5.44 (each $1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{CHO}$), 5.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 6.08 (1 $\mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.06(1 \mathrm{H}, \mathrm{dd}, J 2,7.5, \mathrm{ArH}), 7.11-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.58(1 \mathrm{H}, \mathrm{dd}, J 1.5,7.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $-5.42,-4.97,17.54,24.03,24.61,24.73,25.66,25.76,26.72,28.38,42.83,44.77$, 68.66, 78.64, 85.98, 126.94, 127.37, 130.61, 131.70, 138.51, 140.42 and 156.60; $m / z(E I) 553\left(\mathrm{M}^{+}\right.$, 2%), 422 (5), 305 (20), 173 (100) and 119 (50).

2-(tert-Butoxycarbonylamino)methyl-2-(2-hydroxymethylphenyl)cyclobutylhydroxymethyl-[1,3]dithiane 11

Tetra- n-butylammonium fluoride in THF ($1 \mathrm{M}, 0.23 \mathrm{~cm}^{3}, 0.230 \mathrm{mmol}$) was added to the silyl ether $\mathbf{1 0}$ $(125 \mathrm{mg}, 0.227 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After 15 min , ether $\left(15 \mathrm{~cm}^{3}\right)$ and water $\left(15 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with ether $\left(15 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with brine $\left(15 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($3: 1 \rightarrow 1: 1$) as eluent gave the title compound $\mathbf{1 1}(71 \mathrm{mg}, 71 \%)$ as a clear viscous oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 440.1919 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}_{2}$ requires M, 440.1929); δ_{H} (300 MHz , $\left.\mathrm{CDCl}_{3}\right) 1.31(1 \mathrm{H}, \mathrm{m}), 1.35\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.41-1.74(4 \mathrm{H}, \mathrm{m}), 1.78-1.85(2 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{dt}, J$ $4.5,14.5), 2.40(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{dt}, J 4,14.5), 2.71(1 \mathrm{H}, \mathrm{ddd}, J 3.5,10,14), 2.84(1 \mathrm{H}, \mathrm{ddd}, J 3.5$,

11, 14.5), $3.52\left(1 \mathrm{H}\right.$, pent, J 8), $3.55-3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.49(1 \mathrm{H}, \mathrm{dd}, J 6.5,11.5, \mathrm{OCH}), 5.26(1 \mathrm{H}$, dd, $J 5.5,11.5, \mathrm{OCH}), 5.39(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 5.51(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.09-7.22(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.55(1 \mathrm{H}$, dd, $J 1.5,7.5, \mathrm{ArH}) ; m / z(\mathrm{CI}) 440\left(\mathrm{M}^{+}+1,30 \%\right), 340(25)$ and 173 (100).

2-(tert-Butoxycarbonylamino)methyl-2-[2-(tert-butyldimethylsilyloxymethyl)benzoyl]-[1,3]dithiane 12

Following the procedure described above for the preparation of the dithiane 10, the amide $\mathbf{6}(451 \mathrm{mg}$, $1.46 \mathrm{mmol})$ in THF ($6 \mathrm{~cm}^{3}$) and dithiane $5(727 \mathrm{mg}, 2.92 \mathrm{mmol})$ in THF ($6 \mathrm{~cm}^{3}$), deprotonated using n butyllithium (1.6 M in hexanes, $3.65 \mathrm{~cm}^{3}, 5.84 \mathrm{mmol}$), gave the title compound $\mathbf{1 2}(501 \mathrm{mg}, 69 \%)$, as a colourless oil, after chromatography using light petroleum : ethyl acetate (5:1) as eluent (Found: $\mathrm{M}^{+}+\mathrm{H}, 498.2160 . \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Si}$ requires M, 498.2168); $v_{\max } 3438,1714,1681,1497,1366,1249$, $1168,1124,1079,840$ and $777 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.84[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.34\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.84-1.97(2 \mathrm{H}, \mathrm{m}), 2.78-2.94(4 \mathrm{H}, \mathrm{m}), 3.69\left(2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCH}_{2}\right)$, $4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.16(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{d}$, $J 7.5, \mathrm{ArH})$ and $8.01(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.32,18.40,23.75,25.98,26.76,28.25$, 45.72, 59.95, 62.82, 79.48, 125.91, 127.06, 128.03, 130.62, 135.25, 140.24, 156.15 and 200.4; m/z (CI) $498\left(\mathrm{M}^{+}+1,10 \%\right), 442(20), 369(40), 145(80), 133(80), 106(95)$ and $91(100)$.

2-(tert-Butyldimethylsilyloxymethyl)benzyl chloride 14

2-tert-Butyldimethylsilyloxymethylbenzyl alcohol $\mathbf{1 3}^{14}(19.5 \mathrm{~g}, 0.077 \mathrm{~mol})$ in dichloromethane ($50 \mathrm{~cm}^{3}$) and pyridine $(9.5 \mathrm{~cm}, 0.118 \mathrm{~mol})$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ were added simultaneously to thionyl chloride $\left(8.5 \mathrm{~cm}^{3}, 0.117 \mathrm{~mol}\right)$ in dichloromethane $\left(250 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After 0.5 h , water $\left(150 \mathrm{~cm}^{3}\right)$ and aqueous hydrogen chloride ($1 \mathrm{M}, 35 \mathrm{~cm}^{3}$) were added. The aqueous layer was extracted with dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ and the organic extracts washed with brine $\left(100 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration under reduced pressure, chromatography using light petroleum : ethyl acetate (19:1) gave the title compound $\mathbf{1 4}(9.7 \mathrm{~g}, 53 \%)$ as a yellow oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 271.1298 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OClSi}$ requires $M, 271.1285) ; v_{\max } \tilde{1}^{1} . . \quad$.. $1 \quad .11 \quad .{ }^{1} \quad .11 \quad . .111 \quad$ anḍı $\quad ; \quad \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.00(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{SiCH}_{3}\right), 0.85\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.62$ and $4.80\left(\right.$ each $\left.2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.16-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.29 $(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.31,18.33,25.91,43.65,62.63,127.52,127.64,128.79$, 129.92, 134.59 and 139.74; $m / z(C I) 288,290\left(\mathrm{M}^{+}+18,60\right.$ and $\left.20 \%\right)$ and 271, $273\left(\mathrm{M}^{+}+1,100,33\right)$.

2-(tert-Butoxycarbonylamino)methyl-2-(2-tert-butyldimethylsilyloxymethylphenyl)methyl-[1,3]dithiane 15

Following the procedure described above for the preparation of the dithiane $\mathbf{1 0}$ with deprotonation of the dithiane 5 ($975 \mathrm{mg}, 3.92 \mathrm{mmol}$) in THF ($50 \mathrm{~cm}^{3}$) using n-butyllithium (1.6 M in hexanes, $4.9 \mathrm{~cm}^{3}, 7.84$ $\mathrm{mmol})$ and DMPU ($1.5 \mathrm{~cm}^{3}, 12.41 \mathrm{mmol}$), the chloride $14(677 \mathrm{mg}, 2.84 \mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$) gave, after 30 min at $-78{ }^{\circ} \mathrm{C}$ and chromatography using light petroleum : ethyl acetate (5:1), the title compound 15 ($919 \mathrm{mg}, 67 \%$) as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 484.2353 . \mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{SiS}_{2}$ requires M,
 $0.02\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.82\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.36\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.65$ and 1.88 (each $1 \mathrm{H}, \mathrm{m}, 5-$ H), $2.46(2 \mathrm{H}, \mathrm{dt}, J 3.5,14.5,2 \times \mathrm{SCH}), 2.89(2 \mathrm{H}, \mathrm{dd}, J 12,14.5,2 \times \mathrm{SCH}), 2.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 3.56$ $\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{2} \mathrm{~N}\right), 4.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6, \mathrm{NH}), 7.08-7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.26 and 7.33 (each $1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH}$); $m / z(\mathrm{CI}) 484\left(\mathrm{M}^{+}+1,10 \%\right), 352$ (60), 296 (85), 252 (100) and 146 (95)

2-(tert-Butoxycarbonylamino)methyl-2-(2-hydroxymethylphenyl)methyl-[1,3]-dithiane 16

Following the procedure outlined for the synthesis of the alcohol 11, the silyl ether $\mathbf{1 5}(1.1 \mathrm{~g}, 2.28$ mmol) in THF ($40 \mathrm{~cm}^{3}$) with tetra- n-butylammonium fluoride (1 M in THF, $2.25 \mathrm{~cm}^{3}, 2.25 \mathrm{mmol}$), after chromatography using light petroleum : ethyl acetate (1:1), gave the title compound $\mathbf{1 6}$ ($746 \mathrm{mg}, 89 \%$) as a viscous oil (Found: C, $58.95 ; \mathrm{H}, 7.55 ; \mathrm{N}, 3.85 ; \mathrm{S}, 17.4 \% ; \mathrm{M}^{+}, 369.1433 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires C , 58.5; H, 7.3; N, 3.8; S, 17.3\%; M, 369.1432); $v_{\max } \quad{ }^{1}$.. .. $1 \quad 1$.. ${ }^{1}$.11 .. $1 \quad 7.111$. 111 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.45\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.82$ and 2.05 (each $\left.1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right), 2.38(1 \mathrm{H}$, br. s, $\mathrm{OH}), 2.62(2 \mathrm{H}, \mathrm{dt}, J 4,14.5,2 \times \mathrm{SCH}), 3.03(2 \mathrm{H}, \mathrm{dd}, J 13,14.5,2 \times \mathrm{SCH}), 3.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 3.70$ $\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{NCH}_{2}\right), 4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 5.20(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.26-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.42-7.50(2 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.26,26.35,28.32,39.84,44.79,53.80,63.11,79.80,127.36$, 127.62, 129.30, 132.04, 132.94, 140.20 and 164.55; m/z (EI) 369 ($\mathrm{M}^{+}, 60 \%$), 308 (50) and 124 (100).

2-(tert-Butoxycarbonylamino)methyl-2-(2-formylphenyl)methyl-[1,3]-dithiane 17

Pre-activated manganese dioxide ($5.9 \mathrm{~g}, 67.82 \mathrm{mmol}$ was added to the alcohol $\mathbf{1 6}(5 \mathrm{~g}, 12.55 \mathrm{mmol})$ in dichloromethane ($125 \mathrm{~cm}^{3}$) and the mixture stirred for 24 h at room temperature then filtered through Celite ${ }^{\circledR}$. The solid residue was washed with dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$) and, after concentration of the extracts under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (3:1) gave the title compound $\mathbf{1 7}\left(3.5 \mathrm{~g}, 70 \%\right.$) as a viscous oil (Found: $\mathrm{M}^{+}, 367.1282 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $M, 367.1276) ; v_{\max } 3420,3067,1700,1506,1426,1368,1254$ and $1166 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$
$\mathrm{MHz}) 1.41\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 1.65$ and $1.95($ each $1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.48(2 \mathrm{H}, \mathrm{dt}, J 4,14.5,2 \times \mathrm{SCH}), 2.90$ ($2 \mathrm{H}, \mathrm{dd}, J 12,14.5,2 \times \mathrm{SCH}$), $3.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right)$, $3.51\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{NCH}_{2}\right), 5.18(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.32-$ $7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.81(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH})$ and $10.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.04$, $26.20,28.30,38.75,45.12,53.73,79.60,127.80,131.28,132.88,133.77,135.40,136.72,156.20$ and 192.25; m/z (CI) 385 ($\mathrm{M}^{+}+18,15 \%$), 368 ($\mathrm{M}^{+}+1,20$), 350 (75), 329 (79), 312 (70), 268 (55), 250 (100) and 237 (52). Starting alcohol $\mathbf{1 6}(524 \mathrm{mg}, 11 \%)$ was then eluted off the column.

4,4-Propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 19

Aqueous hydrogen chloride ($4.5 \mathrm{M}, 14 \mathrm{~cm}^{3}$, ca. 65 mmol) in ethyl acetate $\left(10 \mathrm{~cm}^{3}\right)$ was added to the aldehyde $17(2.4 \mathrm{~g}, 6.54 \mathrm{mmol})$ in ethyl acetate $\left(150 \mathrm{~cm}^{3}\right)$. After 5 h , ether $\left(150 \mathrm{~cm}^{3}\right)$ and water (100 cm^{3}) were added, and the mixture basified using aqueous sodium hydroxide (1 M) to $c a . p \mathrm{H} 11$. Following extraction with ether ($3 \times 150 \mathrm{~cm}^{3}$), the organic extracts were dried (MgSO_{4}) and concentrated under reduced pressure to give the imine 18; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.85-2.12(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $2.79(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}), 2.92-3.05(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}), 2.97\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}\right), 3.80\left(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, 3-\mathrm{H}_{2}\right)$, 7.19-7.38 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $8.68(1 \mathrm{H}$, br. s, 1-H). Sodium cyanoborohydride ($1.23 \mathrm{~g}, 19.6 \mathrm{mmol}$) and concentrated aqueous hydrogen chloride ($c a .0 .5 \mathrm{~cm}^{3}$) were added to the imine $\mathbf{1 8}$ ($c a .6 .54 \mathrm{mmol}$) in methanol $\left(100 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 2 h . Ether $\left(100 \mathrm{~cm}^{3}\right)$, water $\left(100 \mathrm{~cm}^{3}\right)$ and aqueous sodium hydroxide $(1 \mathrm{M})$ were added until the $p \mathrm{H}$ was $c a$. 10 . The aqueous layer was extracted with ether ($3 \times 100 \mathrm{~cm}^{3}$) and the ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under reduced pressure. Chromatography of the residue using ether containing triethylamine (1\%) gave the title compound 19 ($1.2 \mathrm{~g}, 73 \%$) as a viscous yellow oil (Found: M^{+}, 251.0798. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NS}_{2}$ requires M, 251.0802); $v_{\text {max }} 3395,3065,1462,1382$ and $1095 ; \delta_{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.89$ and 2.10 (each $1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}\right), 2.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.60-2.72$ and 2.80-2.95 (each $2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}$), 3.36, 3.55 and 3.99 (each 2 H , $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 7.11(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.18-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.27,26.08,47.62$, $50.66,53.39,54.45,59.98,126.99,127.28,127.69,130.98,135.31$ and $142.24 ; m / z(E I) 251\left(\mathrm{M}^{+}, 60 \%\right)$ and 145 (100).

2-tert-Butoxycarbonyl-4,4-propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 20

Boc-anhydride ($1.00 \mathrm{~g}, 4.58 \mathrm{mmol}$) was added to the tetrahydrobenzazepine $19(1.03 \mathrm{~g}, 4.10 \mathrm{mmol})$ and triethylamine $\left(0.9 \mathrm{~cm}^{3}, 6.46 \mathrm{mmol}\right)$ in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ and the mixture stirred at room temperature for 18 h before ether $\left(100 \mathrm{~cm}^{3}\right)$ and water $\left(100 \mathrm{~cm}^{3}\right)$ were added. The aqueous layer was extracted with ether $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under
reduced pressure. Chromatography using light petroleum : ethyl acetate (5:1) as eluent gave the title compound $20(1.45 \mathrm{~g}, 100 \%)$ as a colourless solid recrystallised from ethyl acetate, m.p. $96-98{ }^{\circ} \mathrm{C}$ (Found: C, 61.65; H, 7.95; N, 4.0; S, 18.1\%; M ${ }^{+}$, 351.1330. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires C, 61.5; H, 7.1; N, 4.0; S, 18.2%; $M, 351.1327$); $v_{\text {max }} 3065,1693,1456,1410,1367,1246,1167$ and $1140 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, CDCl_{3}; spectrum poorly resolved due to rotamers) $1.50\left[9 \mathrm{H}\right.$, br. s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.84$ and 2.10 (each 1 H , $\mathrm{m}, 5$ '-H), 2.49-2.75 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{sCH}$), 2.91-3.32 ($4 \mathrm{H}, \mathrm{m}$), 3.86-4.52 ($4 \mathrm{H}, \mathrm{m}$) and 7.14-7.35 (4 H, m, $\mathrm{ArH}) ; m / z(\mathrm{EI}) 351\left(\mathrm{M}^{+}, 10 \%\right), 295$ (20), 250 (30) and 146 (100).

2-(4-Methylphenylsulfonyl)-4,4-propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 21

Toluene p-sulfonyl chloride ($835 \mathrm{mg}, 4.38 \mathrm{mmol}$) was added to the tetrahydrobenzazepine $\mathbf{1 9}(1.00 \mathrm{~g}$, $3.98 \mathrm{mmol})$ in pyridine $\left(35 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 24 h before being concentrated under reduced pressure. Ether $\left(100 \mathrm{~cm}^{3}\right)$ and aqueous hydrogen chloride ($3.45 \mathrm{M}, 100 \mathrm{~cm}^{3}$) were added and the aqueous layer extracted with ether ($3 \times 100 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Recrystallisation of the residue from methanol gave the title compound 21 ($1.09 \mathrm{~g}, 68 \%$) as a colourless solid, m.p. $146-147^{\circ} \mathrm{C}$ (Found: C, $59.15 ; \mathrm{H}, 6.1 ; \mathrm{N}, 3.45$; S, $23.9 \% ; \mathrm{M}^{+}$, 405.0894. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.5 ; \mathrm{S}, 23.7 \% ; M, 405.0891$); $v_{\max } 3062,1693,1450,1342,1163$ and $1092 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.79$ and 2.06 (each $\left.1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.57(2 \mathrm{H}, \mathrm{dt}, J 14.5,4,2 \times \mathrm{SCH}), 2.99(2 \mathrm{H}, \mathrm{ddd}, J 2.5,12,14.5,2 \times \mathrm{SCH}), 3.14(2$ $\left.\mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}\right), 3.86\left(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, 3-\mathrm{H}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 6.96(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{ArH}), 7.08-7.14(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, $7.22(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH})$ and $7.69(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.46,24.93,26.47$, $46.78,49.52,53.02,57.80,127.29,127.61,127.93,128.46,129.61,131.05,135.20,136.40,136.80$ and 143.80; $m / z(\mathrm{CI}) 423\left(\mathrm{M}^{+}+18,80 \%\right)$ and $406\left(\mathrm{M}^{+}+1,100\right)$.

2-Phenylmethyl-4,4-propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 22

Sodium triacetoxyborohydride ($157 \mathrm{mg}, 0.741 \mathrm{mmol}$) was added to the tetrahydrobenzazepine 19 (62 $\mathrm{mg}, 0.247 \mathrm{mmol}$) and benzaldehyde ($28 \mu \mathrm{~L}, 0.276 \mathrm{mmol}$) in tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature and the mixture stirred for 24 h before ether ($25 \mathrm{~cm}^{3}$) was added. After washing with sodium hydroxide ($1 \mathrm{M}, 25 \mathrm{~cm}^{3}$), the aqueous layer was re-extracted with ether ($3 \times 25 \mathrm{~cm}^{3}$) and the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under reduced pressure. Preparative TLC of the residue using light petroleum : ethyl acetate (1:1) gave the title compound 22 ($55 \mathrm{mg}, 66 \%$) as a yellow oil (Found: M^{+}, 341.1275. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NS}_{2}$ requires $\mathrm{M}, 341.1272$); $v_{\max } 3065,3028,1494,1454,1426,1261$, 1149 and $1101 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.87\left(2 \mathrm{H}\right.$, pent, $\left.J 6,5^{\prime}-\mathrm{H}_{2}\right), 2.55-2.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 3.35$,
3.44, 3.74 and 3.81 (each $\left.2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.90(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.08-7.31(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) $25.41,26.41,46.24,51.64,58.17,60.16,66.83,126.91,127.02,127.08,128.23,128.78,129.19$, 130.36, 136.68, 139.49 and 139.66; $m / z(E I) 341$ ($\mathrm{M}^{+}, 15 \%$), 250 (50) and 91 (100).

2-tert-Butoxycarbonyl-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 23

Boron trifluoride diethyletherate ($5.3 \mathrm{~cm}^{3}, 41.82 \mathrm{mmol}$), red mercuric oxide ($4.37 \mathrm{~g}, 20.18 \mathrm{mmol}$) and water ($8.5 \mathrm{~cm}^{3}$) were added to the dithiane $20(2.98 \mathrm{~g}, 8.49 \mathrm{mmol})$ in THF $\left(85 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred for 2 h then ether $\left(250 \mathrm{~cm}^{3}\right)$ and saturated aqueous sodium bicarbonate $\left(250 \mathrm{~cm}^{3}\right)$ were added. The aqueous layer was extracted with ether $\left(4 \times 150 \mathrm{~cm}^{3}\right)$ and organic extracts were washed with brine $\left(250 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under reduced pressure. Recrystallisation using ether gave the title compound $23(1.90 \mathrm{~g}, 86 \%)$ as a colourless crystalline solid, m.p. $82-83{ }^{\circ} \mathrm{C}$ (Found: C, 69.25 ; H, 7.25 ; N, $5.35 \% . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 69.0$; H, 7.3; $\mathrm{N}, 5.4 \%$. Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 279.1713$. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M, 279.1708); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3010$, $1725,1694,1421,1396,1368,1265,1160,910$ and $733 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; major and minor rotamers, ratio $60: 40) 1.37\left[3.6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.41\left[5.4 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.77\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}\right), 3.98(1.2$ $\left.\mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right), 4.06\left(0.8 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right), 4.71\left(0.8 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 4.86\left(1.2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right)$ and 6.98-7.23 (4 H, m, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.15,28.22,29.59,30.20,48.36,48.47,51.08,51.76,55.66,56.24,81.00$, 81.19, 127.38, 127.53, 127.59, 127.70, 128.00, 129.69, 139.96, 131.18, 134.75, 135.13, 154.65, 155.32, 206.45 and 206.93; m/z (CI) $279\left(\mathrm{M}^{+}+18,65 \%\right)$, $262\left(\mathrm{M}^{+}+1,30\right)$ and 223 (100). Chromatography of the concentrated mother liquor after the recrystallisation of $\mathbf{2 3}$ using light petroleum : ethyl acetate (5:1) as eluent gave more tetrahydrobenzazepin-4-one $\mathbf{2 3}$ ($90 \mathrm{mg}, 4 \%$).

2-(4-Methylphenyl)sulfonyl-2,3,4,5-tetrahydro-[1H]-2-benzazepine-4-one 24

Following the procedure outlined for the synthesis of 23, dithiane $21(783 \mathrm{mg}, 1.93 \mathrm{mmol})$ was treated with boron trifluoride diethyl etherate ($1.2 \mathrm{~cm}^{3}, 9.47 \mathrm{mmol}$) and red mercuric oxide ($994 \mathrm{mg}, 4.59$ $\mathrm{mmol})$ in aqueous THF ($20 \mathrm{~cm}^{3}$; THF : water, 10:1) to give the title compound $24(438 \mathrm{mg}, 72 \%)$ as a colourless solid after recrystallisation from ethyl acetate and petroleum ether (40:60), m.p. 138-140 ${ }^{\circ} \mathrm{C}$ (Found: C, 64.45; H, 5.15; N, 4.50; S, 10.35\%; M ${ }^{+}$, 315.0932. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 64.8 ; \mathrm{H}, 5.4 ; \mathrm{N}$, 4.4; S, $10.2 \% ; M, 315.0929) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) 3055,1728,1349,1265$ and $1164 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.88,3.91$ and 4.61 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), 6.96-7.09 and 7.14-7.19 (each 2 H , $\mathrm{m}, \mathrm{ArH})$ and 7.23 and 7.62 (each $2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.62,48.36,52.71,57.06$,
126.98, 127.63, 127.93, 128.09, 129.92, 130.17, 131.07, 132.94, 135.11, 143.99 and 204.24; m / z (CI) $333\left(\mathrm{M}^{+}+18,15 \%\right), 316\left(\mathrm{M}^{+}+1,5\right)$ and $162(100)$.

2-Phenylmethyl-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one $\mathbf{2 5}$

Following the procedure outlined for the synthesis of ketone $\mathbf{2 3}$, the dithiane $\mathbf{2 2}(62 \mathrm{mg}, 0.182 \mathrm{mmol})$ was treated with boron trifluoride diethyletherate $\left(0.11 \mathrm{~cm}^{3}, 0.868 \mathrm{mmol}\right)$ and red mercuric oxide (93 $\mathrm{mg}, 0.429 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ and water $\left(0.2 \mathrm{~cm}^{3}\right)$ to give after 5 h and preparative TLC using light petroleum : ethyl acetate (1:1) containing triethylamine (1\%) as eluent, the title compound $\mathbf{2 5}$ (38 mg , 84%) as a viscous yellow oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 252.1388 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}$ requires $M, 252.1388$); $v_{\max }$ $\left(\mathrm{CDCl}_{3}\right) 3054,1719,1422,1265,909$ and $745 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.32,3.59,4.01$ and 4.03 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), $6.93(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.03-7.14(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.17-7.29 $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 49.58, $60.05,60.56,65.43,126.94,127.35,127.37,128.40,128.76,128.80,130.39$, 131.09, 136.14, 137.95 and 206.85; $m / z(\mathrm{CI}) 252\left(\mathrm{M}^{+}+1,100 \%\right)$.

2-tert-Butoxycarbonyl-4-triethylsilyloxy-2,3-dihydro-[1H]-2-benzazepine 26

The ketone 23 ($654 \mathrm{mg}, 2.51 \mathrm{mmol}$), triethylamine ($0.73 \mathrm{~cm}^{3}, 5.24 \mathrm{mmol}$) and triethylsilyl trifluoromethanesulfonate $\left(0.68 \mathrm{~cm}^{3}, 3.01 \mathrm{mmol}\right)$ were stirred at room temperature in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ for 15 h . Ether $\left(50 \mathrm{~cm}^{3}\right)$ and saturated aqueous sodium bicarbonate $\left(50 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($9: 1$) containing triethylamine (0.5%) as eluent gave the enol ether $\mathbf{2 6}(612 \mathrm{mg}, 65 \%)$ as a clear oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; a mixture of rotamers, ratio 60 : 40) $0.55\left(2.4 \mathrm{H}, \mathrm{q}, J 8,3 \times \mathrm{SiCH}_{2}\right), 0.81(3.6$ $\left.\mathrm{H}, \mathrm{q}, J 8,3 \times \mathrm{SiCH}_{2}\right), 0.97\left(3.6 \mathrm{H}, \mathrm{t}, J 8,3 \times \mathrm{CH}_{3}\right), 1.06\left(5.4 \mathrm{H}, \mathrm{t}, J 8,3 \times \mathrm{CH}_{3}\right), 1.36[5.4 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.43\left[3.6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.34\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.36\left(0.8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.95$ ($0.6 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}$), $5.98(0.4 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.05-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z(\mathrm{CI}) 393\left(\mathrm{M}^{+}+18,25 \%\right), 376$ $\left(\mathrm{M}^{+}+1,30\right), 337(40), 320(50)$ and $132(100)$.

2-(4-Methylphenylsulfonyl)-4-triethylsilyloxy-2,3-dihydro-[1H]-2-benzazepine 27

The ketone 24 ($34 \mathrm{mg}, 0.108 \mathrm{mmol}$), triethylamine ($17 \mu \mathrm{l}, 0.122 \mathrm{mmol}$) and triethylsilyl trifluoromethanesulfonate ($27 \mu \mathrm{~L}, 0.119 \mathrm{mmol}$) were heated in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ under reflux for 15 min . Ether $\left(10 \mathrm{~cm}^{3}\right)$ and saturated aqueous sodium bicarbonate $\left(10 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ then
concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (9:1) containing triethylamine (1%) gave the enol ether $27(31 \mathrm{mg}, 67 \%)$ as a colourless oil (Found: M^{+}, 429.1794. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SSi}$ requires M, 429.1793); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.58(6 \mathrm{H}, \mathrm{q}, J 8$, $\left.3 \times \mathrm{SiCH}_{2}\right), 0.99\left(9 \mathrm{H}, \mathrm{t}, J 8,3 \mathrm{xCH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 4.23$ and 4.48 (each $\left.2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.65(1$ H, s, 5-H), $6.76(1 \mathrm{H}, \mathrm{dd}, J 1.5,7, \mathrm{ArH}), 7.01(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.07-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{dd}$, $J 2,7, \mathrm{ArH})$ and $7.30(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; m / z(\mathrm{EI}) 429\left(\mathrm{M}^{+}, 25 \%\right)$ and 273 (100).

N-(2-Ethenylphenylmethyl)prop-2-enylamine 30

Prop-2-enylamine $\left(0.32 \mathrm{~cm}^{3}, 4.34 \mathrm{mmol}\right)$ and magnesium sulfate $(2 \mathrm{~g})$ were added to 2 ethenylbenzaldehyde $29(520 \mathrm{mg}, 3.94 \mathrm{mmol})$ in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ and the solution stirred at room temperature for 18 h , then filtered and the solvent removed under reduced pressure. The residue was taken up in methanol $\left(20 \mathrm{~cm}^{3}\right)$ and sodium borohydride ($150 \mathrm{mg}, 3.97 \mathrm{mmol}$) was added. The mixture was stirred for 1 h before the volume was reduced to approximately half under reduced pressure and ether $\left(50 \mathrm{~cm}^{3}\right)$ and aqueous sodium hydroxide $\left(1 \mathrm{M}, 50 \mathrm{~cm}^{3}\right)$ were added. The aqueous layer was extracted with ether ($3 \times 50 \mathrm{~cm}^{3}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave the amine $\mathbf{3 0}(410 \mathrm{mg}, 61 \%)$ as an oil which was used without purification; $v_{\max }$ $3325,3069,3016,1639,1627,1482,1450$ and $1414 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.35(2 \mathrm{H}, \mathrm{dd}, J 1,6.5$, $\left.1-\mathrm{H}_{2}\right), 3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 5.16-5.28\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 5.39\left(1 \mathrm{H}, \mathrm{d}, J 11,2^{\prime \prime}-\mathrm{H}\right), 5.78\left(1 \mathrm{H}, \mathrm{d}, J 17,2^{\prime \prime}-\right.$ $\left.\mathrm{H}^{\prime}\right)$, $5.99(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{dd}, J 11,17,1 "-\mathrm{H}), 7.22-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.53-7.61(1 H, m, ArH); m/z (CI) 174 ($\mathrm{M}^{+}+1,100 \%$).

N-(2-Ethenylphenyl)methyl- N-prop-2-enyl 2-nitrobenzene sulfonamide 32

2-Nitrophenylsulfonyl chloride $(0.71 \mathrm{~g}, 3.20 \mathrm{mmol})$ was added to the amine $30(0.53 \mathrm{~g}, 3.06 \mathrm{mmol})$, triethylamine ($0.64 \mathrm{~cm}^{3}, 4.59 \mathrm{mmol}$) and 4-dimethylaminopyridine (ca. 4 mg) in dichloromethane (35 cm^{3}) and the solution stirred at room temperature for 1.5 h . Silica (ca. 3 g) was added and the mixture concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (3:1) as eluent gave the title compound $\mathbf{3 2}$ ($924 \mathrm{mg}, 85 \%$) as a colourless viscous oil (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 376.1337 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires M, 376.1331); $v_{\max } 3089$, 3024, 1543, 1372, 1353, 1163, $1126,1065,916,852$ and $774 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.92\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{NCH}_{2}\right), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right)$, 5.03-5.16 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), 5.31 ($\left.1 \mathrm{H}, \mathrm{d}, J 11,2 "-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{d}, J 17,2^{2}-\mathrm{H}^{\prime}\right), 5.62$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 6.98 (1 H, dd, $J 11,17,1 "-H), 7.21-7.34$ (3 H, m, ArH), $7.47(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}), 7.61-7.76$ (3 H, m, ArH) and 7.98 ($1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 48.13,49.56,116.89,119.35,124.09,126.26,127.80$,
128.06, 129.03, 131.00, 131.58, 131.92, 133.36, 133.57, 133.83, 137.48 and $147.78 ; \mathrm{m} / \mathrm{z}$ (CI) 376 $\left(\mathrm{M}^{+}+18,60 \%\right), 359\left(\mathrm{M}^{+}+1,30\right), 172(80)$ and $117(100)$.

2,3-Dihydro-[1H]-2-benzazepine 35

Potassium carbonate ($233 \mathrm{mg}, 1.69 \mathrm{mmol}$), thiophenol ($60 \mu \mathrm{~L}, 0.584 \mathrm{mmol}$) and 18-crown-6 (trace) added to the N-(2-nitrophenylsulfonyl)dihydrobenzazepine 34 ($171 \mathrm{mg}, 0.518 \mathrm{mmol}, 1 \mathrm{eq}$.) in N, N dimethylformamide $\left(6 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 4 h . Ethyl acetate $\left(25 \mathrm{~cm}^{3}\right)$ and water $\left(25 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer was extracted with ethyl acetate ($4 \times 25 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (5:1) containing triethylamine (1\%) gave the title compound $\mathbf{3 5}$ (63 mg , 84%) as a clear oil (Found: $\mathrm{M}^{+}, 145.0889 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}$ requires $M, 145.0891$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.90$ (1 H , br. s, NH), $3.78\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 4.01\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 5.94(1 \mathrm{H}, \mathrm{dt}, J 12.5,3.5,4-\mathrm{H}), 6.48(1 \mathrm{H}, \mathrm{dt}, J$ $12.5,2.5,5-\mathrm{H})$ and $7.02-7.33(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 52.99,54.60,126.64,126.95,127.58$, 129.17, 131.06, 134.65, 135.72 and $141.90 ; m / z(\mathrm{CI}) 163\left(\mathrm{M}^{+}+18,5 \%\right)$ and $146\left(\mathrm{M}^{+}+1,100\right)$.

(4SR,5RS)-4,5-Dihydroxy-2-(4-methylphenyl)sulfonyl-2,3-dihydro-[1H]-2-benzazepine 36

N-Methylmorpholine- N-oxide ($41 \mathrm{mg}, 0.350 \mathrm{mmol}$) and osmium tetraoxide ($2 \mathrm{mg}, 7.9 \times 10^{-3} \mathrm{mmol}, 2.5$ $\mathrm{mol} \%$) were added to the dihydrobenzazepine $\mathbf{3 3}(95 \mathrm{mg}, 0.318 \mathrm{mmol})$ in acetone $\left(2 \mathrm{~cm}^{3}\right)$ and water (2 cm^{3}). The reaction mixture was stirred for 24 h at room temperature before dichloromethane ($25 \mathrm{~cm}^{3}$) and water $\left(25 \mathrm{~cm}^{3}\right)$ were added. The aqueous layer was extracted with dichloromethane ($2 \times 25 \mathrm{~cm}^{3}$) and the organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration under reduced pressure, chromatography using light petroleum : ethyl acetate ($1: 1 \rightarrow 1: 2$) gave the title compound $\mathbf{3 6}(61 \mathrm{mg}, 58 \%)$ as a colourless solid (Found: M^{+}, 333.1027. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 333.1035$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, J 8,13.5,3-\mathrm{H}), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J 3.5,13.5,3-\mathrm{H}^{\prime}\right), 3.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 4.31 and 4.53 (each $1 \mathrm{H}, \mathrm{d}, J 15,1-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.11-7.34(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.53(2 \mathrm{H}, \mathrm{d}, J$ 8, ArH); $m / z(\mathrm{CI}) 351\left(\mathrm{M}^{+}+18,5 \%\right), 333\left(\mathrm{M}^{+}, 10\right), 316(10), 178(40)$ and $160(100)$.

(4RS,5SR)-4,5-Dihydroxy-2-(2-nitrophenyl)sulfonyl-2,3,4,5-tetrahydro-[1H]-2-benzazepine $\mathbf{3 7}$

Following the procedure described for the synthesis of diol 36, the dihydrobenzazepine $34(7.16 \mathrm{~g}, 21.7$ mmol), N-methylmorpholine- N -oxide ($3.00 \mathrm{~g}, 25.6 \mathrm{mmol}$) and osmium tetraoxide ($110 \mathrm{mg}, 0.43 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) gave, after washing with saturated aqueous sodium sulfite ($50 \mathrm{~cm}^{3}$) and chromatography using light petroleum : ethyl acetate $(1: 1 \rightarrow 1: 2)$, the title compound $37(6.50 \mathrm{~g}, 82 \%)$ as a light brown syrup
which solidified gradually (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 382.1072 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires M, 382.1072); $v_{\max }$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3496,3055,1546,1371,1265$ and $1165 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.41(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{OH})$, $2.60(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.71-3.82\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 4.13(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.52$ and 4.75 (each $1 \mathrm{H}, \mathrm{d}, J 15.5,1-$ H), $5.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.28-7.45(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.62-7.77$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.98(1 \mathrm{H}, \mathrm{d}, J 8$, ArH$)$; $m / z(\mathrm{CI}) 382\left(\mathrm{M}^{+}+18,20 \%\right)$ and $180(100)$.

2-Butyl-4,5-dihydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepine 39

Following the procedure outlined for the preparation of the tetrahydrobenzazepine 35, the 2-(2nitrophenyl)sulfonyltetrahydrobenzazepine $37(819 \mathrm{mg}, 2.25 \mathrm{mmol})$ potassium carbonate ($1.01 \mathrm{~g}, 7.31$ $\mathrm{mmol})$ and thiophenol $\left(0.26 \mathrm{~cm}^{3}, 2.53 \mathrm{mmol}\right)$ in acetonitrile $\left(30 \mathrm{~cm}^{3}\right)$ after stirring for 15 h gave the dihydroxytetrahydrobenzazepine 38. This was dissolved in THF $\left(15 \mathrm{~cm}^{3}\right)$ and butyraldehyde $\left(0.30 \mathrm{~cm}^{3}\right.$, 3.40 mmol), sodium triacetoxyborohydride ($715 \mathrm{mg}, 3.37 \mathrm{mmol}$) and glacial acetic acid ($64 \mu \mathrm{~L}, 1.12$ $\mathrm{mmol})$ were added. After stirring for 24 h , ether ($20 \mathrm{~cm}^{3}$) and water ($25 \mathrm{~cm}^{3}$) were added and the aqueous layer was basified to $p \mathrm{H} 10$ using sodium hydroxide $(2.5 \mathrm{M})$. The aqueous phase was extracted with ether ($3 \times 25 \mathrm{~cm}^{3}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (1:2) containing triethylamine (1\%) gave the title compound 39 ($242 \mathrm{mg}, 46 \%$) as a colourless solid recrystallised as plates from ether (Found: C, $71.0 ; \mathrm{H}, 8.0 ; \mathrm{N}, 5.95 \% . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 71.5 ; \mathrm{H}, 8.2 ; \mathrm{N}, 6.0 \%$. Found: $\mathrm{M}^{+}+\mathrm{H}, 236.1653 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}$ requires $M, 236.1650$); $v_{\max }\left(\mathrm{CDCl}_{3}\right) 3368,3072,3024,1545$, 1454 and $1378 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.5,4^{\prime}-\mathrm{H}_{3}\right), 1.36\left(2 \mathrm{H}, \mathrm{sex}, J 7.5,3^{\prime}-\mathrm{H}_{2}\right), 1.57$ (2 H , pent, $J 7.5,2^{\prime}-\mathrm{H}_{2}$), 2.49-2.65 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}$), 2.98 and 3.19 (each $1 \mathrm{H}, \mathrm{dd}, J 3.5,13.5,3-\mathrm{H}$), 3.64 ($1 \mathrm{H}, \mathrm{d}, J 15,1-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{d}, J 15,1-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{d}, J 2,5-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{m}$, ArH), 7.22-7.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (CI) $236\left(\mathrm{M}^{+}+1,100 \%\right)$.

(2-tert-Butyldimethylsilyloxymethylphenyl)cyclobutylcarbinol 42

tert-Butyldimethylsilyl chloride ($0.79 \mathrm{~g}, 5.24 \mathrm{mmol}$) in N, N-dimethylformamide $\left(2.1 \mathrm{~cm}^{3}\right)$ was added to the diol $41(1.00 \mathrm{~g}, 5.21 \mathrm{mmol})$ and imidazole $(0.53 \mathrm{~g}, 7.78 \mathrm{mmol})$ in N, N-dimethylformamide $\left(5.2 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$ over a period of 20 min . The mixture was stirred for 2 h at $-10{ }^{\circ} \mathrm{C}$ then deionised water (50 cm^{3}) was added and the aqueous phase extracted with ethyl acetate ($3 \times 100 \mathrm{~cm}^{3}$). The organic extracts were washed with deionised water ($3 \times 50 \mathrm{~cm}^{3}$), brine $\left(50 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration under reduced pressure, chromatography eluting with light petroleum : ethyl acetate ($9: 1$) gave the title compound $42(1.27 \mathrm{~g}, 80 \%)$ as an oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 307.2099 . \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}$ requires $M, 307.2093$);
$v_{\text {max }} 3065,3028,1472,1255,1071,838$ and $776 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.02$ and 0.06 (each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.82\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.56-1.88(4 \mathrm{H}, \mathrm{m}), 1.94-2.18(2 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}$, sex, $J 8, \mathrm{CH}), 2.84$ $(1 \mathrm{H}$, br. s, OH$), 4.62(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{OHCH}), 4.74(1 \mathrm{H}, \mathrm{d}, J 8,1-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{OHCH})$ and 7.10-7.27 (4 H, m, ArH); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$-5.31, $-5.23,17.89,18.25,24.69,25.30,25.86,39.77$, 64.20, 74.35, 126.28, 127.34, 127.90, 128.70, 138.29 and $141.09 ; m / z(\mathrm{CI}) 324\left(\mathrm{M}^{+}+18,1 \%\right), 307$ $\left(\mathrm{M}^{+}+1,2\right), 289$ (20) and 157 (100).

2-(1-Cyclobutylethenyl)phenylmethanol 44

Tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.9 \mathrm{~cm}^{3}, 0.90 \mathrm{mmol}$) was added to a solution of the silyl ether 43 ($269 \mathrm{mg}, 0.89 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature and the mixture stirred for 2 h . Ether (15 cm^{3}) and water $\left(25 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with ether ($2 \times 25 \mathrm{~cm}^{3}$). The ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (19:1 $\rightarrow 5: 1$) afforded the title compound 44 ($139 \mathrm{mg}, 83 \%$) as a clear oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 189.1277$. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}$ requires $M, 189.1279$); $v_{\max } 3335,3065,3023,1634,1446,1194,1034,901$ and 763 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.55-1.67(1 \mathrm{H}$, m), 1.71-2.01 ($5 \mathrm{H}, \mathrm{m}$), $3.13(1 \mathrm{H}$, pent, $J 8, \mathrm{CH}), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.83$ and 5.11 (each $1 \mathrm{H}, \mathrm{d}, J 1$, $\left.2^{\prime \prime}-\mathrm{H}\right), 6.99(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH}), 7.11-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.36(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 17.58, 27.93, 42.10, 63.16, 112.42, 127.07, 127.10, 128.00, 128.47, 137.65, 141.75 and 152.23; $m / z(\mathrm{CI}) 206\left(\mathrm{M}^{+}+18,15 \%\right), 188\left(\mathrm{M}^{+}, 20\right)$ and $171(100)$.

2-(1-Cyclobutylethenyl)benzaldehyde 45

A suspension of manganese dioxide $(4.40 \mathrm{~g}, 50.61 \mathrm{~mol})$ and alcohol $44(1.90 \mathrm{~g}, 10.11 \mathrm{~mol})$ in dichloromethane $\left(60 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 48 h then filtered through Celite ${ }^{\circledR}$ and the residue was washed with dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$). After concentration under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (19:1) as the eluent gave the title compound 45 ($1.75 \mathrm{~g}, 93 \%$) as a clear liquid (Found: $\mathrm{M}^{+}+\mathrm{H}, 187.1121 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}$ requires $M, 187.1122$); $v_{\max } 3084,1694,1596,1479,1446,1391,1261$ and $1195 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.66-1.77(1 \mathrm{H}$, m), 1.79-2.13 ($5 \mathrm{H}, \mathrm{m}$), $3.31\left(1 \mathrm{H}\right.$, pent, $J 8, \mathrm{CH}$), 4.96 and 5.37 (each $1 \mathrm{H}, \mathrm{d}, J 1.5,2^{\prime}-\mathrm{H}$), $7.25(1 \mathrm{H}, \mathrm{d}, J$ $7.5, \mathrm{ArH}), 7.37$ and $7.52(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.93(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH})$ and $10.18(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; $\delta_{\mathrm{C}}(75$ $\mathrm{M}, \mathrm{CDCl}_{3}$) $17.59,27.75,42.26,115.66,127.21,127.35,128.94,133.25,133.70,146.34,149.20$ and 192.41; $m / z(\mathrm{CI}) 204\left(\mathrm{M}^{+}+18,15 \%\right), 187\left(\mathrm{M}^{+}+1,60\right), 186\left(\mathrm{M}^{+}, 70\right)$ and $169(100)$.

\boldsymbol{N}-[2-(1-Cyclobutylethenyl)phenyl]methyl prop-2-enylamine 46

Prop-2-enylamine $\left(0.45 \mathrm{~cm}^{3}, 6.00 \mathrm{mmol}\right)$ was added to the aldehyde $45(540 \mathrm{mg}, 2.90 \mathrm{mmol})$ and magnesium sulfate $(c a .5 \mathrm{~g})$ in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred for 24 h then filtered and concentrated under reduced pressure. The residue was dissolved in methanol $\left(20 \mathrm{~cm}^{3}\right)$ and sodium borohydride ($164 \mathrm{mg}, 4.33 \mathrm{mmol}$) was added. After stirring for 2 h , dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ and water $\left(50 \mathrm{~cm}^{3}\right)$ were added and the mixture basified to $p \mathrm{H} 10$ using aqueous sodium hydroxide (2.5 M). The aqueous phase was extracted with dichloromethane (3×50 $\left.\mathrm{cm}^{3}\right)$ and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave the title compound 46 ($600 \mathrm{mg}, 91 \%$) as a yellow oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 228.1746 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}$ requires $M, 228.1747$); $v_{\max } 3323,3070,1682,1633,1455,1445,900$ and $762 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.45(1 \mathrm{H}$, br. s, NH), $1.73(1 \mathrm{H}, \mathrm{m}), 1.87-2.11(5 \mathrm{H}, \mathrm{m}), 3.21(1 \mathrm{H}$, pent, $J 8, \mathrm{CH}), 3.25\left(2 \mathrm{H}, \mathrm{dt}, J 6.5,0.5,1-\mathrm{H}_{2}\right), 3.75(2 \mathrm{H}, \mathrm{s}$, ArCH_{2}), $4.93\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{H}\right), 5.07-5.25\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 5.19\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{H}^{\prime}\right), 5.93(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.06(1$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.16-7.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.41(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.61,28.04,42.19$, $50.63,51.85,112.01,115.64,126.27,126.78,128.59,128.69,136.94,137.03,141.83$ and $152.70 ; m / z$ (CI) $288\left(\mathrm{M}^{+}+1,100\right)$.

\boldsymbol{N}-[2-(1-Cyclobutylethenyl)phenyl]methyl- \boldsymbol{N}-prop-2-enyl toluene \boldsymbol{p}-sulfonamide 47

The amine 46 ($87 \mathrm{mg}, 0.383 \mathrm{mmol}$), triethylamine ($80 \mu \mathrm{~L}, 0.574 \mathrm{mmol}$), toluene p-sulfonyl chloride (80 $\mathrm{mg}, 0.421 \mathrm{mmol}$) and 4-dimethylaminopyridine ($c a .1 \mathrm{mg}$) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ were stirred at room temperature for 4 h . Ether $\left(15 \mathrm{~cm}^{3}\right)$ and water $\left(15 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with ether $\left(2 \times 15 \mathrm{~cm}^{3}\right)$. The ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound 47 ($140 \mathrm{mg}, 96 \%$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 382.1847 . \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}$ requires $M, 382.1841$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60(1 \mathrm{H}, \mathrm{m}), 1.68-1.99(5 \mathrm{H}, \mathrm{m}), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.01(1 \mathrm{H}$, pent, $J 8.5, \mathrm{CH}), 3.67\left(2 \mathrm{H}, \mathrm{d}, J 6.5,1-\mathrm{H}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 4.74(1 \mathrm{H}, \mathrm{t}, J 1.5,2 "-\mathrm{H})$, 4.82-4.93 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $5.06\left(1 \mathrm{H}, \mathrm{t}, J 1.5,2^{\prime \prime}-\mathrm{H}^{\prime}\right), 5.41(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{dd}, J 1.5,7, \mathrm{ArH})$, 7.09-7.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.24(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{dd}, J 1.5,7.5, \mathrm{ArH})$ and $7.67(2 \mathrm{H}, \mathrm{d}, J 8$, $\mathrm{ArH}) ; m / z(\mathrm{CI}) 382\left(\mathrm{M}^{+}+1,20 \%\right), 228$ (50) and 171 (100).

N-Phenylmethyl- N-prop-2-enyl 2-nitrobenzene sulfonamide $\mathbf{5 8}^{35}$

2-Nitrophenylsulphonyl chloride ($1.43 \mathrm{~g}, 6.45 \mathrm{mmol}$) was added to N-(phenylmethyl)prop-2-enylamine 57 ($950 \mathrm{mg}, 6.46 \mathrm{mmol}$), triethylamine ($1.8 \mathrm{~cm}^{3}, 12.91 \mathrm{mmol}$) and 4-dimethylaminopyridine ($c a .2 \mathrm{mg}$) in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 3 h before water $\left(50 \mathrm{~cm}^{3}\right)$ and ether $\left(50 \mathrm{~cm}^{3}\right)$
were added. The aqueous phase was extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After concentration under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (5:1) as eluent gave the title compound $\mathbf{5 8}(1.63 \mathrm{~g}, 76 \%)$ as a viscous clear oil (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 350.1176 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}$ S requires $M, 350.1174$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.77(2 \mathrm{H}, \mathrm{d}$, $\left.J 6.5,1-\mathrm{H}_{2}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 4.95-5.08\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 5.50(1 \mathrm{H}, \mathrm{ddd}, J 6.5,10,17,2-\mathrm{H}), 7.19-$ $7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.51-7.65(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.93(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 49.15$, $50.31,119.63,124.15,127.81,128.30,128.57,130.90,131.70,131.75,133.46,133.96$ and $135.30 ; \mathrm{m} / \mathrm{z}$ (CI) $350\left(\mathrm{M}^{+}+18,100 \%\right)$.

N-Benzyl- N-formylmethyl 2-nitrobenzene sulfonamide 59

A steady stream of ozone was passed through a solution of the alkene $\mathbf{5 8}(1.11 \mathrm{~g}, 3.34 \mathrm{mmol})$ in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ until no starting material remained (tlc, ca. 0.5 h). The excess of ozone was purged by a flow of oxygen and then dimethyl sulfide ($4.0 \mathrm{~cm}^{3}, 54.47 \mathrm{mmol}$) was added. The mixture was allowed to warm to room temperature and stirred for 15 h . After concentration under reduced pressure, chromatography using light petroleum : ethyl acetate (1:1) as eluent gave the title compound $59(1.04 \mathrm{~g}, 92 \%)$ as a colourless solid recrystallised from ethyl acetate and light petroleum, m.p. $105-108{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.6 ; H, 4.45 ; N, $8.4 ; \mathrm{S}, 9.65 \% . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires, C, 53.9 ; $\mathrm{H}, 4.2 ; \mathrm{N}, 8.4 ; \mathrm{S}, 9.6 \%) ; v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) 3055,1735,1546,1371,1266$ and $1166 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.25-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.65-7.74(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.11$ ($1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH})$ and $9.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 52.60,55.51,124.30,128.56,128.70$, $128.94,130.90,131.88,132.98,133.78,134.09$, and 196.42; m/z (ES) 690 (90%).

\boldsymbol{N}-(3-Hydroxypropyl)- N-naphth-2-ylmethyl 2-nitrobenzene sulfonamide 61

3-Aminopropanol ($4.81 \mathrm{~g}, 64.03 \mathrm{mmol}$) was added to naphth-2-aldehyde $\mathbf{6 0}(5 \mathrm{~g}, 32.01 \mathrm{mmol})$ and magnesium sulphate $(60 \mathrm{~g})$ in dichloromethane $\left(320 \mathrm{~cm}^{3}\right)$ and the mixture stirred at room temperature for 48 h . The reaction mixture was then filtered and the filtrate concentrated under reduced pressure. The residue was dissolved in methanol ($213 \mathrm{~cm}^{3}$), sodium cyanoborohydride ($2.01 \mathrm{~g}, 32.01 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for one hour. Ether ($100 \mathrm{~cm}^{3}$) and deionised water $\left(200 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer was extracted with ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The aqueous layer was basified with aqueous sodium hydroxide (2 M) and extracted with dichloromethane ($3 \times 200 \mathrm{~cm}^{3}$). The dichloromethane extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford 3-(naphth-2-ylmethyl)propan-1-ol ${ }^{36}(5.15 \mathrm{~g}, 75 \%)$ as a waxy solid
(Found: $\mathrm{M}^{+}+\mathrm{H}, 216.1385 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}$ requires $\left.M, 216.1383\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.02(2 \mathrm{H}$, pent, J 7, 2-H2 $), 3.90\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 3.92-4.00\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 7.42-7.60(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, \mathrm{NH})$ and 7.78$8.06(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z(\mathrm{CI}) 214\left(\mathrm{M}^{+}-1,100 \%\right)$.

Sodium carbonate ($2.79 \mathrm{~g}, 26.35 \mathrm{mmol}$) in deionised water $\left(16 \mathrm{~cm}^{3}\right)$ and tetra- n-butylammonium iodide was added to the aminoalcohol $\mathbf{6 0}(5.15 \mathrm{~g}, 23.95 \mathrm{mmol})$ in acetone $\left(24 \mathrm{~cm}^{3}\right)$. After the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, 2-nitrophenylsulfonyl chloride ($5.31 \mathrm{~g}, 23.95 \mathrm{mmol}$) in acetone ($8 \mathrm{~cm}^{3}$) was added dropwise and the reaction mixture was stirred at room temperature for four hours. Deionised water (200 cm^{3}) was added and the aqueous phase was extracted with dichloromethane ($3 \times 200 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate $(1: 1 \rightarrow 1: 4)$ gave the title compound $\mathbf{6 1}(6.72 \mathrm{~g}, 68 \%)$ as an oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 401.1173 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires M, 401.1171); $v_{\max } 3562,3360,1545,1345,1162$, 1127, 781 and $750 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.59\left(2 \mathrm{H}\right.$, pent, $\left.J 7,2-\mathrm{H}_{2}\right), 2.00(1 \mathrm{H}$, br. s, OH$), 3.42-3.56$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 4.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 7.39(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.46-7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.54-7.71(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.73-7.85(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.97(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.70,44.96,52.16$, 59.12, 124.38, 125.98, 126.44, 126.57, 127.48, 127.85, 127.91, 128.84, 130.91, 131.92, 133.09, 133.24, 133.51, 133.76, 142.01 and 148.08; $m / z(\mathrm{CI}) 418\left(\mathrm{M}^{+}+18,5 \%\right), 399$ (10), 278 (65), 261 (85) and 214 (100).

N-Naphth-2-ylmethyl- N-(3-oxopropyl)-2-nitrobenzene sulfonamide 62

Dess-Martin periodinane ($5.30 \mathrm{~g}, 12.5 \mathrm{mmol}$) was added to the alcohol $\mathbf{6 1}(2.50 \mathrm{~g}, 6.25 \mathrm{mmol})$ in dichloromethane $\left(32 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred at room temperature until complete (tlc). Aqueous sodium hydroxide ($1.3 \mathrm{M}, 150 \mathrm{~cm}^{3}$) was added and the aqueous phase was extracted with ether $\left(5 \times 100 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with aqueous sodium hydroxide $\left(1.3 \mathrm{M}, 150 \mathrm{~cm}^{3}\right)$ and deionised water $\left(150 \mathrm{~cm}^{3}\right)$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the aldehyde $\mathbf{6 2}(1.03 \mathrm{~g}, 2.58 \mathrm{mmol}, 41 \%)$ as an oil used without further purification (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}$, 402.1127. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 402.1123$); $v_{\text {max }} 3096,1735,1543,1353$ and $1164 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.50\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right), 3.54\left(2 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 7.3-7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.50-7.65 (4 H, m, ArH), 7.65-7.78 (3 H, m, ArH) and $7.95(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

\boldsymbol{N}-(6-Methylnaphth-2-yl)methyl-3-hydroxypropylamine 64

3-Aminopropanol ($88.2 \mathrm{mg}, 1.18 \mathrm{mmol}$) was added to 2-methyl-6-naphthaldehyde $\mathbf{6 3}{ }^{37}(0.1 \mathrm{~g}, 0.59$ mmol) and magnesium sulphate $(1.5 \mathrm{~g})$ in dichloromethane $\left(6 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred at
room temperature for 24 h then filtered and concentrated under reduced pressure. The residue was dissolved in methanol ($4 \mathrm{~cm}^{3}$) and sodium cyanoborohydride ($37 \mathrm{mg}, 0.59 \mathrm{mmol}$) was added. The reaction mixture was then stirred at room temperature for 1 h and ether $\left(50 \mathrm{~cm}^{3}\right)$ and deionised water $\left(50 \mathrm{~cm}^{3}\right)$ were added. The aqueous layer was extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ then basified with aqueous sodium hydroxide $(2.5 \mathrm{M})$ and extracted with dichloromethane ($3 \times 100 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound $\mathbf{6 4}$ ($78 \mathrm{mg}, 58 \%$) as a solid, m.p. $74-76{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 230.1538 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}$ requires $M, 230.1539$); $v_{\text {max }} 3294,1608,1450,1068,878$ and $815 ; \delta_{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.78\left(2 \mathrm{H}\right.$, pent, $\left.J 7,2-\mathrm{H}_{2}\right), 2.55(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.96\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 3.11(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}, \mathrm{OH}), 3.86\left(2 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}_{2}\right), 3.96(2 \mathrm{H}, \mathrm{s}$, ArCH_{2}), 7.35 and 7.43 (each 1 H , dd, $J 8.5,1.5, \mathrm{ArH}$), $7.63(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.71-7.77(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.69,30.80,49.39,54.11,64.39,126.41,126.48,126.67,127.50,127.62$, $128.40,131.59,132.91,135.36$ and $136.06 ; m / z(\mathrm{CI}) 228\left(\mathrm{M}^{+}, 1 \%\right), 172(100)$ and $155(81)$.

N-(6-Methylnaphth-2-yl)methyl- N-(3-hydroxypropyl) 2-nitrobenzene sulfonamide 65

Sodium carbonate $(0.15 \mathrm{~g}, 1.42 \mathrm{mmol})$ in deionised water $\left(1 \mathrm{~cm}^{3}\right)$ and tetra- n-butylammonium iodide were added to the aminoalcohol $64(295 \mathrm{mg}, 1.29 \mathrm{mmol})$ in acetone $\left(3 \mathrm{~cm}^{3}\right)$ and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before a solution of 2-nitrophenylsulfonyl chloride ($285 \mathrm{mg}, 1.29 \mathrm{mmol}$) in acetone $\left(1 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred at room temperature for 4 h then deionised water $\left(30 \mathrm{~cm}^{3}\right)$ was added and the aqueous phase extracted with dichloromethane ($3 \times 100 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate $(1: 1 \rightarrow 1: 4)$ as eluent gave the title compound $\mathbf{6 5}(0.41 \mathrm{~g}, 77 \%)$ as a solid, m.p. $115.5-117.5^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{Na}, 437.1141 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}$ requires M, 437.1142); $3399,1543,1344$ and $1161 ; \delta_{H}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.55-1.65\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.81(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.51$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 3.43-3.54 (4 H, m, $2 \times \mathrm{CH}_{2}$), $4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right)$, 7.33-7.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.57-7.73 (7 H , $\mathrm{m}, \mathrm{ArH})$ and $7.98(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.71,30.59,44.74,52.10,58.96,124.25$, 125.93, 126.70, 127.17, 127.57, 128.06, 128.72, 130.89, 131.35, 131.70, 132.02, 133.20, 133.49, 133.54, 136.10 and $148.00 ; m / z(\mathrm{CI}) 432\left(\mathrm{M}^{+}+18,5 \%\right), 391$ (20) and 256 (100).

\boldsymbol{N}-(6-Methylnaphth-2-yl)methyl- \boldsymbol{N}-(3-oxopropyl) 2-nitrobenzene sulfonamide 66

The Dess-Martin periodinane ($462 \mathrm{mg}, 1.09 \mathrm{mmol}$) was added to the aminoalcohol $65(410 \mathrm{mg}, 0.99$ $\mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred at room temperature until complete (tlc). Aqueous sodium hydroxide ($1.3 \mathrm{M}, 25 \mathrm{~cm}^{3}$) was added and the aqueous phase extracted with ether
$\left(5 \times 50 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with aqueous sodium hydroxide ($1.3 \mathrm{M}, 150 \mathrm{~cm}^{3}$), deionised water $\left(150 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the title compound 66 ($397 \mathrm{mg}, 97 \%$) as an oil used without further purification (Found: $\mathrm{M}^{+}+\mathrm{H}, 413.1158$. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 413.1166$); $v_{\max } 1723,1545,1370$ and $1163 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.43$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.48\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 4.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 7.25$ and 7.32 (each 1 $\mathrm{H}, \mathrm{dd}, J 8.5,1.5, \mathrm{ArH}), 7.50-7.68(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.93(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.43(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; $\delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $20.68,40.35,42.15,52.01,123.29,124.87 .125 .70,126.23,126.59,127.24,127.78$, 129.97, 130.34, 130.78, 130.88, 131.97, 132.25, 132.72, 135.19, 147.02 and 198.66; m/z (ES) 413 $\left(\mathrm{M}^{+}+1,100 \%\right)$.

(4SR,5RS)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-naphth-2-ylmethyl-N-2-nitrophenylsulfonyl-

 amino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 73The tetrahydrobenzazepine $\mathbf{5 2}(250 \mathrm{mg}, 1.07 \mathrm{mmol})$ in methanol $\left(5 \mathrm{~cm}^{3}\right)$ was added to the aldehyde $\mathbf{6 5}$ $(1.03 \mathrm{~g}, 2.58 \mathrm{mmol})$ suspended in methanol $\left(10 \mathrm{~cm}^{3}\right)$, followed by sodium cyanoborohydride (68 mg , 1.07 mmol) and concentrated hydrochloric acid (2 drops). The reaction mixture, which briefly became homogeneous although a precipitate separated out after 10 min , was stirred for 12 h . Deionised water $\left(30 \mathrm{~cm}^{3}\right)$ was added and the aqueous layer extracted with ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($1: 1 \rightarrow 1: 4$) containing triethylamine (1\%) gave the title compound $\mathbf{7 3}$ (212 $\mathrm{mg}, 0.35 \mathrm{mmol}, 32 \%$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 616.2487 . \mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires $M, 616.2481$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 1.53-1.82 ($7 \mathrm{H}, \mathrm{m}$), 2.12-2.25 ($2 \mathrm{H}, \mathrm{m}$), 2.40 and 2.54 (each $\left.1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.70-2.79(2 \mathrm{H}, \mathrm{m})$, 2.86 ($\left.1 \mathrm{H}, \mathrm{ddd}, J 13,5,2,3-\mathrm{H}^{\prime}\right), 2.97(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.34\left(2 \mathrm{H}, \mathrm{t}, J 7,3 \mathrm{~B}^{\prime}-\mathrm{H}_{2}\right), 3.41(1 \mathrm{H}, \mathrm{dd}, J 13,1.5$, $1-\mathrm{H}), 3.59(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ ' and 4-H), 4.62 and 4.77 (each $1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{NHCHPh}), 6.86(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH})$, $7.12(1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{ArH}), 7.30(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{dd}, J 8,1.5, \mathrm{ArH}), 7.50-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.59$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.67-7.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.75-7.88(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.98(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; m / z(\mathrm{ES})$ $616\left(\mathrm{M}^{+}+1,100 \%\right)$ and 582 (12).

(4SR,5RS)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-6-methylnaphth-2-ylmethyl-N-2-nitrophenyl-sulfonylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 74

The tetrahydrobenzazepine $52(84 \mathrm{mg}, 0.36 \mathrm{mmol})$ in methanol $\left(2.5 \mathrm{~cm}^{3}\right)$ was added to a suspension of the aldehyde $\mathbf{6 6}(90 \mathrm{mg}, 0.22 \mathrm{mmol})$ in methanol $\left(1.5 \mathrm{~cm}^{3}\right)$ followed by sodium cyanoborohydride (14 $\mathrm{mg}, 0.22 \mathrm{mmol}$) and concentrated aqueous hydrogen chloride (2 drops). The reaction mixture became
homogeneous and a precipitate separated out after 10 minutes. The reaction mixture was stirred overnight, then deionised water $\left(10 \mathrm{~cm}^{3}\right)$ was added. The aqueous layer was extracted with ether (3×25 cm^{3}) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($1: 1 \rightarrow 1: 4)$ containing triethylamine (1%) as the eluent gave the title compound 74 ($43 \mathrm{mg}, 31 \%$) as an oil (Found: $\mathrm{M}^{+}+\mathrm{H}$, 630.2637. $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires $M, 630.2632$); $v_{\text {max }} 3467,3054,1543,1372,1348,1161753$ and 736 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.3(1 \mathrm{H}, \mathrm{m}), 1.53-1.79(6 \mathrm{H}, \mathrm{m}), 2.12-2.24\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.40$ and 2.50 (each 1 $\left.\mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.71(1 \mathrm{H}, \mathrm{d}, J 13,1-\mathrm{H}), 2.76(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{ddd}, J 13,5,2$, 3-H'), 3.30 (1 H, br. s, OH), 3.33 ($2 \mathrm{H}, \mathrm{t}, J 8,3$ '-H2), 3.42 ($1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H}$), 3.58 ($1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}$), $3.59(1 \mathrm{H}, \mathrm{d}, J 13,1-\mathrm{H}$), 4.57 and 4.59 (each $1 \mathrm{H}, \mathrm{d}, J 15$, NHCHPh), $6.84(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.12(1 \mathrm{H}$, $\mathrm{t}, J 8, \mathrm{ArH})$, $7.29-7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.58-7.73(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.81 and 7.97 (each $1 \mathrm{H}, \mathrm{d}, J 8$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.63,21.63,23.52,26.29,29.62,39.47,46.07,52.01,56.47,58.88$, $59.31,72.90,79.32,124.12,125.86,126.62,126.98,127.08,127.17,127.49,128.01,128.62,128.93$, $130.05,130.82,130.98,131.58,132.25,133.27,133.38,134.92,136.01,141.15,141.78$ and $147.90 ; \mathrm{m} / \mathrm{z}$ (ES) $630\left(\mathrm{M}^{+}+1,100 \%\right)$.

5-Cyclobutyl-5-hydroxy-2-[3-(N -naphth-2-ylmethylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 76

Dess-Martin periodinane ($63 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added to the dihydroxytetrahydrobenzazepine 73 (70 $\mathrm{mg}, 0.114 \mathrm{mmol}$) in dichloromethane $\left(1.5 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred for two hours at room temperature. Aqueous sodium hydroxide $\left(1.3 \mathrm{M}, 20 \mathrm{~cm}^{3}\right)$ was added and the aqueous phase was extracted with dichloromethane ($3 \times 30 \mathrm{~cm}^{3}$). The organic extracts were washed with aqueous sodium hydroxide $\left(1.3 \mathrm{M}, 50 \mathrm{~cm}^{3}\right)$ and deionised water $\left(50 \mathrm{~cm}^{3}\right)$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude hydroxyketone $75(59.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 85 \%)$ which was dissolved in N, N-dimethylformamide ($1.0 \mathrm{~cm}^{3}$). Thiophenol ($14 \mathrm{mg}, 0.13 \mathrm{mmol}$) and potassium carbonate (47 mg , $0.34 \mathrm{mmol})$ were added and the reaction mixture stirred for 12 h . Deionised water $\left(15 \mathrm{~cm}^{3}\right)$ was added and the $\mathrm{p} H$ adjusted to pH 12 using aqueous sodium hydroxide (2 M). The aqueous phase was extracted with ethyl acetate $\left(5 \times 25 \mathrm{~cm}^{3}\right)$ and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (4:1 $\rightarrow \quad: 1$) containing triethylamine (1%) gave the title compound 76 ($17 \mathrm{mg}, 41 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.51-$ $1.79\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.87(1 \mathrm{H}, \mathrm{m}), 2.19-2.30\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.39-2.51\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}\right), 2.62-2.70(2 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.51(1 \mathrm{H}, \mathrm{m}), 3.51$ and 3.72 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12,1-\mathrm{H}\right), 3.90(1 \mathrm{H}, \mathrm{d}, J 16,3-\mathrm{H}), 3.91(2 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.18\left(1 \mathrm{H}, \mathrm{d}, J 16,3-\mathrm{H}^{\prime}\right), 7.01(1 \mathrm{H}, \mathrm{dd}, J 8,1.5, \mathrm{ArH}), 7.15$ and 7.23 (each $1 \mathrm{H}, \mathrm{dt}, J 8,1.5$, ArH), 7.39-7.46 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.70-7.80 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

5-Cyclobutyl-5-hydroxy-2-[3-(N-6-methylnaphth-2-ylmethylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 78

Dess-Martin periodinane ($142 \mathrm{mg}, 0.334 \mathrm{mmol}$) was added to the dihydroxytetrahydrobenzazepine 74 $(140 \mathrm{mg}, 0.223 \mathrm{mmol})$ in dichloromethane $\left(1.2 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred for 2 h at room temperature. Aqueous sodium hydroxide $\left(1.3 \mathrm{M}, 50 \mathrm{~cm}^{3}\right)$ was added and the aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$). The organic extracts were washed with aqueous sodium hydroxide ($1.3 \mathrm{M}, 50 \mathrm{~cm}^{3}$) and deionised water $\left(50 \mathrm{~cm}^{3}\right)$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude hydroxyketone 77 ($111 \mathrm{mg}, 0.18 \mathrm{mmol}, 80 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.53-1.64 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$), 1.71-1.89 ($3 \mathrm{H}, \mathrm{m}$), 2.17-2.27 ($3 \mathrm{H}, \mathrm{m}$,), 2.55 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 3.25-3.40 (5 $\mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}_{2}$ and $3^{\prime}-\mathrm{H}_{2}$), 3.64 and 3.69 (each $1 \mathrm{H}, \mathrm{d}, J 16,1-\mathrm{H}$ and $3-\mathrm{H}$), $4.04\left(1 \mathrm{H}, \mathrm{d}, J 16,3-\mathrm{H}^{\prime}\right)$, $4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 6.79(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}), 7.13(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.25(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH})$, 7.36 and 7.41 (each $1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$), 7.57-7.75 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.99(1 \mathrm{H}, \mathrm{d}, J$ 8, ArH).

Thiophenol ($2.15 \mathrm{mg}, 0.02 \mathrm{mmol}$) and potassium carbonate ($7.2 \mathrm{mg}, 0.052 \mathrm{mmol}$) were added to the crude 2-nitrophenylsulfonamide $77(10 \mathrm{mg}, 0.016 \mathrm{mmol})$ in N, N-dimethylformamide $\left(0.5 \mathrm{~cm}^{3}\right)$ and the mixture stirred overnight at room temperature. Deionised water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the $\mathrm{p} H$ adjusted to pH 12 using aqueous sodium hydroxide (2 M). The aqueous phase was extracted with ethyl acetate $\left(5 \times 25 \mathrm{~cm}^{3}\right)$ and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($4: 1 \rightarrow 2: 1$) containing triethylamine (1%) as eluent gave the title compound 78 ($7 \mathrm{mg}, 97 \%$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 443.2700$. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.M, 443.2698\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.51-1.74(5 \mathrm{H}, \mathrm{m}), 1.78-1.88(2 \mathrm{H}, \mathrm{m})$, $2.19\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.35-2.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2}\right), 2.61\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2}\right), 3.45(1 \mathrm{H}, \mathrm{m}), 3.47(1$ $\mathrm{H}, \mathrm{d}, J 16,1-\mathrm{H}), 3.69\left(1 \mathrm{H}, \mathrm{d}, J 16,1-\mathrm{H}\right.$ '), $3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.84$ and 4.12 (each $\left.1 \mathrm{H}, \mathrm{d}, J 16,3-\mathrm{H}\right)$, $6.95(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.06-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.29(1 \mathrm{H}, \mathrm{dd}, J 8,1.5, \mathrm{ArH}), 7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z(\mathrm{CI}) 443\left(\mathrm{M}^{+}+1,8 \%\right)$ and 425 (2).

N-(3-Hydroxypropyl)- N-phenylmethyl-2-nitrobenzene sulfonamide 80^{38}

Sodium carbonate ($3.67 \mathrm{~g}, 34.59 \mathrm{mmol}$) in deionised water $\left(21 \mathrm{~cm}^{3}\right)$ and tetra- n-butylammonium iodide (trace) were added to 3-(N-phenylmethyl)aminopropanol 79 ($5.19 \mathrm{~g}, 31.45 \mathrm{mmol}$) in acetone ($32 \mathrm{~cm}^{3}$) and the mixture cooled to $-10^{\circ} \mathrm{C}$. 2-Nitrophenylsulfonyl chloride ($6.97 \mathrm{~g}, 31.45 \mathrm{mmol}$) in acetone (10.5
cm^{3}) was added dropwise over a period of 40 min and the reaction mixture was stirred at room temperature for 2 h . Deionised water ($200 \mathrm{~cm}^{3}$) was added and the aqueous phase was extracted with dichloromethane ($3 \times 200 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($1: 1 \rightarrow 1: 4$ containing triethylamine (1%) as eluent gave the sulfonamide $\mathbf{8 0}^{38}$ ($8.63 \mathrm{~g}, 78 \%$) as an oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 351.1005 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 351.1009$); $v_{\text {max }} 3562$, 3399, 3092, 3031, 1669, 1589, 1543, $1371,1344,1161,781$, and $739 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.59\left(2 \mathrm{H}\right.$, pent, $\left.J 6,2-\mathrm{H}_{2}\right), 1.81(1 \mathrm{H}$, br. s, OH), 3.43 ($2 \mathrm{H}, \mathrm{t}, J 6,3-\mathrm{H}_{2}$), $3.55\left(2 \mathrm{H}\right.$, br. t, $\left.J 6,1-\mathrm{H}_{2}\right), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 7.21-7.37$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.65-7.77 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.98(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.59,44.77,51.90,59.10$, 124.40, 128.21, 128.43, 128.87, 130.92, 131.93, 133.54, 133.74, 135.73, 142.20 and $148.02 ; \mathrm{m} / \mathrm{z}$ (ES) $351\left(\mathrm{M}^{+}+1,100 \%\right)$.

3-(\mathbf{N}-2-nitrophenylsulfonyl- \boldsymbol{N}-phenylmethyl)aminopropanic acid $\mathbf{8 1}$

Dess-Martin periodinane ($1.8 \mathrm{~g}, 4.26 \mathrm{mmol}$) was added to the 3-sulfonylaminoalcohol $\mathbf{8 0}(0.75 \mathrm{~g}, 2.13$ $\mathrm{mmol})$ in dichloromethane $\left(11 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred for 2 h at room temperature. Aqueous sodium hydroxide ($1.3 \mathrm{M}, 30 \mathrm{~cm}^{3}$) was added and the aqueous phase was extracted with dichloromethane ($3 \times 30 \mathrm{~cm}^{3}$). The organic extracts were washed with aqueous sodium hydroxide (1.3 $\left.\mathrm{M}, 30 \mathrm{~cm}^{3}\right)$ and deionised water $\left(50 \mathrm{~cm}^{3}\right)$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to leave crude 3-(N-2-nitrophenylsulfonyl- N-phenylmethyl)aminopropanal ($0.7 \mathrm{~g}, 95 \%$).

2-Methyl-2-butene $\left(10.06 \mathrm{~cm}^{3}, 20.11 \mathrm{mmol}\right)$, sodium chlorite $(1.13 \mathrm{~g}, 12.57 \mathrm{mmol})$ and sodium dihydrogen phosphate $(2.41 \mathrm{~g}, 20.11 \mathrm{mmol})$ were added to the $3-(N-2$-nitrophenylsulfonyl- N phenylmethyl)aminopropanal $(0.7 \mathrm{~g}, 2.01 \mathrm{mmol})$ in 2,2-dimethylpropanol and water $\left(1: 1,50.3 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred for 12 h . Brine $\left(60 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(60 \mathrm{~cm}^{3}\right)$ were added and the aqueous phase was extracted with ethyl acetate ($3 \times 75 \mathrm{~cm}^{3}$). The organic extracts were dried (MgSO_{4}) and concentrated under reduced pressure to give the title compound $\mathbf{8 1}(0.63 \mathrm{~g}, 81 \%$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 365.0804 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $M, 365.0808$); $v_{\text {max }}$ 2600-3600, 1712, 1543, 1369, 1349, 1163, 941, 771 and $738 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.46\left(2 \mathrm{H}, \mathrm{t}, J 8,2-\mathrm{H}_{2}\right) 3.55\left(2 \mathrm{H}, \mathrm{t}, J 8,3-\mathrm{H}_{2}\right), 4.56(2 \mathrm{H}, \mathrm{s}$, PhCH_{2}), 7.24-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.63-7.75 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$) and $8.04(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}$, CDCl_{3}) $33.25,43.06,52.31,124.53,128.39,129.02,131.03,132.11,132.61,133.18,134.03,135.49$, 148.04 and 176.22; $m / z(\mathrm{CI}) 382\left(\mathrm{M}^{+}+18,50 \%\right), 365\left(\mathrm{M}^{+}+1,8\right)$ and $178(100)$.

(4RS,5SR)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-2-nitrophenylsulfonyl- N-phenylmethyl)amino-propanoyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 84

N-Methylmorpholine- N-oxide ($26 \mathrm{mg}, 0.23 \mathrm{mmol}$) and osmium tetraoxide ($5 \mathrm{mg}, 0.021 \mathrm{mmol}$) were added to the dihydrobenzazepine $\mathbf{8 3}$ ($111.4 \mathrm{mg}, 0.21 \mathrm{mmol}$) in acetone ($3.4 \mathrm{~cm}^{3}$), 2,2-dimethylpropan-2ol $\left(3.4 \mathrm{~cm}^{3}\right)$ and deionised water $\left(1.6 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred for 12 h . Ethyl acetate (20 cm^{3}) was added followed by deionised water $\left(20 \mathrm{~cm}^{3}\right)$ and the aqueous phase was extracted with ethyl acetate ($3 \times 25 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1) $\rightarrow \quad . \quad \rightarrow$ ethyl acetate : methanol $(20: 1)$ all containing triethylamine (1%) as eluent gave the title compound $\mathbf{8 4}\left(118.14 \mathrm{mg}, 0.21 \mathrm{mmol}, 99 \%\right.$) as a solid (Found: $\mathrm{M}^{+}+\mathrm{H}, 580.2127$. $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ requires $M, 580.2118$); $v_{\text {max }} 3416,1634,1543,1455,1372,1344,1162$ and $735 ; \delta_{\mathrm{H}}(300$ MHz , dimethyl sulfoxide- $\left.d_{6}, 150{ }^{\circ} \mathrm{C}\right) 1.29(1 \mathrm{H}, \mathrm{m}) 1.73-1.60(2 \mathrm{H}, \mathrm{m}), 1.88-1.77(1 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}$, m), $2.19(1 \mathrm{H}, \mathrm{m}), 2.50(3 \mathrm{H}, \mathrm{m}), 3.51\left(2 \mathrm{H}, \mathrm{t}, J 7.5,3^{\prime}-\mathrm{H}_{2}\right), 3.55(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{dd}, J 15,3,3-$ $\left.\mathrm{H}^{\prime}\right)$, $3.79(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.17(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, 2 \mathrm{OH}), 4.28(1 \mathrm{H}, \mathrm{d}, J 15,1-\mathrm{H}), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.76$ ($\left.1 \mathrm{H}, \mathrm{d}, J 15,1-\mathrm{H}^{\prime}\right), 7.03(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.11$ and 7.20 (each $\left.1 \mathrm{H}, \mathrm{t}, J 6, \mathrm{ArH}\right), 7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.66$ ($1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{ArH}$), 7.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.96(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{ArH}) ; m / z(\mathrm{CI}) 580$ $\left(\mathrm{M}^{+}+1,45 \%\right), 393$ (27) and 106 (100).

(4RS,5SR)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-phenylmethyl)aminopropanoyl]-2,3,4,5-

tetrahydro-[1H]-2-benzazepine 85

Thiophenol ($29 \mathrm{mg}, 0.27 \mathrm{mmol}$) and potassium carbonate ($99 \mathrm{mg}, 0.72 \mathrm{mmol}$) were added to the 2 nitrobenzene sulfonamide $\mathbf{8 4}(118 \mathrm{mg}, 0.21 \mathrm{mmol})$ in N, N-dimethylformamide $\left(5.12 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 12 h . Deionised water $\left(40 \mathrm{~cm}^{3}\right)$ was added and the pH adjusted to $\mathrm{p} H 12$ using aqueous sodium hydroxide (2 M). The aqueous phase was extracted with ethyl acetate ($5 \times 40 \mathrm{~cm}^{3}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate ($1: 1 \rightarrow 1: 4$) containing triethylamine (1%) as eluent gave the title compound $\mathbf{8 5}(76 \mathrm{mg}, 94 \%)$ as an oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 395.2338 . \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M, 395.2335); $v_{\max } 3390$, 3059 , 3023, 1631, 1455, 1207, 1097, 1026, 997, 734 and 699 ; $\delta \mathrm{H}$ (300 MHz , dimethyl sulfoxide- $\left.d_{6}, 150{ }^{\circ} \mathrm{C}\right) 1.30(1 \mathrm{H}, \mathrm{m}) 1.67-1.75(2 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.23(1$ $\mathrm{H}, \mathrm{m})$, $2.54(2 \mathrm{H}, \mathrm{m}), 2.81\left(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{CH}_{2}\right), 3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.85(3 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{m}), 4.43$ and 4.92 (each $1 \mathrm{H}, \mathrm{d}, J 15,1-\mathrm{H}), 7.05-735(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.70(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$, dimethyl sulfoxide- $d_{6}, 150{ }^{\circ} \mathrm{C}$) $16.45,21.20,21.35,32.19,44.30,50.73,52.21,72.52,77.98,78.46$,
125.64, 125.79, 125.88, 127.27, 127.38, 128.08, 128.66, 133.82, 139.93, 141.91 and $170.52 ; \mathrm{m} / \mathrm{z}$ (CI) $395\left(\mathrm{M}^{+}+1,43 \%\right), 288(28)$ and $108(100)$.

2-(2-Bromophenylmethoxy)tetrahydro-[2H]-pyran 88

Dihydropyran ($2.25 \mathrm{~g}, 26.7 \mathrm{mmol}$) and toluene p-sulfonic acid ($102 \mathrm{mg}, 0.535 \mathrm{mmol}$) were added to the 2-bromobenzyl alcohol $87(1.0 \mathrm{~g}, 5.35 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and was stirred for 3 h . Dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added and the solution washed with saturated aqueous sodium bicarbonate ($3 \times 20 \mathrm{~cm}^{3}$) and brine ($2 \times 10 \mathrm{~cm}^{3}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum ($1: 4$) gave the title compound $\mathbf{8 8}(1.42 \mathrm{~g}, 98 \%)$ as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}$, 288.0597. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BrNO}_{2}$ requires M, 288.0594); $v_{\max } 1569,1440,1348,1201,1124$ and $1024 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52-1.71(3 \mathrm{H}, \mathrm{m}) 1.70-1.90(2 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}$, m, 6-H), 3.96 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ '), $4.60(1 \mathrm{H}, \mathrm{d}, J 13$, ArCHH), 4.93 ($1 \mathrm{H}, \mathrm{t}, J 3.5,2-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{d}, J 13$ $\mathrm{ArCH} H), 7.19(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.36(1 \mathrm{H}, \mathrm{dt}, J 1.5,8, \mathrm{ArH})$ and $7.55-7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 19.73,25.85,30.92,62.58,68.98,98.81,123.13,127.74,129.17,129.44,132.88$ and 138.24 ; $m / z(\mathrm{CI}) 288,290\left(\mathrm{M}^{+}+18,1.5 \%\right)$ and $102(100)$.

Cyclopentanoyl 2-(tetrahydro-[2H]-pyran-2-yloxymethyl)benzene 89

tert-Butyllithium ($0.56 \mathrm{~cm}^{3}, 1.6 \mathrm{M}$ in pentane) was added to 2-(2-bromophenylmethoxy)tetrahydro-[2H]-pyran $\mathbf{8 8}(100 \mathrm{mg}, 0.44 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ in tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ and the solution stirred for 15 min . Cyclopentylcarboxaldehyde ($45 \mathrm{mg}, 0.46 \mathrm{mmol}$) in tetrahydrofuran $\left(1 \mathrm{~cm}^{3}\right)$ was added and the mixture stirred for 30 min . before saturated aqueous ammonium chloride $\left(1 \mathrm{~cm}^{3}\right)$ was added. The mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~cm}$) and the organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:9) as eluent gave yield cyclopentyl 2-(tetrahydro-[2H]-pyran-2-yloxymethyl)phenyl carbinol (113 mg , 89%), a 50 : 50 mixture of diastereoisomers, as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 291.1954 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}$ requires M, 291.1955); $v_{\max } 3436,1453,1119,1024,905$ and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.84(1 \mathrm{H}$, m), $1.00(1 \mathrm{H}, \mathrm{m}), 1.30-1.80(11 \mathrm{H}, \mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{sext}, J 8), 2.70(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.48$ and 3.80 (each $1 \mathrm{H}, \mathrm{m}$), $4.43(0.5 \mathrm{H}, \mathrm{d}, J 10$, ArHCHO), 4.54-4.68 ($2.5 \mathrm{H}, \mathrm{m}$), 4.74 and 4.93 (each 0.5 H , d, $J 10$, ArHCHO), $7.17(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.24-7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.41(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 19.44, 19.46, 25.63, 25.90, 25.92, 26.03, 29.03, 29.96, 29.98, 30.41, 30.60, 30.77, 45.36, $45.51,62.36,62.43,67.73,67.92,75.08,75.29,98.02,98.15,127.30,127.61,128.79,128.81,130.31$, $130.40,135.53,135.62,143.49$ and $144.39 ; m / z(\mathrm{CI}) 308\left(\mathrm{M}^{+}+18,10 \%\right)$ and $187(100)$.

Pyridine ($126 \mathrm{mg}, 1.56 \mathrm{mmol}$) was added to the Dess Martin periodinane ($113 \mathrm{mg}, 0.26 \mathrm{mmol}$) in dichloromethane ($4 \mathrm{~cm}^{3}$). After 20 min , cyclopentyl 2-(tetrahydro-[2H]-pyran-2-yloxymethyl)phenyl carbinol ($70 \mathrm{mg}, 0.24 \mathrm{mmol}$) in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ was added and the solution was stirred for 4 h . Saturated aqueous sodium sulfite $\left(5 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred vigorously for 1 h then extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate : light petroleum (1:9) gave the title compound 89 ($67 \mathrm{mg}, 98 \%$) as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 289.1794$. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}$ requires $M, 289.1798$); $v_{\text {max }} 1769,1678,1599,1573,1451,1352,1219,1200,1129$ and 1035 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 1.51-1.84(10 \mathrm{H}, \mathrm{m}), 1.90-1.94(4 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}$, quin, J 8, CHCO), 3.93 ($1 \mathrm{H}, \mathrm{m}$), 4.75 ($1 \mathrm{H}, \mathrm{t} J 4$, OCHO), 4.87 and 5.03 (each $1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{OHCH}$), 7.39 and 7.52 (each $1 \mathrm{H}, \mathrm{dt}, J 1.5,8, \mathrm{ArH})$ and $7.71(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.80,25.72,26.50$, $26.52,30.03,30.12,30.85,49.27,62.58,67.50,98.77,127.18,128.54,128.60,131.45,137.63,139.29$ and 207.12; $m / z(\mathrm{CI}) 289\left(\mathrm{M}^{+}+1,1 \%\right)$ and 187 (100).

(1-Cyclopentylethenyl)-2-(tetrahydro-[2H]-pyran-2-yloxymethyl)benzene 90

n-Butyllithium ($207 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) was added to a solution of methyltriphenylphosphonium bromide ($124 \mathrm{mg}, 0.35 \mathrm{mmol}$) in tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ and the solution stirred for 30 min before the ketone $\mathbf{8 9}$ $(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ was added and the mixture stirred for 18 h . Saturated aqueous ammonium chloride $\left(1 \mathrm{~cm}^{3}\right)$ was added and the mixture extracted using ethyl acetate $\left(3 \times 4 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with a saturated aqueous sodium bicarbonate $\left(2 \times 5 \mathrm{~cm}^{3}\right)$ and brine ($1 \times 5 \mathrm{~cm}^{3}$), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:4) as eluent gave the title compound $90(35 \mathrm{mg}, 80 \%)$ as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}$, 287.2011. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}$ requires $M, 287.2006$); $v_{\text {max }} 3066,3024,1633,1453,1350,1201,1118.1026,905$ and $766 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.41-1.98(14 \mathrm{H}, \mathrm{m}), 2.75,3.58$ and $3.96($ each $1 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}$, d, $J 12$, OCHH), $4.75(1 \mathrm{H}, \mathrm{t}, J 3.5, \mathrm{OCHO}), 4.80(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{OCH} H), 4.92\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 1.5,2^{\prime}-\mathrm{H}\right), 5.22$ ($\left.1 \mathrm{H}, \mathrm{t}, J 2,2^{\prime}-\mathrm{H}^{\prime}\right), 7.15(1 \mathrm{H}, \mathrm{dd}, J 2,7, \mathrm{ArH}), 7.34-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 19.64, 24.80, 25.79, 30.92, 31.75, 31.80, 47.75, 62.28, 67.12, 98.41, 112.66, 127.01, 127.12, 128.71, 135.59, 143.44 and $151.99 ; m / z(\mathrm{CI}) 314\left(\mathrm{M}^{+}+178,3 \%\right), 287\left(\mathrm{M}^{+}+1,4\right)$ and $102(100)$.

2-(1-Cyclopentylethenyl)phenylmethanol 91

Toluene p-sulfonic acid ($14 \mathrm{mg}, 0.07 \mathrm{mmol}$) was added to the tetrahydropyranyl ether $\mathbf{9 0}(100 \mathrm{mg}, 0.35$ mmol) in methanol $\left(2 \mathrm{~cm}^{3}\right)$ and the solution stirred for 4 h . Water $\left(4 \mathrm{~cm}^{3}\right)$ was added and the mixture extracted with ether ($3 \times 10 \mathrm{~cm}^{3}$). The organic extracts were washed with a saturated aqueous sodium
hydrogen carbonate $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum ether ($3: 7$) as eluent gave the title compound 91 ($61 \mathrm{mg}, 86 \%$) as a colourless oil (Found: $\mathrm{M}^{+}, 202.1351 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires M, 202.1352); $v_{\max } 3368,3067,1633,1480,1456,1195,1031,901$ and $765 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22-1.32$, 1.41-1.48, 1.52-1.57 and 1.62-1.68 (each $2 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.76$ and 5.11 (each $1 \mathrm{H}, \mathrm{t}, J 1,2^{\prime}-\mathrm{H}$) and 6.97, $7.12,7.16$ and 7.33 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.81$, 31.91, 47.87, 63.31, 112.82, 127.33, 127.47, 128.21, 128.89, 138.03, 142.94 and 152.48; m / z (CI) 220 $\left(\mathrm{M}^{+}+18,15 \%\right), 202\left(\mathrm{M}^{+}, 20\right)$ and $185(100)$.

2-(1-Cyclopentylethenyl)benzaldehyde 92

Dess-Martin periodinane ($415 \mathrm{mg}, 0.98 \mathrm{mmol}$) was added to the alcohol $91(180 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dichloromethane $\left(6 \mathrm{~cm}^{3}\right)$ and the mixture stirred at room temperature for 2 h then poured into a rapidly stirred aqueous sodium sulfite $\left(25 \mathrm{~cm}^{3}\right)$. After 20 min , the mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$) and the organic extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : petroleum ether ($1: 4$) gave the title compound $92(155 \mathrm{mg}$, 86%) as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}$, 201.1274. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}$ requires M, 201.1274); $v_{\max } 3382$, 1719, $1705,1596,1251,1195,906$ and $771 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44-1.89(8 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{m})$, 4.96 and 5.45 (each $\left.1 \mathrm{H}, \mathrm{t}, J 1,2^{\prime}-\mathrm{H}\right), 7.40(1 \mathrm{H}, \mathrm{dd}, J 1.5,8, \mathrm{ArH}), 7.45(1 \mathrm{H}, \mathrm{dt}, J 1,7.5$, ArH), 7.55 (1 $\mathrm{H}, \mathrm{dt}, J 1.5,8, \mathrm{ArH}$), 7.97 ($1 \mathrm{H}, \mathrm{dd}, J 1.5,8, \mathrm{Ar}-\mathrm{H}$) and $10.26(1 \mathrm{H}, \mathrm{d}, J 0.5, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $24.73,31.68,48.17,115.94,127.46,127.59,129.49,133.58,133.97,148.14,149.48$ and $192.83 ; m / z$ (CI) $218\left(\mathrm{M}^{+}+18,30 \%\right), 201\left(\mathrm{M}^{+}+1,100\right)$ and 183 (95).

\boldsymbol{N}-[2-(1-Cyclopentylethenyl)phenylmethyl] prop-2-enyl amine 93

Magnesium sulfate (1.4 g) and prop-2-enylamine (86 mg , 1.5 mmol) were added to 2-(1cyclopentylethenyl)benzaldehyde $92(150 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and the solution stirred for 24 h then filtered filtered and concentrated under reduced pressure. The residue was dissolved in methanol $\left(8 \mathrm{~cm}^{3}\right)$ and sodium borohydride ($42 \mathrm{mg}, 1.125 \mathrm{mmol}$) was aded. The mixture was stirred for 3 h then concentrated under reduced pressure and the residue dissolved in ethyl acetate $\left(15 \mathrm{~cm}^{3}\right)$. This solution was washed with aqueous hydrogen chloride $\left(1 \mathrm{M}, 5 \mathrm{~cm}^{3}\right)$ and brine $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using dichloromethane as eluent gave the title compound 93 ($164 \mathrm{mg}, 91 \%$) as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}$, 242.1908. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}$ requires $M, 242.1903$); $v_{\max } 1632,1540,1439,1371,1165,1126,913$ and $772 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.34,1.48,1.61$ and $1.72($ each $2 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{m}), 3.16(2 \mathrm{H}, \mathrm{dt}, J 6,1.5,1-$
$\left.\mathrm{H}_{2}\right)$, $4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right)$, $4.79(1 \mathrm{H}, \mathrm{m}$, vinylic H$), 5.00-5.16(3 \mathrm{H}, \mathrm{m}$, vinylic H$), 5.80(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $6.98(1 \mathrm{H}, \mathrm{dd}, J 1,7, \mathrm{ArH}), 7.11$ and 7.16 (each $1 \mathrm{H}, \mathrm{dt}, J 1.5,7.5, \mathrm{ArH})$ and $7.31(1 \mathrm{H}, \mathrm{dd}, J 1,7.5$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.98,32.03,47.98,51.08,52.32,112.50,116.26,126.73,127.44,128.34$, 129.02, 129.11, 137.36, 143.80 and 153.22; m/z (EI) $242\left(\mathrm{M}^{+}+1,10 \%\right), 200(15), 169(28), 131$ (60) and 115 (65).

N-[2-(1-cyclopentylethenyl)phenylmethyl]-N-prop-2-enyl 2-nitrobenzenesulfonamide 94

4-Dimethylaminopyridine (50 mg), triethylamine $\left(3.71 \mathrm{~cm}^{3}, 2.66 \mathrm{mmol}\right)$ and 2-nitrobenzenesulfonyl chloride ($4.51 \mathrm{~g}, 20.4 \mathrm{mmol}$) were added to [2-(1-cyclopentylethenyl)phenylmethyl]prop-2-enylamine 93 $(4.27 \mathrm{~g}, 17.7 \mathrm{mmol})$ in dichloromethane $\left(215 \mathrm{~cm}^{3}\right)$ and the solution was stirred for 20 min at room temperature. The reaction mixture was then washed with water $\left(100 \mathrm{~cm}^{3}\right)$ and brine $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using dichloromethane as eluent gave the title compound $94(6.9 \mathrm{~g}, 92 \%)$ as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 449.1510. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}$ requires M, 449.1505); $v_{\text {max }} 3082,1634,1540,1371,1165,1126,914$ and $774 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40,1.60,1.73$ and 1.79 (each $\left.2 \mathrm{H}, \mathrm{m}\right), 2.60(1 \mathrm{H}, \mathrm{m}), 3.92(2 \mathrm{H}, \mathrm{d}, J$ 6, 1-H2), $4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{s}, 2 "-\mathrm{H}), 5.00-5.06\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 5.24\left(1 \mathrm{H}, \mathrm{t}, J 1.5,2^{\prime \prime}-\mathrm{H}^{\prime}\right)$, $5.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{dd}, J 3,6, \mathrm{ArH}), 7.63-7.74$ (3 H, $\mathrm{m}, \mathrm{ArH})$ and $8.03(1 \mathrm{H}, \mathrm{dd}, J 1.5,8, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.89,32.04,47.93,48.65,50.00$, 113.17, 119.42, 124.54, 124.57, 127.23, 127.49, 129.26, 131.54, 132.07, 132.48, 132.66, 133.81, 134.58, 143.74, 148.27 and 152.14; $m / z(E S) 465(100 \%)$ and $449\left(\mathrm{M}^{+}+23,30\right)$.

5-Cyclopentyl-2-[3-(N-2-nitrophenylsulfonyl- N-phenylmethyl)aminopropanoyl]-2,3-dihydro-[1H]-2-benzazepine 97

Potassium carbonate ($60 \mathrm{mg}, 0.44 \mathrm{mmol}$) and thiophenol ($17 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) were added to the N nosyldihydrobenzazepine $95(48 \mathrm{mg}, 0.23 \mathrm{mmol})$ in N, N-dimethylformamide $\left(1 \mathrm{~cm}^{3}\right)$ and the solution stirred for 24 h . Water ($3 \mathrm{~cm}^{3}$) was added, and the mixture extracted with ethyl acetate ($3 \times 5 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give 5 -cyclopentyl-2,3-dihydro-[1H]-2benzazepine 96 as a yellow oil; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 1.37, 1.56, 1.68 and 1.80 (each $2 \mathrm{H}, \mathrm{m}$), 2.94 (3 $\mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$ and CH$), 3.16(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 3.61\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 5.89(1 \mathrm{H}, \mathrm{dt}, J 1.5,7,4-\mathrm{H})$ and $7.15-7.33$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.14,32.53,42.44,45.37,49.26,119.92,126.34,127.63,127.83$, 129.43, 138.06, 142, 65 and 149.68.

TBTU ($81 \mathrm{mg}, 0.25 \mathrm{mmol}$) and di-isopropylethylamine ($80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) were added to $3-[\mathrm{N}$ -(2-nitrobenzyl)sulfonyl- N-phenylmethyl]aminopropanoic acid $\quad \mathbf{8 1}$ ($83 \mathrm{mg}, \quad 0.23 \mathrm{mmol}$) in
dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . 5 -Cyclopentyl-2,3-dihydro[1 H]-2-benzazepine $96(48 \mathrm{mg}, 0.23 \mathrm{mmol})$, prepared as outlined above, in dichloromethane ($2 \mathrm{~cm}^{3}$) was added and the solution stirred at room temperature for 16 h . Dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ was added and the solution washed using saturated aqueous ammonium chloride ($3 \times 15 \mathrm{~cm}^{3}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate in light petroleum ($3: 7$) gave the title compound $97(117 \mathrm{mg}, 91 \%$), a mixture of rotamers, as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 560.2226 . \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires M, 560.2214); $v_{\max } 1636,1540,1438$, 1370,1163 and $733 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.25, 1.49, 1.58 and 1.72 (each $2 \mathrm{H}, \mathrm{m}$), $2.27(1.2 \mathrm{H}, \mathrm{t}$, $\left.J 7,2^{\prime}-\mathrm{H}_{2}\right), 2.39\left(0.8 \mathrm{H}, \mathrm{t}, J 7,2^{\prime}-\mathrm{H}_{2}\right), 2.87\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right), 3.18\left(1.2 \mathrm{H}, \mathrm{d}, J 7.5,3-\mathrm{H}_{2}\right), 3.38-3.54(2.8 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{2}$ and $\left.3^{\prime}-\mathrm{H}_{2}\right), 3.87\left(0.8 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.14\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.43\left(1.2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 4.45(0.8 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{H}_{2}\right), 5.67(0.6 \mathrm{H}, \mathrm{t}, J 7.5,4-\mathrm{H}), 5.72(0.4 \mathrm{H}, \mathrm{t}, J 7.5,4-\mathrm{H}), 7.05-7.30(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.45-7.60(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.83(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z(\mathrm{ES}) 582\left(\mathrm{M}^{+}+23,100 \%\right)$ and $560(45)$.

2-Bromo-5-fluorophenylmethanol $106{ }^{40}$

2-Bromo-5-fluorobenzyl bromide $\mathbf{1 0 5}^{39}(5.0 \mathrm{~g}, 18.66 \mathrm{mmol})$ was added to a suspension of calcium carbonate $(7.5 \mathrm{~g})$ in dioxane - water $\left(1: 1.5,150 \mathrm{~cm}^{3}\right)$ and the mixture heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool then was extracted with ether. The organic extracts were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure. Trituration with cold hexane gave the alcohol $\mathbf{1 0 6}{ }^{40}$ (3.78 g, 99\%) as a colourless solid, m.p. 92-94 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{41}$: 92-94 ${ }^{\circ} \mathrm{C}$) (Found: M^{+}, 203.9583. $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OBrF}$ requires M, 203.9586); $v_{\max } 3298,3202,1579,1464,1440,1410,1361,1266,1219,1148,1065,1025$ and $809 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.05(1 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OH}) 4.77\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{2}\right), 6.93(1 \mathrm{H}, \mathrm{td}, J 3,8.5$, $4-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 3,9,6-\mathrm{H})$ and $7.53(1 \mathrm{H}, \mathrm{dd}, J 5,8.5,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 64.38,115.29$ and 115.65 (d, ${ }^{2} J_{C-F} 27$), 115.65, 115.69 and 115.92 ($\mathrm{d}^{2}{ }^{2} J_{C-F}, 18$), 133.49 and 133.59 (d, $\left.{ }^{3} J_{C-F} 8\right), 141.90$ and $141.98\left(\mathrm{~d},{ }^{3} J_{C-F} 7\right)$, and 163.58 and $160.86\left(\mathrm{~d},{ }^{1} J_{C-F} 246\right) ; m / z(\mathrm{CI}) 204\left(\mathrm{M}^{+}+1,30 \%\right), 142$ (50), 124 (25), 123 (50), 107 (50) and 96 (100).

1-Bromo-4-fluoro-2-[(4-methoxyphenyl)methoxymethyl]benzene 107

The bromoalcohol $\mathbf{1 0 6}(11.0 \mathrm{~g}, 53.66 \mathrm{mmol})$ in tetrahydrofuran $\left(50 \mathrm{~cm}^{3}\right)$ was added to a suspension of sodium hydride (60% dispersion; 4.3 g) in tetrahydrofuran - N, N-dimethylformamide $\left(1: 2,150 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was warmed to room temperature over 2 h and 4 methoxybenzyl chloride $\left(7.43 \mathrm{~cm}^{3}\right)$ was added slowly. After the reaction was complete (tlc), water and ether were added and the mixture extracted into ether. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:
9) as eluent gave the title compound $107(16.39 \mathrm{~g}, 94 \%)$ as colourless oil (Found: $\mathrm{M}^{+}, 324.0159$. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{BrF}$ requires $M, 324.0162$); $v_{\text {max }} 3000,1612,1582,1514,1467,1249,1174,1150,1112,1088$, 1033 and $812 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.59$ and 4.63 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), 6.867.00 and 7.28-7.42 (each $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.52(1 \mathrm{H}, \mathrm{dd}, J 9,6, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.22$, $70.69,72.58,113.83,115.49$ and $115.64\left(\mathrm{~d},{ }^{2} J_{C-F} 11\right), 115.88$ and $115.92\left(\mathrm{~d},{ }^{4} J_{C-F} 3\right), 115.79$ and 115.96 (d, ${ }^{2} J_{C-F} 13$), 129.37, 129.75, 133.36 and 133.46 ($\mathrm{d},{ }^{3} J_{C-F} 7.5$), 140.15 and 140.25 (d, ${ }^{3} J_{C-F} 7.5$), 159.32, and 160.51 and 163.78 (d, $\left.{ }^{l} J_{C-F} 246\right) ; m / z(\mathrm{CI}) 342\left(\mathrm{M}^{+}+18,20 \%\right), 324\left(\mathrm{M}^{+}, 40\right)$ and 121 (100).

4-Fluoro-2-[(4-methoxyphenyl)methoxymethyl]cyclobutanoylbenzene 109

A crystal of iodine followed by 1,2-dibromoethane (2 drops) were added to magnesium turnings (312 $\mathrm{mg}, 13 \mathrm{mmol})$ in tetrahydrofuran ($3 \mathrm{~cm}^{3}$) and the mixture stirred under nitrogen for 10 min . Bromobenzene $\mathbf{1 0 7}(3.25 \mathrm{~g}, 10 \mathrm{mmol})$ in tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture heated under reflux for 3 h . After cooling to room temperature, N-methoxy- N-methylcyclobutylcarboxamide $108(1.861 \mathrm{~g}, 13 \mathrm{mmol})$ was added dropwise and the mixture stirred for 12 h . Saturated aqueous ammonium chloride was addd and the mixture extracted with ether. The organic extracts were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1: 9) as eluent afforded the title compound $\mathbf{1 0 9}$ ($1.94 \mathrm{~g}, 60 \%$) as colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 329.0552 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~F}$ requires M, 329.0553); $v_{\text {max }} 1675,1609,1583,1513,1248,1225,1114$, 1081, 1036, 975 and $821 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.82-2.48\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{2}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 3.94 (1 H , pent, $J 8.5,1^{\prime}-\mathrm{H}$), 4.64 and 4.95 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}$), $6.94(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.02(1 \mathrm{H}, \mathrm{td}$, $J 8,2.5, \mathrm{ArH}$), $7.37(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.58(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.5$, ArH) and $7.70(1 \mathrm{H}, \mathrm{dd}, J 8.5,5.5$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.84,25.11,43.56,55.19,69.82,72.60,113.01$ and 113.31 (d, $\left.{ }^{2} J_{C-F} 22.5\right)$, 113.75, 114.59 and 114.91 ($\mathrm{d},{ }^{2} J_{C-F} 24$), $129.25,129.98$ and 129.94 ($\mathrm{d},{ }^{4} J_{C-F} 3$), 130.17, 131.49 and 131.62 ($\mathrm{d},{ }^{3} J_{C-F} 10$), 144.94 and 145.05 ($\mathrm{d},{ }^{3} J_{C-F} 8$), $159.16,163.15$ and 165.51 ($\mathrm{d},{ }^{1} J_{C-F} 252$), and 202.33; $m / z(\mathrm{CI}) 329\left(\mathrm{M}^{+}+1,15 \%\right), 241$ (52), 221 (50), 191 (45) and 121 (100).

1-(1-Cyclobutylethenyl)-4-fluoro-2-[(4-methoxyphenyl)methoxymethyl]benzene 110

$\mathrm{Cp}_{2} \mathrm{TiMe}_{2}(25.78 \mathrm{mmol}, 5.37 \mathrm{~g})$ in THF $(20 \mathrm{~cm})$ was added dropwise to the ketone $\mathbf{1 0 9}(3.68 \mathrm{~g}, 11.21$ mmol) in THF ($100 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen and the mixture was heated at $65^{\circ} \mathrm{C}$ for 15 h then concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1: 20) as eluent gave the title compound $110(3.40 \mathrm{~g}, 93 \%)$ as pale yellow oil (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 344.2033$. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{FN}$ requires $M, 344.2026$); $v_{\text {max }} 3078,3035,1611,1586,1513,1493,1301,1249,1178,1151$, $1067,1037,961,906,875$ and $823 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60-2.14\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 3.18(1 \mathrm{H}$,
$\left.\mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.52$ and 4.55 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}$), 4.92 and 5.20 (each $1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}$), 6.91-7.01 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.08 ($1 \mathrm{H}, \mathrm{dd}, J 8.5,5.5$, ArH), $7.29(1 \mathrm{H}, \mathrm{dd}, J 9.5,3$, ArH) and $7.35(2 \mathrm{H}, \mathrm{d}, J$ $8.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.60,27.89,42.03,55.19,69.05,72.21,112.81,113.51$ and $113.77(\mathrm{~d}$, ${ }^{2} J_{C-F} 19.5$), 113.77, 114.58 and 114.88 ($\mathrm{d},{ }^{2} J_{C-F} 22.5$), $129.35,129.66$ and 129.76 (d, ${ }^{3} J_{C-F} 7.5$), 130.17, 137.06 and $137.10\left(\mathrm{~d},{ }^{4} J_{C-F} 3\right), 137.86$ and 137.96 ($\mathrm{d},{ }^{3} J_{C-F} 7.5$), $150.99,159.23$, and 160.22 and 163.47 (d, $\left.{ }^{1} J_{C-F} 244\right) ; m / z(\mathrm{CI}) 344\left(\mathrm{M}^{+}+18,20 \%\right), 309(40), 205(45), 138(65)$ and 121 (100).

2-(1-Cyclobutyletheny)-5-fluorophenylmethanol 111

Dichlorodicyanoquinone ($1.81 \mathrm{~g}, 7.96 \mathrm{mmol}$) was added to the 4-methoxybenzyl ether $\mathbf{1 1 0}(2.16 \mathrm{~g}, 6.63$ $\mathrm{mmol})$ in dichloromethane and water $\left(10: 1,99 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 2 h at room temperature. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added, the mixture extracted using dichloromethane and the organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:1) as eluent gave the title compound $\mathbf{1 1 1}(1.284 \mathrm{~g}, 94 \%)$ after distillation, b.p. $70^{\circ} \mathrm{C}$ at 0.1 mmHg) as a colourless oil (Found: M^{+}, 206.1107. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{OF}$ requires M, 206.1107); $v_{\max } 3340$, $1635,1606,1586,1491,1266,1230,1147,1031,905,874$ and $823 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.64-$ $2.16\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}, \mathrm{OH}\right), 3.20(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{l}-\mathrm{H})$, $4.65\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{2} \mathrm{O}\right), 4.92$ and 5.23 (each $1 \mathrm{H}, \mathrm{s}$, $\left.2^{\prime}-\mathrm{H}\right), 6.95(1 \mathrm{H}, \mathrm{td}, J 8,2.5, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{dd}, J 8.5,5.5, \mathrm{ArH})$ and $7.24(1 \mathrm{H}, \mathrm{dd}, J 10,2.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 17.55, 27.87, 42.03, 62.21, 112.98, 113.51 and 113.78 ($\mathrm{d},{ }^{2} J_{C-F} 20$), 113.95 and $114.24\left(\mathrm{~d},{ }^{2} J_{C-F} 22\right), 129.80$ and $129.90\left(\mathrm{~d},{ }^{3} J_{C-F} 7.5\right), 136.50$ and $136.55\left(\mathrm{~d},{ }^{4} J_{C-F} 4\right), 140.07$ and 140.16 (d, ${ }^{3} J_{C-F} 7.5$), 151.21, and 163.50 and 160.25 (d, ${ }^{1} J_{C-F} 244$); m / z (EI) $206\left(\mathrm{M}^{+}, 40 \%\right), 189$ (100), 177 (65), 163 (58), 159 (50), 149 (35), 147 (55), 137 (38) and 133 (40).

2-(1-Cyclobutyletheny)-5-fluorobenzaldehyde 112

Dess-Martin periodinane $(9.00 \mathrm{~g}, 21.23 \mathrm{mmol})$ was added to the benzyl alcohol $111(3.43 \mathrm{~g}, 16.73$ mmol) in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature under nitrogen and mixture stirred for 12 h . Water $\left(20 \mathrm{~cm}^{3}\right)$ and aqueous sodium hydroxide $\left(1.3 \mathrm{M}, 20 \mathrm{~cm}^{3}\right)$ were added, and the mixture extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:19) as eluent gave the title compound $112(2.9 \mathrm{~g}, 85 \%)$ as a colourless oil (Found: $\mathrm{M}^{+}, 204.0948 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OF}$ requires $M, 204.0950$); $\mathrm{v}_{\max }$ 1692, 1604, 1489 and $1413 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.68-2.18\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 3.29\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right)$, 4.99 ($\left.1 \mathrm{H}, \mathrm{t}, J 1,2^{\prime}-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{t}, J 1.5,2^{\prime}-\mathrm{H}^{\prime}\right), 7.07(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.63$ ($1 \mathrm{H}, \mathrm{ddd}, J 9,2,12$, ArH) and $10.14(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.54,27.69,42.28,113.18$ and $113.47\left(\mathrm{~d},{ }^{2} J_{C-F} 22\right)$,
116.29, 120.35 and 120.64 (d, ${ }^{2} J_{C-F} 22$), 130.82 and 130.91 ($\mathrm{d},{ }^{3} J_{C-F} 7$), 135.33 and 135.42 ($\mathrm{d},{ }^{3} J_{C-F} 7$), 142.27 and 142.31 ($\mathrm{d},{ }^{4} J_{C-F} 3$), 148.22, 160.06, and 163.35 ($\mathrm{d},{ }^{1} J_{C-F} 247$) and 191.01; m / z (CI) 222 $\left(\mathrm{M}^{+}+18,50 \%\right), 206(20), 205(100), 187(55)$ and 176 (68).

[2-(1-Cyclobutylethenyl)-5-fluorophenyl]methyl(prop-2-enyl)amine 113

Anhydrous magnesium sulfate ($6.1 \mathrm{~g}, 50.68 \mathrm{mmol}$) was added to the aldehyde $\mathbf{1 1 2}(2.4 \mathrm{~g}, 11.76 \mathrm{mmol})$ and prop-2-enylamine $\left(3.6 \mathrm{~cm}^{3}, 47.92 \mathrm{mmol}\right)$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature and the reaction stirred for 24 h , then filtered and concentrated under reduced pressure. Sodium borohydride ($670 \mathrm{mg}, 17.72 \mathrm{mmol}$) was added to the residue in methanol $\left(20 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 2 h , then concentrated under reduced pressure and diluted with water $\left(30 \mathrm{~cm}^{3}\right)$. The mixture was extracted with dichloromethane $\left(5 \times 30 \mathrm{~cm}^{3}\right)$ and the organic extracts dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound $113(2.88 \mathrm{~g}, 99 \%)$ as a yellow oil (Found: $\mathrm{M}^{+}, 245.1571$. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NF}$ requires $M, 245.1580$); $v_{\max } 3079,1638,1606,1585,1491,1447,1266,1227,1149$ and 905 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.50-2.04\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.17\left(2 \mathrm{H}, \mathrm{d}, J 5.5,1^{\prime}-\mathrm{H}_{2}\right)$ $3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}-\right)$, $4.81\left(1 \mathrm{H}, \mathrm{t}, J 1.5,2^{\prime \prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{dd}, J 10,1.8,3-\mathrm{H}), 5.10,\left(1 \mathrm{H}, \mathrm{t}, J 1.5,2^{\prime \prime}-\right.$ $\left.\mathrm{H}^{\prime}\right), 5.12\left(1 \mathrm{H}, \mathrm{dd}, J 17,2,3-\mathrm{H}^{\prime}\right), 5.84(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.80(1 \mathrm{H}, \mathrm{td}, J 8,2.5, \mathrm{ArH}), 6.92(1 \mathrm{H}, \mathrm{dd}, J 8.5,6$, ArH) and $7.08(1 \mathrm{H}, \mathrm{dd}, J 10,2.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.57,27.95,42.15,50.21,51.75,112.59$, 112.83 and 113.11 ($\mathrm{d},{ }^{2} J_{C-F} 21$), 114.85 and 115.13 ($\mathrm{d},{ }^{2} J_{C-F} 21$), $115.81,129.88$ and 129.98 ($\mathrm{d},{ }^{3} J_{C-F}$ 7.5), 136.73, 137.41 and 137.45 ($\mathrm{d},{ }^{4} J_{C-F} 3$), 139.62 and 139.71 ($\mathrm{d},{ }^{3} J_{C-F} 7$), 151.79 , and 160.18 and 163.42 (d, ${ }^{1} J_{C-F} 243$); m/z (EI) 246 (M ${ }^{+}+1,30 \%$), 217 (30), 204 (25), 176 (30), 162 (40), 147 (60), 133 (40) and 41 (100).

N-[2-(1-cyclobutylethenyl)-5-fluorophenyl]methyl- N-prop-2-enyl 2-nitrophenylsulfonamide 114

2-Nitrophenylsulfonyl chloride $(2.40 \mathrm{~g}, 10.83 \mathrm{mmol})$, triethylamine $\left(4 \mathrm{~cm}^{3}\right)$ and 4-dimethylaminopyridine (ca. 5 mg) were added to the amine $113(2.19 \mathrm{~g}, 8.92 \mathrm{mmol})$ in dichloromethane $\left(80 \mathrm{~cm}^{3}\right)$ at room temperature under nitrogen and the mixture stirred for 12 h . Ether $\left(250 \mathrm{~cm}^{3}\right)$ and water $\left(250 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with ether $\left(2 \times 150 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:1) as eluent gave the title compound 114 (3.30 g , 86\%) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 448.1695$. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SF}$ requires M, 448.1706); $v_{\max } 3083,1608,1586,1545,1491,1440,1369,1357,1270$, $1164,1126,914$ and $778 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60-2.16\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{2}\right), 3.13(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.95\left(2 \mathrm{H}, \mathrm{d}, J 6,1-\mathrm{H}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}-\right), 4.88(1 \mathrm{H}, \mathrm{t}, J 1.5,2 "-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{dd}, J 17,1,3-\mathrm{H})$,
5.11 ($\left.1 \mathrm{H}, \mathrm{dd}, J 10,1,3-\mathrm{H}^{\prime}\right), 5.24\left(1 \mathrm{H}, \mathrm{t}, J 1.5,2^{\prime \prime}-\mathrm{H}^{\prime}\right), 5.61(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{td}, J 8,2.5$, ArH), 6.99-7.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.62-7.80 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $8.06(1 \mathrm{H}, \mathrm{dd}, J 8,1, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $17.55,27.95,41.98,47.95,49.87,113.41$ and 113.65 ($\mathrm{d},{ }^{2} J_{C-F} 18$), 113.65 and 113.92 ($\mathrm{d},{ }^{2} J_{C-F} 20.5$), 113.96, 119.31, 124.15, 130.15 and 130.26 (d, ${ }^{3} J_{C-F} 7.5$), 130.98, 131.68, 131.78, 133.60, 133.76, 135.03 and $135.12\left(\mathrm{~d},{ }^{3} J_{C-F} 7\right), 137.45$ and $137.49\left(\mathrm{~d},{ }^{4} J_{C-F} 3\right), 147.76,150.75$, and 160.33 and $163.59\left(\mathrm{~d},{ }^{1} J_{C-F}\right.$ 244.5); $m / z(\mathrm{CI}) 448\left(\mathrm{M}^{+}+18,20 \%\right), 401$ (40), 246 (100), 244 (90) and 189 (90).

References

1. R. M. Eglen ed., Muscarinic Receptor Subtypes in Smooth Muscle, CRC, 1997, ISBN-10 0849385490.
2. P. Abrams, K.E. Anderson, J. J. Buccafusco, C. Chapple, W. Chet de Groat, A. D. Fryer, G. Kay, A. Laties, N. M. Nathanson, P. J. Pasricka and A. J. Wein, Brit. J. Pharmacology, 2006, 148, 565.
3. V. Alabaster, J. Urinology, 1998, 159, 2261.
4. K. J. Broadley, A. Hamrouni, C. Escargueil, B. C. P. Allen and R. H. Davies, unpublished observations.
5. K. Palczewski, T. Kumaska, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fax, I. Le Trong, D. C. Keller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano, Science, 2000, 289, 739.
6. (a) D. W. McPherson, J. P. Carter, US Patent 5,001,160, 1991; (b) R. E. Howell, K. D. Laemont, M. P. Kovalsky, V. C. Lowe, P. P. Waid, W. J. Kinnier and L. Noronha-Blob, J. Pharm. And Exp. Ther., 1994, 270, 546; (c) C. Kaiser, V. H. Audia, J. P. Carter, D. W. McPherson, P. P. Waid, V. C. Lowe and L. Noronha-Blob, J. Med. Chem., 1993, 36, 610.
7. D. Seebach, M. A. Maestro, M. Sefkow, G. Adam, S. Hintermann and A. Neidlein, Annalen, 1994, 701.
8. (a) A. Dieters and S. F. Martin, Chem. Rev., 2004, 104, 2199; (b) K. C. Nicolaou, S. G. Bulger and D. Sarlah, Angew. Chem. Inter. Edn., 2005, 44, 4490.
9. (a) S. Brass, H.D. Gerber, S. Dorr and W. E. Diderich, Tetrahedron, 2006, 62, 1777; (b) M. Berberis, P. Garcia-Losada, S. Pleite, J. R. Rodriguez, J. F. Soriano and J. Mendiola, Tetrahedron Lett., 2005, 46, 4847; (c) L. Delhaye, A. Merschaert, K. Diker and I. N. Houpis, Synthesis, 2006, 1437.
10. (a) J.-L. Panayides, R. Pathak, C. B. de Koning and W. A. L. van Otterlo, Eur. J. Org. Chem., 2007, 4953; N. Toda, K. Tago, S. Marumoto, K. Takami, M. Ori, N. Yamada, K. Koyama, S.

Naruto, K. Abe, R. Yamazaki, T. Hara, A. Aoyagi, Y. Abe, T. Kaneko and H. Kogen, Bio. Med. Chem., 2003, 11, 4389.
11. H. H. Wasserman, R. P. Robinson and C. G. Carter, J. Am. Chem. Soc., 1983, 105, 1697.
12. M. R. Pavia, S. J. Lobbestael, C. P. Taylor, F. M. Hershenson and D. L. Miskell, J. Med. Chem., 1990, 33, 854.
13. O. Mitsunobu, Synthesis, 1981, 1.
14. (a) A. P. Kozikowski, D. Ma, Y.-P. Pang, P. Shum, V. Likic, P. K. Mishra, S. Macura, A. Basu, J. S. Lazo and R. G. Ball, J. Am. Chem. Soc., 1993, 115, 3957; (b) D. L. J. Clive, S. R. Magnuson, H. W. Manning and D. L. Mayhew, J. Org. Chem., 1996, 61, 2095.
15. G. L. Stahl, R. Walter and C. W. Smith, J. Org. Chem., 1978, 43, 2285.
16. R. F. Borch, M. D. Bernstein and H. D. Durst, J. Am. Chem. Soc., 1971, 93, 2897.
17. A. B. Smith III, T. A. Rano, N. Chida, G. A. Sulikowski and J. L. Wood, J. Am. Chem. Soc., 1992, 114, 8008.
18. A. D. Brosius, L. E. Overman and L. Schwink, J. Am. Chem., Soc., 1999, 121, 700.
19. M. E. Garst, J. N. Bonfiglio, D. A. Grudoski and J. Marks, J. Org. Chem., 1980, 45, 2307.
20. (a) R. W. Murray, Chem. Rev., 1989, 89, 1187; (b) W. Adam, R. Curci, J. O. Edwards, Acc. Chem. Res., 1989, 22, 205; (c) W. Adam, L. Hadjiarapoglou and X. Wang, Tetrahedron Lett., 1989, 30, 6497.
21. E. Peyroux, F. Berthiol, H. Doucet and M. Santelli, Eur. J. Org. Chem., 2004, 1075; L. N. Pridgen, L. Snyder and J. Prol, Jr., J. Org. Chem., 1989, 54, 1523.
22. (a) T. Fukuyama, C.-K. Jow and M. Cheung, Tetrahedron Lett., 1995, 36, 6373; (b) W. Bowman and R. D. Coghlan, Tetrahedron, 1997, 53, 15787; (b) T. Kan and T. Fukuyama, Chem. Comтип., 2004, 353.
23. P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
24. R. Stragies and S. Blechert, J. Am. Chem. Soc., 2000, 122, 9584; P. A. Evans, J. E. Robinson and J. D. Nelson, J. Am. Chem. Soc., 1999, 121, 6761.
25. V. VanRheenen, D. Y. Cha and W. M. Hartley, Org. Synth., Coll. Vol. 6, 1988, 342.
26. (a) P. D. Bartlett, S. J. Tauber, W. P. Weber, J. Am. Chem. Soc., 1969, 93, 6362; (b) E. R. Buchman, J. C. Conly, J. Am. Chem. Soc., 1953, 75, 1990; (c) C. V. Wilson, Org. React., 1957, 9, 332; (d) M. Karimine, J. Galsomais, J.-P. Lere-Porte, J. Petrissans, J. Mol. Struct., 1987, 162, 321.
27. P. T. Lansbury and V. A. Pattison, J. Am. Chem. Soc., 1962, 84, 4295.
28. V. Snieckus, Chem. Rev., 1990, 90, 879.
29. S. D. Meyer and S. L Schreiber, J. Org. Chem., 1994, 59, 7549.
30. N. A. Petassis and E. I. Bzowej, J. Org. Chem., 1992, 57, 1327.
31. M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 1, 953.
32. K. Takahashi and M. Ogata, J. Org. Chem., 1987, 52, 1877.
33. (a) D. N. Kirk and C. R. McHugh, J. Chem. Soc., Perkin Trans. I, 1977, 893; (b) R. E. Hartung, D. G. Hilmey and L. A. Paquette, Adv. Synth. Catal., 2004, 346, 713.
34. (a) Y. Hirai, T. Terada, A. Hagiwawa and T. Yamazaki, Chem. Pharm Bull., 1988, 36, 1343; Y. Hirai, T. Terada and T. Yamazaki, J. Am. Chem. Soc., 1988, 110, 958.
35. F. Cardullo, D. Donati, G. Merlo, A. Paio, M. Salaris and M. Taddei, Synlett, 2005, 2996.
36. (a) K. Ishihara, Y. Kuroki and H. Yamamoto, Synlett, 1995, 41; (b) Y. Kuroki, K. Ishihara, N. Hamaki, S. Ohara and H. Yamamoto, Bull. Chem. Soc. Japan, 1998, 71, 1221.
37. L. K. Sydnes, I. C. Burkow and S. H. Hansen, Tetrahedron, 1985, 41, 5703.
38. T. Fukuyama, M. Cheung, C.-K. Jow, Y. Hidai and T. Kan, Tetrahedron Lett., 1997, 38, 5831.
39. J. P. Carson, H. R. Almond, M. D. Brannan, R. J. Carmosin, S. F. Flaim, A. Gill, M. M. Gleason, S. L. Keely, D. W. Ludovic, P. M. Pitis, M. C. Rebarchak and F. J. Villani, J. Med. Chem., 1988, 31, 630.
40. S. J. Baker, Y.-K. Zhang, T. Akama, A. Lau, H. Zhou, V. Hernandez, W. Mao, M. R. K. Alley, V. Sanders and J. J. Plattner, J. Med. Chem., 2006, 49, 4447.
41. Y. Ikeuchi, T. Taguchi and Y. Hanzawa, J. Org. Chem., 2005, 70, 756.

