Supplementary Information

Asymmetric synthesis of vicinal amino alcohols: xestoaminol C, sphinganine and sphingosine

Elin Abraham, Stephen G. Davies,* Nicholas L. Millican, Rebecca L. Nicholson, Paul M. Roberts and Andrew D. Smith

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.

E-mail: steve.davies@chem.ox.ac.uk

Experimental

General Experimental

All reactions involving organometallic or other moisture-sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs and co-workers.¹ Water was purified by an Elix[®] UV-10 system. All other solvents were used as supplied (analytical or HPLC grade) without prior purification. Organic layers were dried over MgSO₄. Thin layer chromatography was performed on aluminium plates coated with 60 F_{254} silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO₄, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed on Kieselgel 60 silica.

Elemental analyses were recorded by the microanalysis service of the Inorganic Chemistry Laboratory, University of Oxford, UK. Melting points were recorded on a Gallenkamp Hot Stage apparatus and are uncorrected. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter with a water-jacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg cm² g⁻¹ and concentrations in g/100 mL. IR spectra were recorded on Bruker Tensor 27 FT-IR spectrometer as either a thin film on NaCl plates (film) or a KBr disc (KBr), as stated. Selected characteristic peaks are reported in cm⁻¹. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. Spectra were recorded at rt unless otherwise stated. The field was locked by external referencing to the relevant deuteron resonance. Low-resolution mass spectra were recorded on either a VG MassLab 20-250 or a Micromass Platform 1 spectrometer. Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyanaline, or a

¹ A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, **1996**, *15*, 1518.

Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column (15 m \times 0.25 mm) using amyl acetate as a lock mass.

tert-Butyl (2S,3S,αS)-2-hydroxy-3-[N-benzyl-N-(α-methylbenzyl)amino]butanoate 10

BuLi (2.5 M in hexanes, 10.9 mL, 27.3 mmol) was added dropwise via syringe to a stirred solution of (S)-Nbenzyl-N-(α-methylbenzyl)amine (5.94 g, 28.2 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of tert-butyl crotonate (2.5 g, 17.6 mmol) in THF (20 mL) at -78 °C was added dropwise via cannula. After stirring for a further 2 h at -78 °C the reaction mixture was quenched with (+)-CSO (8.06 g, 35.2 mmol) and allowed to warm to rt over 12 h. Sat aq NH₄Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated *in vacuo*. The residue was partitioned between DCM (50 mL) and 10% ag citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO₃ (50 mL) and brine (50 mL), dried and concentrated in vacuo. The residue was dissolved in Et₂O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et_2O (2 × 20 mL). The filtrate was concentrated in vacuo and the process was repeated. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1) gave 10 as a white solid (4.99 g, 77%, >98% de); R_f 0.22 (30-40 °C petrol/Et₂O, 10:1); mp 87-88 °C (30-40 °C petrol/Et₂O, 10:1); $[\alpha]_D^{25}$ +34.7 (c 1.05 in CHCl₃); {lit.² for enantiomer [α]_D²⁵ -33.4 (*c* 1.0 in CHCl₃)}; δ_H (400 MHz, CDCl₃) 1.14 (3H, d, *J* 7.2, C(4)*H*₃), 1.38 (3H, d, *J* 6.8, C(α)Me), 1.42 (9H, s, CMe₃), 3.02 (1H, bs, OH), 3.30-3.36 (1H, m, C(3)H), 3.94 (1H, d, J 14.7, NCH_A), 4.05-4.11 (3H, m, C(2)*H*, C(α)*H*, NC*H*_B), 7.24-7.55 (10H, m, *Ph*).

tert-Butyl (2S,3S, aS)-2-benzyloxy-3-[N-benzyl-N-(a-methylbenzyl)amino]butanoate 11

A solution of **10** (1.5 g, 4.1 mmol) in THF (5 mL) at room temperature was added dropwise *via* syringe to a stirred slurry of NaH (60% dispersion in oil, 103 mg, 4.3 mmol) in THF (5 mL) at 0 °C. The reaction

² M. E. Bunnage, A. N. Chernega, S. G. Davies and C. J. Goodwin, J. Chem. Soc., Perkin Trans. 1, 1994, 2373.

mixture was allowed to warm to rt over 1 h, after which 15-crown-5 ether (0.94 mL, 4.3 mmol) and BnBr (1.2 mL, 44.6 mmol) were sequentially added dropwise *via* syringe. Stirring was continued for 12 h before the reaction was quenched with sat aq NH₄Cl (2 mL). Brine (10 mL) was added, the organic layer was separated and the aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1) gave **11** as a colourless oil (1.61 g, 88%, >98% de); $[\alpha]_D^{23}$ –67.3 (*c* 1.0 in CHCl₃); v_{max} (film) 2976 (C–H), 1739 (C=O); δ_H (400 MHz, CDCl₃) 1.14 (3H, d, *J* 7.1, C(4)*H*₃), 1.30 (3H, d, *J* 6.8, C(α)*Me*), 1.40 (9H, s, *CMe*₃), 3.32-3.38 (1H, m, C(3)*H*), 3.80 (1H, d, *J* 3.5, C(2)*H*), 3.81 (1H, d, *J* 14.9, NC*H*_A), 3.94 (1H, q, *J* 6.8, C(α)*H*), 4.05 (1H, d, *J* 14.9, NC*H*_B), 4.30 (1H, d, *J* 11.1, OC*H*_A), 4.61 (1H, d, *J* 11.1, OC*H*_B), 7.21-7.41 (15H, m, *Ph*); δ_C (100 MHz, CDCl₃) 12.9 (*C*(4)), 17.8 (C(α)*Me*), 28.0 (*CMe*₃), 50.6 (NC*H*₂), 54.5 (*C*(3)), 58.9 (*C*(α)), 72.3 (OC*H*₂), 80.9 (*C*Me₃), 82.0 (*C*(2)), 126.3, 126.6, 127.6 (*p*-*Ph*), 127.8, 128.01, 128.04, 128.2, 128.23 (*o*-*Ph*, *m*-*Ph*), 137.8, 142.5, 144.4 (*i*-*Ph*), 171.2 (*C*(1)); *m*/z (ESI⁺) 460 ([M+H]⁺, 100%); HRMS (ESI⁺) C₃₀H₃₇NO₃⁺ ([M+H]⁺) requires 460.2852; found 460.2849.

(2S,3S,αS)-2-Benzyloxy-3-[N-benzyl-N-(α-methylbenzyl)amino]butan-1-ol 12

LiAlH₄ (1 M in THF, 1.12 mL, 1.12 mmol) was added dropwise *via* syringe to a stirred solution of **11** (250 mg, 0.56 mmol) in THF (5 mL) at 0 °C and the reaction mixture allowed to warm to rt over 6 h. The reaction was quenched with H₂O (0.5 mL) and filtered through Celite (eluent EtOAc) to give **12** as a colourless oil (200 mg, 91%, >98% de) that was used without purification. Purification of an aliquot *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1) gave an analytical sample; $[\alpha]_D^{22}$ -9.5 (*c* 4.0 in CHCl₃); v_{max} (film) 3413 (O–H), 2972 (C–H); δ_H (400 MHz, CDCl₃) 1.32 (3H, d, *J* 6.6, C(4)*H*₃), 1.46 (3H, d, *J* 6.8, C(α)*Me*), 3.03 (1H, app s, OH), 3.10-3.16 (2H, m, C(1)*H*₂), 3.24-3.29 (1H, m, C(2)*H*), 3.49-3.54 (1H, m, C(3)*H*), 3.82 (2H, ABq, *J* 13.4, NCH₂), 3.99 (1H, q, *J* 6.8, C(α)*H*), 4.46 (1H, d, *J* 11.1, OCH_A), 4.58 (1H, d, *J* 11.1, OCH_B), 7.24-7.42 (15H, m, *Ph*); δ_C (100 MHz, CDCl₃) 13.6 (C(α)*Me*), 14.4 (*C*(4))), 50.9 (NCH₂), 54.0 (*C*(3)), 56.8 (*C*(α)), 63.0 (*C*(1)), 72.7 (OCH₂), 80.8 (*C*(2)), 127.2, 127.3, 127.7 (*p*-*Ph*), 128.0, 128.2, 128.22 128.4, 128.6, 129.4 (*o*-*Ph*, *m*-*Ph*), 138.2, 139.7, 143.1 (*i*-*Ph*); *m*/z (ESI⁺) 390 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₆H₃₂NO₂⁺ ([M+H]⁺) requires 390.2433; found 390.2423.

(2S,3S,αS)-2-Benzyloxy-3-[N-benzyl-N-(α-methylbenzyl)amino]butanal 13

DMSO (0.04 mL, 0.57 mmol) was added dropwise *via* syringe to a stirred solution of oxaloyl chloride (0.02 mL, 0.23 mmol) in DCM (2 mL) at -78 °C. After 20 min a solution of **12** (50 mg, 0.13 mmol) in DCM (2 mL) was added dropwise *via* syringe. After a further 20 min Et₃N (0.11 mL, 0.78 mmol) was added dropwise *via* syringe and the reaction mixture was stirred for a further 30 min before being allowed to warm to rt over a further 30 min. Volatiles were removed *in vacuo* and the residue was partitioned between H₂O (10 mL) and Et₂O (10 mL). The organic layer was separated and the aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic extracts were dried and concentrated *in vacuo* to give **13** as a colourless oil (44 mg, 88%, >98% de) that was used without purification; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.27 (3H, d, *J* 6.4, C(4)*H*₃), 1.38 (3H, d, *J* 7.0, C(α)*Me*), 3.28-3.34 (1H, m, C(3)*H*), 3.40-3.43 (1H, m, C(2)*H*), 3.77 (2H, app d, *J* 3.1, NC*H*₂), 3.86 (1H, q, *J* 7.0, C(α)*H*), 4.31 (1H, d, *J* 11.4, OC*H*_A), 4.48 (1H, d, *J* 11.4, OC*H*_B), 7.20-7.71 (15H, m, *Ph*), 8.59 (1H, d, *J* 4.5, C(1)*H*).

(2S,3R,4Z,αS)-2-[N-Benzyl-N-(α-methylbenzyl)amino]-3-benzyloxytetradec-4-ene (Z)-14

BuLi (2.5 M in hexanes, 1.84 mL, 4.5 mmol) was added dropwise *via* syringe to a stirred solution of (1decyl)triphenylphosphonium bromide (2.5 g, 5.17 mmol) in THF (20 mL) at -78 °C. After 30 min, hexane (25 mL) was added, followed by the dropwise addition *via* syringe of a solution of **13** (400 mg, 1.03 mmol) in THF (5 mL). Stirring was continued and the reaction mixture was allowed to warm to rt over 12 h. The reaction was quenched with sat aq NH₄Cl (2 mL). Brine (10 mL) was added, the organic layer separated and the aqueous layer extracted with Et₂O (3 × 10 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 200:1) gave (*Z*)-**14** as a colourless oil (500 mg, 95%, >98% de); $[\alpha]_D^{23}$ –26.7 (*c* 1.0 in CHCl₃); v_{max} (film) 2925 (C–H), 1644 (C=C); δ_H (400 MHz, CDCl₃) 0.91 (3H, t, *J* 7.2, C(14)H₃), 1.20-1.35 (20H, m, C(1)H₃, C(7)H₂-C(13)H₂, C(α)Me), 1.66-1.73 (2H, m, C(6)H₂), 2.74-2.80 (1H, m, C(2)H), 3.87 (1H, d, *J* 14.0, NCH_A), 3.98 (1H, q, *J* 6.8, C(α)H), 4.08 (1H, d, *J* 14.0, NCH_B), 4.16 (1H, dd, *J* 9.3, 4.4, C(3)H), 4.30 (1H, d, *J* 11.6, OCH_A), 4.48 (1H, d, J 11.6, OCH_B), 5.11 (1H, dd, J 10.9, 9.3, C(4)*H*), 5.40-5.47 (1H, m, C(5)*H*), 7.15-7.46 (15H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.8 (*C*(1)), 14.1 (*C*(14)), 14.5 (C(α)*Me*), 22.7, 27.4, 29.26, 29.33, 29.6, 29.7, 31.9 (*C*(6)-*C*(13)), 51.3 (NCH₂), 55.2 (*C*(2)), 56.7 (*C*(α)), 70.2 (OCH₂), 79.6 (*C*(3)), 126.2, 126.3, 126.4 (*p*-*Ph*), 127.2, 127.7, 127.71, 128.0, 128.1, 128.6 (*o*-*Ph*, *m*-*Ph*), 129.9 (*C*(5)), 133.2 (*C*(4)), 139.0, 142.3, 145.0 (*i*-*Ph*); *m*/*z* (ESI⁺) 512 ([M+H]⁺, 100%); HRMS (ESI⁺) C₃₆H₅₀NO⁺ ([M+H]⁺) requires 512.3892; found 512.3898.

(2S,3R,αS)-2-[N-(α-Methylbenzyl)amino]tetradecan-3-ol 15

Pd/C (20 mg, 50% w/w) was added to a stirred solution of (*Z*)-14 (40 mg, 0.78 mmol) in MeOH/AcOH/H₂O (40:4:1, 5 mL) at rt. The reaction mixture was stirred under H₂ (1 atm) for 6 h. The reaction mixture was filtered through Celite (eluent MeOH) and concentrated *in vacuo* to give 15, contaminated with an unidentified impurity, as a colourless oil (15 mg); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.87-0.89 (6H, m, C(1)H₃, C(14)H₃), 1.23-1.33 (16H, m, C(6)H₂-C(13)H₂), 1.36-1.52 (7H, m, C(4)H₂, C(5)H₂, C(α)Me), 2.54 (1H, qd, *J* 6.5, 3.1, C(2)H), 3.62-3.66 (1H, m, C(3)H), 3.88 (1H, q, *J* 6.8, C(α)H), 7.24-7.71 (5H, m, Ph).

tert-Butyl (2S,3S)-2-hydroxy-3-(N-tert-butoxycarbonylamino)butanoate 16

Pearlman's catalyst (250 mg, 25% w/w) was added to a vigorously stirred solution of **10** (1.0 g, 27.1 mmol) and Boc₂O (2.01 g, 92.1 mmol) in EtOAc (50 mL) and the mixture was placed under H₂ (5 atm). Stirring continued for 12 h, after which time the reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 5:1; then 30-40 °C petrol/Et₂O, 1:1) gave **16** as a colourless oil (740 mg, 98%, >98% de); R_f 0.08 (30-40 °C petrol/Et₂O, 5:1); $[\alpha]_D^{23}$ +10.8 (*c* 1.2 in CHCl₃); {lit.³ $[\alpha]_D^{23}$ +10.6 (*c* 2.4 in CHCl₃)}; δ_H (400 MHz, CDCl₃) 1.02 (3H, d, *J* 6.8, C(4)*H*₃), 1.46 (9H, s, *CMe*₃), 1.50 (9H, s, *CMe*₃), 3.03 (1H, d, *J* 5.5, OH), 4.07-4.14 (1H, m, C(3)H), 4.20-4.22 (1H, m, C(2)H), 4.90 (1H, d, *J* 8.9, NH).

³ M. E. Bunnage, A. J. Burke, S. G. Davies, N. L. Millican, R. L. Nicholson, P. M. Roberts and A. D. Smith, *Org. Biomol. Chem.*, **2003**, *1*, 3708.

(4S,5S)-2,2,4-Trimethyl-N(3),5-di-tert-butoxycarbonyl-oxazolidine 17

BF₃·Et₂O (1 M in Et₂O) was added dropwise to a stirred solution of **16** (1.7 g, 6.18 mmol) and 2,2dimethoxypropane (10 mL) in acetone (50 mL) until a permanent colour change from colourless to dark orange was observed. After stirring at rt for 12 h the reaction was quenched with Et₃N until pH 7 was achieved. The reaction mixture was concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1) gave **17** as a white crystalline solid (1.72 g, 88%, >98% de); R_f 0.1 (30-40 °C petrol/Et₂O, 10:1); $C_{16}H_{29}NO_5$ requires C, 60.9; H, 9.3; N, 4.4%; found C, 60.9; H, 9.3; N, 4.4%; mp 55-57 °C (30-40 °C petrol/Et₂O); $[\alpha]_D^{21} -17.4$ (*c* 1.2 in CHCl₃); v_{max} (KBr) 2978 (C–H), 1749 (C=O), 1699 (C=O); δ_H (400 MHz, CDCl₃) 1.07-1.16 (3H, m, C(4)*Me*), 1.35-1.52 (21H, m, C(2)*Me*_A, 2 × C*Me*₃), 1.55-1.66 (3H, m, C(2)*Me*_B), 4.02-4.27 (1H, m, C(4)*H*), 4.47 (1H, d, *J* 5.8, C(5)*H*); δ_H (500 MHz, DMSO-*d*₆, 363 K) 1.11 (3H, d, *J* 6.4, C(4)*Me*), 1.46 (9H, s, *CMe*₃), 1.48 (12H, s, C(2)*Me*_A, C*Me*₃), 1.57 (3H, s, C(2)*Me*_B), 4.12 (1H, m, C(4)*H*), 4.60 (1H, d, *J* 5.8, C(5)*H*); δ_C (125 MHz, DMSO-*d*₆, 363 K) 16.0 (C(4)*Me*), 25.2 (C(2)*Me*_A), 28.4 (C(2)*Me*_B), 28.7 (*CMe*₃), 29.0 (*CMe*₃), 54.8 (*C*(4))), 76.2 (*C*(5))), 80.2 (*CMe*₃), 82.5 (*CMe*₃), 94.1 (*C*(2)), 151.7 (NCO), 167.5 (*CO*₂^tBu); *m*/z (ESI⁺) 316 ([M+H]⁺, 19%), 260 (83), 204 (100); HRMS (ESI⁺) C₁₆H₃₀NO₅⁺ ([M+H]⁺) requires 316.2124; found 316.2135.

(4S,5S)-2,2,4-Trimethyl-N(3)-tert-butoxycarbonyl-5-hydroxymethyl-oxazolidine 18

LiAlH₄ (1 M in THF, 0.6 mL, 0.6 mmol) was added dropwise *via* syringe to a stirred solution of **17** (189 mg, 0.6 mmol) in THF (10 mL) at 0 °C. After stirring for 6 h, the reaction was quenched with H₂O (*ca* 0.5 mL) and filtered through Celite (eluent EtOAc) to give **18** as a colourless oil (152 mg, quant, >98% de) that was used without purification. Purification of an aliquot *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1) gave an analytical sample; R_f 0.27 (30-40 °C petrol/Et₂O, 2:1); C₁₂H₂₃NO₄ requires C, 58.75; H, 9.45; N, 5.7%; found C, 58.8; H, 9.7; N, 5.5%; $[\alpha]_D^{27}$ –1.2 (*c* 1.1 in CHCl₃); v_{max} (film) 3449 (O–H), 2980 (C–H), 1698 (C=O); δ_H (400 MHz, CDCl₃) 1.08-1.17 (1H, m, C(4)*Me*), 1.43-1.66 (15H, m, C(2)*Me*₂, C*Me*₃), 3.66-3.83 (2H, m, C(5)CH₂), 3.89-4.10 (1H, m, C(4)*H*), 4.13-4.20 (1H, m, C(5)*H*); δ_H (500

MHz, DMSO- d_6 , 363 K), 1.08 (3H, d, J 6.4, C(4)Me), 1.41-1.50 (12H, m, C(2) Me_A , C Me_3), 1.52 (3H, s, C(2) Me_B), 2.99 (1H, br s, OH), 3.53 (1H, br dd, J 11.0, 6.4, C(5) CH_A), 3.58 (1H, br dd, J 11.0, 6.1, C(5) CH_B), 3.89-3.97 (1H, m, C(4)H), 4.05-4.13 (1H, m, C(5)H); δ_C (125 MHz, DMSO- d_6 , 363 K) 14.7 (C(4)Me), 25.2 (C(2) Me_A), 28.5 (C(2) Me_B), 29.1 (C Me_3), 55.0 (C(4)), 60.3 (C(5) CH_2), 77.6 (C(5)), 79.7 (CMe₃), 93.1 (C(2)), 151.9 (NCO); m/z (ESI⁺) 246 ([M+H]⁺, 12%), 190 (100), 146 (94); HRMS (ESI⁺) C₁₂H₂₄NO₄⁺ ([M+H]⁺) requires 246.1705; found 246.1714.

(4S,5S)-2,2,4-Trimethyl-N(3)-tert-butoxycarbonyl-5-formyl-oxazolidine 19

IBX (2.06 g, 7.35 mmol) was added to a solution of **18** (600 mg, 2.45 mmol) in DMSO (20 mL) at rt and stirred for 12 h. The reaction mixture was diluted with Et₂O (20 mL), washed with H₂O (5 × 20 mL), dried and concentrated *in vacuo* to give **19** as a colourless oil (600 mg, quant, >98% de) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.13-1.19 (3H, m, C(4)*Me*), 1.43-1.57 (12H, m, C(2)*Me*_A, *CMe*₃), 1.68 (3H, s, C(2)*Me*_B), 4.13-4.39 (1H, m, C(5)*H*), 4.40-4.66 (1H, m, C(4)*H*), 9.71 (1H, s, *CHO*).

(4S,5R,1'Z)-2,2,4-Trimethyl-N(3)-tert-butoxycarbonyl-5-undec-1'en-1'-yl-oxazolidine (Z)-20

BuLi (2.5 M in hexanes, 5.74 mL, 14.3 mmol) was added dropwise *via* syringe to a stirred solution of (1decyl)triphenylphosphonium bromide (7.95 g, 16.4 mmol) in THF (40 mL) at -78 °C. After 30 min, hexane (50 mL) was added, followed by the dropwise addition *via* cannula of a solution of **19** (800 mg, 3.29 mmol) in THF (10 mL). The reaction mixture was allowed to warm to rt over 12 h. The reaction mixture was quenched with sat aq NH₄Cl (2 mL). Brine (10 mL) was added, the organic layer was separated, and the aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1) gave (*Z*)-**20** as a colourless oil (1.03 g, 85%, >98% de); R_f 0.16 (30-40 °C petrol/Et₂O, 10:1); $[\alpha]_D^{21}$ -23.6 (*c* 1.3 in CHCl₃); v_{max} (film) 2927 (C–H), 1700 (C=O); δ_H (400 MHz, CDCl₃) 0.83-0.94 (3H, m, C(11')H₃), 1.04-1.17 (3H, m, C(4)*Me*), 1.43-1.68 (29H, m, C(2)*Me*₂, C(4')*H*₂-C(10')*H*₂, *CMe*₃), 1.97-2.20 (2H, m, C(3')*H*₂), 3.79-4.06 (1H, m, C(4)*H*), 4.79-4.86 (1H, m, C(5)*H*), 5.39-5.48 (1H, m, C(1')*H*), 5.63-5.73 (1H, m, C(2')*H*); $\delta_{\rm H}$ (500 MHz, DMSO-*d*₆, 363 K) 0.90 (3H, t, *J* 6.8, C(11')*H*₃), 1.07 (3H, d, *J* 6.5, C(4)*Me*), 1.25-1.57 (29H, m, C(2)*Me*₂, C(4')*H*₂-C(10')*H*₂, *CMe*₃), 2.04-2.21 (2H, m, C(3')*H*₂), 3.91 (1H, app quintet, *J* 6.1, C(4)*H*), 4.81-4.88 (1H, m, C(5)*H*), 5.35-5.44 (1H, m, C(1')*H*), 5.62-5.72 (1H, m, C(2')*H*); $\delta_{\rm C}$ (125 MHz, DMSO-*d*₆, 363 K) 14.5 (*C*(11')), 15.7 (C(4)*Me*), 22.7, 25.2, 28.3, 28.6, 29.1, 29.3, 29.4, 29.6, 29.7, 32.0 (C(2)*Me*₂, *C*(3')-*C*(10'), *CMe*₃), 56.3 (*C*(4)), 73.4 (*C*(5)), 79.8 (*C*Me₃), 92.6 (*C*(2)), 125.9 (*C*(2')), 135.4 (*C*(1')), 151.9 (NCO); *m*/*z* (ESI⁺) 368 ([M+H]⁺, 19%), 271 (100); HRMS (ESI⁺) C₂₂H₄₂NO₃⁺ ([M+H]⁺) requires 368.3165; found 368.3179.

(4S,5R)-2,2,4-Trimethyl-N(3)-tert-butoxycarbonyl-5-undecan-1'-yl-oxazolidine 21

Pd/C (5 mg, 10% w/w) was added to a stirred solution of (*Z*)-**20** (50 mg, 0.14 mmol) in EtOAc (5 mL) at rt. The reaction mixture was stirred under H₂ (1 atm) for 6 h. The reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 1:1) gave **21** as a colourless oil (45 mg, 90%, >98% de); R_f 0.05 (30-40 °C petrol/Et₂O, 1:1); $[\alpha]_D^{21}$ -20.1 (*c* 1.2 in CHCl₃); v_{max} (film) 2926 (C–H), 1699 (C=O); δ_H (400 MHz, CDCl₃) 0.88 (3H, app t, *J* 6.8, C(11')*H*₃), 1.04-1.14 (3H, m, C(4)*Me*), 1.22-1.67 (35H, m, C(2)*Me*₂, C(1')*H*₂-C(10')*H*₂, *CMe*₃), 3.76-4.01 (2H, m, C(4)*H*, C(5)*H*); δ_H (500 MHz, PhMe-*d*₈, 363 K) 0.92 (3H, t, *J* 6.9, C(11')*H*₃), 1.13 (3H, d, *J* 6.3 C(4)*Me*), 1.23-1.39 (18H, m, C(2')*H*₂-C(10')*H*₂), 1.46 (9H, s, *CMe*₃), 1.57 (3H, s, C(2)*Me*_A), 1.66 (3H, s, C(2)*Me*_B), 1.83-1.96 (2H, m, C(1')*H*₂), 3.84-3.90 (2H, m, C(4)*H*, C(5)*H*); *m*/*z* (FI⁺) 369 ([M+H⁺], 25%), 354 (100); HRMS (FI⁺) C₂₂H₄₃NO₃⁺ ([M+H⁺]) requires 369.3243; found 369.3240.

(2S,3R)-2-Acetamido-3-acetoxy-tetradecane [N,O-diacetyl xestoaminol C] 22

3 M aq HCl (1 mL) was added to a solution of **21** (50 mg, 0.14 mmol) in MeOH (10 mL) and heated at 50 °C for 3 h. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in pyridine (10 mL) and Ac₂O (0.06 mL, 0.68 mmol) and DMAP (2 mg) were added sequentially. The reaction mixture was stirred for 12 h before being quenched with H₂O (2 mL). The reaction mixture was diluted with H₂O (10mL) and Et₂O (10mL) and the layers were separated. The aqueous layer was extracted with Et₂O (2 × 10

mL). The combined organic layers were washed sequentially with sat aq CuSO₄ (2 × 10 mL), H₂O (10 mL) and brine (10 mL), dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/EtOAc, 1:1) gave **22** as white solid (34 mg, 80%, >98% de); R_f 0.18 (30-40 °C petrol/EtOAc, 1:1); mp 51-53 °C (30-40 °C petrol/EtOAc); $[\alpha]_D^{22}$ –22.7 (*c* 0.6 in MeOH); {lit.⁴ $[\alpha]_D^{24}$ –21.8 (*c* 0.4 in MeOH), lit.⁵ $[\alpha]_D^{24}$ –22.1 (*c* 0.2 in MeOH)}; v_{max} (KBr) 3354, 2980, 2935, 1791, 1755, 1714, 1519; δ_H (400 MHz, CDCl₃) 0.87 (3H, t, *J* 6.8, C(14)*H*₃), 1.08 (3H, d, *J* 6.8, C(1)*H*₃), 1.20-1.37 (18H, m, C(5)*H*₂-C(13)*H*₂), 1.43-1.62 (2H, m, C(4)*H*₂), 1.94, (3H, s, COMe), 2.08 (3H, s, COMe), 4.10-4.19 (1H, m, C(2)*H*), 4.80-4.86 (1H, ddd, *J* 8.5, 5.1, 3.4, C(3)*H*), 5.90 (1H, br d, *J* 8.2, N*H*); δ_C (125 MHz, CHCl₃) 14.1, 14.8, 21.1, 22.7, 23.5, 25.6, 29.31, 29.34, 29.4, 29.5, 29.6, 31.3, 31.9, 47.5, 77.0, 169.3, 171.6; *m/z* (ESI⁺) 336 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₁₈H₃₅NNaO₃⁺ ([M+Na]⁺) requires 336.2509; found 336.2502.

(2S,3R,4Z)-2-Acetamido-3-acetoxy-tetradec-4-ene 23

3 M aq HCl (1 mL) was added to a solution of (*Z*)-**20** (50 mg, 0.14 mmol) in MeOH (10 mL) and heated at 50 °C for 3 h. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in pyridine (10 mL) and Ac₂O (0.06 mL, 0.68 mmol) and DMAP (2 mg) were added sequentially. The reaction mixture was stirred for 12 h before being quenched with H₂O (2 mL). The reaction mixture was diluted with H₂O (10mL) and Et₂O (10mL) and the layers were separated. The aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic layers were washed sequentially with sat aq CuSO₄ (2 × 10 mL), H₂O (10 mL) and brine (10 mL), dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/EtOAc, 1:1) gave **23** as white solid (34 mg, 80%, >98% de); *R_f* 0.21 (30-40 °C petrol/EtOAc, 1:1); mp 55-57 °C (30-40 °C petrol/EtOAc); $[\alpha]_D^{22}$ –14.9 (*c* 0.8 in CHCl₃); v_{max} (film) 2925, 1742, 1651, 1549; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.88 (3H, t, *J* 6.8, C(14)*H*₃), 1.13 (3H, d, *J* 6.8, C(1)*H*₃), 1.17-1.42 (14H, m, C(7)*H*₂-C(13)*H*₂), 1.97 (3H, s, CO*Me*), 2.07 (3H, s, CO*Me*), 2.08-2.25 (2H, m, C(6)*H*₂), 4.16-4.27 (1H, m, C(2)*H*), 5.29 (1H, dd, *J* 10.9, 9.2, C(3)*H*), 5.51-5.60 (2H, m, C(4)*H*, N*H*), 5.61-5.70 (1H, m, C(5)*H*); $\delta_{\rm C}$ (125 MHz, CHCl₃) 14.5, 15.9, 21.6, 23.1, 23.9, 28.5, 29.7, 29.9, 29.95, 29.97, 32.3, 48.4, 73.2, 124.5,

⁴ L. Garrido, E. Zubia, M. J. Ortega, S. Naranjo and J. Salva, *Tetrahedron*, 2001, 57, 4579.

⁵ M. Ichihashi and K. Mori, *Biosci. Biotechnol. Biochem.*, 2002, 67, 329.

136.8, 169.7, 171.0; m/z (ESI⁺) 334 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₁₈H₃₃NNaO₃⁺ ([M+Na]⁺) requires 334.2358; found 334.2354.

Methyl (E)-4-tert-butyldimethylsilyloxy-but-2-enote 26

TBDMSO____CO2Me

TBDMSCI (3.43 g, 22.7 mmol) was added in one portion to a stirred solution of but-2-ene-1,4-diol (0.93 mL, 11.4 mmol), imidazole (2.33 g, 34.1 mmol) and DMAP (30 mg) in DCM (30 mL) at rt. After stirring for 12 h, the reaction mixture was concentrated *in vacuo*. The residue was dissolved in Et₂O (30 mL) and washed with 1M aq HCl (30 mL), dried and concentrated *in vacuo* to give 1,4-bis-(*tert*-butyldimethylsilyloxy)but-2-ene as a colourless oil (3.5 g, 97%) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.07 (12H, s, 2 × SiMe₂), 0.90 (18H, s, 2 × SiCMe₃), 4.24 (4H, dd, *J* 2.7, 0.7, C(1)*H*₂, C(4)*H*₂), 5.56 (2H, td, *J* 2.7, 0.7, C(2)*H*, C(3)*H*).

O₃ was bubbled through a stirred solution of 1,4-bis-(*tert*-butyldimethylsilyloxy)but-2-ene (3.5 g, 11.0 mmol) in DCM (30 mL) at -78 °C until the solution turned blue. O₂ was then bubbled through the solution until it turned colourless. DMS (30 mL) was added dropwise *via* syringe and the reaction mixture stirred for 12 h. The reaction mixture was concentrated *in vacuo*. The residue was redissolved in Et₂O (30 mL) and washed with H₂O (30 mL), dried and concentrated *in vacuo* to give (*tert*-butyldimethylsilyloxy)acetaldehyde as a colourless oil (3.36 g, 86%) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.08 (6H, s, Si*Me*₂), 0.90 (9H, s, SiC*Me*₃), 4.17-4.21 (2H, m, CH₂), 9.67-9.69 (1H, m, CHO).

Methyl diethylphosphonoacetate (4.87 g, 23.2 mmol), LiCl (5.43 g, 129 mmol) and ¹Pr₂NEt (3.46 mL, 21.2 mmol) were added to a stirred solution of (tri-*iso*-propylsilyloxy)acetaldehyde (3.36 g, 19.3 mmol) in MeCN (50 mL). The reaction mixture was stirred for 48 h and then quenched by addition of H₂O (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (40 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 60:1) gave **26** as a colourless oil (2.29 g, 52%, >98% de);⁶ *Rf* 0.07 (30-40 °C petrol/Et₂O, 60:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.09 (6H, s, Si*Me*₂), 0.93 (9H, s, Si*CMe*₃), 3.75 (3H, s, O*Me*), 4.34 (2H, dd, *J* 3.4, 2.4, C(4)*H*₂), 6.12 (1H, dt, *J* 15.4, 2.4, C(3)*H*), 7.01 (1H, dt, *J* 15.4, 3.4, C(2)*H*).

⁶ E. Abraham, J. W. B. Cooke, S. G. Davies, A. Naylor, R. L. Nicholson, P. D. Price and A. D. Smith, *Tetrahedron*, **2007**, *63*, 5855.

tert-Butyl (E)-4-tert-butyldimethylsilyloxy-but-2-enote 27

TBDMSO____CO2^tBu

tert-Butyl diethylphosphonoacetate (5.74 g, 22.8 mmol), LiCl (5.39 g, 127 mmol) and ⁱPr₂NEt (2.77 mL, 17.1 mmol) were added to a stirred solution of (*tert*-butyldimethylsilyloxy)acetaldehyde (3.30 g, 19.0 mmol) in MeCN (50 mL). The reaction mixture was stirred for 48 h and then quenched by addition of H₂O (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (40 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 60:1) gave **27** as a colourless oil (2.17 g, 67%, >98% de); R_f 0.2 (30-40 °C petrol/Et₂O, 60:1); v_{max} (film) 1717 (C=O), 1661 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.06 (6H, s, Si*Me*₂), 0.90 (9H, s, SiC*Me*₃), 1.46 (9H, s, OC*Me*₃), 4.29 (2H, dd, *J* 3.5, 2.3, C(4)*H*₂), 5.97 (1H, dt, *J* 15.4, 2.3, C(2)*H*), 6.86 (1H, dt, *J* 15.4, 3.5, C(3)*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) –5.5 (Si*Me*₂), 18.3 (SiC*Me*₃), 25.8 (SiC*Me*₃), 28.1 (OC*Me*₃), 62.1 (*C*(4)), 80.1 (OCMe₃), 121.4 (*C*(2)), 146.0 (*C*(3)), 166.0 (*C*(1)); *m/z* (CI⁺) 272 ([M]⁺, 100%); HRMS (CI⁺) C₁₄H₂₈O₃Si⁺ ([M]⁺) requires 272.1808; found 272.1808.

Methyl (E)-4-tri-iso-propylsilyloxy- but-2-enote 28

TIPSO CO2Me

TIPSCl (4.86 mL, 22.7 mmol) was added in one portion to a stirred solution of but-2-ene-1,4-diol (0.93 mL, 11.4 mmol), imidazole (2.33 g, 34.1 mmol) and DMAP (30 mg) in DCM (30 mL) at rt. After stirring for 12 h, the reaction mixture was concentrated *in vacuo*. The residue was dissolved in Et₂O (30 mL) and washed with 1M aq HCl (30 mL), dried and concentrated *in vacuo* to give 1,4-bis-(tri-*iso*-propylsilyloxy)but-2-ene as a colourless oil (4.41 g, 97%) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.02-1.12 (42H, m, 2 × Si(CHMe₂)₃), 4.29-4.33 (4H, m, C(1)H₂, C(4)H₂), 5.30-5.33 (2H, m, C(2)H, C(3)H).

O₃ was bubbled through a stirred solution of 1,4-bis-(tri-*iso*-propylsilyloxy)but-2-ene (4.41 g, 11.0 mmol) in DCM (30 mL) at -78 °C until the solution turned blue. O₂ was then bubbled through the solution until it turned colourless. DMS (30 mL) was added dropwise *via* syringe and the reaction mixture stirred for 12 h. The reaction mixture was concentrated *in vacuo*. The residue was redissolved in Et₂O (30 mL) and washed with H₂O (30 mL), dried and concentrated *in vacuo* to give (tri-*iso*-propylsilyloxy)acetaldehyde as a colourless oil (4.38 g, 92%) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.02-1.10 (21H, m, Si(CHMe₂)₃), 4.25 (2H, d, *J* 1.0, CH₂), 9.73 (1H, t, *J* 1.0, CHO).

Methyl diethylphosphonoacetate (4.97 g, 23.6 mmol), LiCl (5.54 g, 132 mmol) and ¹Pr₂NEt (3.76 mL, 21.6 mmol) were added to a stirred solution of (tri-*iso*-propylsilyloxy)acetaldehyde (4.25 g, 19.7 mmol) in MeCN

(50 mL). The reaction mixture was stirred for 48 h and then quenched by addition of H₂O (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (40 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 30:1) gave **28** as a colourless oil (2.79 g, 52%, >98% de); R_f 0.14 (30-40 °C petrol/Et₂O, 30:1); v_{max} (film) 1728 (C=O), 1663 (C=C); δ_{H} (400 MHz, CDCl₃) 1.04-1.09 (21H, m, Si(CHMe₂)₃), 3.75 (3H, s, OMe), 4.38 (2H, dd, *J* 3.1, 2.4, C(4)H₂), 6.18 (1H, dt, *J* 15.4, 2.4, C(2)H), 7.02 (1H, dt, *J* 15.4, 3.1, C(3)H); δ_{C} (100 MHz, CDCl₃) 11.9 (Si(CHMe₂)₃), 17.9 (Si(CHMe₂)₃), 51.5 (OMe), 62.4 (C(4)), 119.0 (C(2)), 147.8 (C(3)), 167.2 (C(1)); m/z (ESI⁺) 273 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₄H₂₉O₃Si⁺ ([M+H]⁺) requires 273.1886; found 273.1880.

tert-Butyl (E)-4-tri-iso-propylsilyloxy-but-2-enoate 29

TIPSO CO2^tBu

tert-Butyl diethylphosphonoacetate (6.13 g, 24.3 mmol), LiCl (4.84 g, 114 mmol) and ⁱPr₂NEt (2.77 mL, 17.0 mmol) were added to a stirred solution of (tri*-iso*-propylsilyloxy)acetaldehyde (4.38 g, 20.3 mmol) in MeCN (50 mL). The reaction mixture was stirred for 48 h and then quenched by addition of H₂O (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (40 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 30:1) gave **29** as a colourless oil (2.94 g, 68%, >98% de); R_f 0.2 (30-40°C petrol/Et₂O, 50:1); v_{max} (film) 1717 (C=O), 1661 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.03-1.16 (21H, m, Si(CHMe₂)₃), 1.49 (9H, s, CMe₃), 4.38-4.42 (2H, m, C(4)H₂), 6.02-6.08 (1H, m, C(2)H), 6.85-6.92 (1H, m, C(3)H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.9 (Si(CHMe₂)₃), 17.9 (Si(CHMe₂)₃), 28.1 (CMe₃), 62.4 (C(4)), 80.1 (CMe₃), 121.3 (C(2)), 146.1 (C(3)), 166.1 (C(1)); m/z (CI⁺) 315 ([M+NH₄]⁺, 100%); HRMS (CI⁺) C₁₇H₃₈NO₃Si ([M+NH₄]⁺) requires 332.2621; found 332.2615.

tert-Butyl (E)-4-tert-butyldiphenylsilyloxy-but-2-enoate 30

TBDPSO____CO2^tBu

TBDPSCl (5.91 mL 22.7 mmol) was added in one portion to a stirred solution of but-2-ene-1,4-diol (0.93 mL, 11.4 mmol), imidazole (2.33 g, 34.1 mmol) and DMAP (30 mg) in DCM (30 mL) at rt. After stirring for 12 h, the reaction mixture was concentrated *in vacuo*. The residue was dissolved in Et₂O (30 mL) and washed with 1M aq HCl (30 mL), dried and concentrated *in vacuo* to give 1,4-bis-(*tert*-butyldiphenyloxy)but-2-ene as a colourless oil (6.28 g, 98%) that was used without purification; $\delta_{\rm H}$ (400

MHz, CDCl₃) 1.01 (18H, s, $2 \times \text{SiC}Me_3$), 4.10-4.13 (4H, m, C(1) H_2 , C(4) H_2), 5.62-5.65 (2H, m, C(2)H, C(3)H), 7.31-7.44 (12H, m, Ph), 7.60-7.65 (8H, m, Ph).

O₃ was bubbled through a stirred solution of 1,4-bis-(*tert*-butyldiphenylsilyloxy)but-2-ene (6.28 g, 11.1 mmol) in DCM (30 mL) at -78 °C until the solution turned blue. O₂ was then bubbled through the solution until it turned colourless. DMS (30 mL) was added dropwise via syringe and the reaction mixture stirred for 12 h. The reaction mixture was concentrated in vacuo. The residue was redissolved in Et₂O (30 mL) and washed with H₂O (30 mL), dried and concentrated in vacuo to give (tert-butyldiphenylsilyloxy) acetaldehyde as a colourless oil (5.77 g, 87%) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.10 (9H, s, SiCMe₃), 4.22 (2H, d, J 0.7, CH₂), 7.38-7.49 (6H, m, Ph), 7.63-7.69 (4H, m, Ph), 9.73 (1H, t, J 0.7, CHO). tert-Butyl diethylphosphonoacetate (6.72 g, 26.7 mmol), LiCl (5.25 g, 124 mmol) and ¹Pr₂NEt (3.0 mL, 18.5 mmol) were added to a stirred solution of (tert-butyldiphenylsilyloxy)acetaldehyde (5.60 g, 22.2 mmol) in MeCN (50 mL). The reaction mixture was stirred for 48 h and then quenched by addition of H₂O (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (40 mL). The combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 50:1) gave **30** as a white solid (3.89 g, 68%, >98% de); R_f 0.2 (30-40 °C petrol/Et₂O, 50:1); C₂₄H₃₂O₃Si requires C, 72.7; H, 8.1%; found C, 72.6; H, 8.1%; mp 73-75 °C (30-40 °C petrol/Et₂O); ν_{max} (KBr) 1709 (C=O), 1652 (C=C); δ_H (400 MHz, CDCl₃) 1.18 (9H, s, SiCMe₃), 1.59 (9H, s, OCMe₃), 4.41 (2H, app t, J 2.4, C(4)H₂), 6.26-6.34 (1H, m, C(2)H), 6.95-7.02 (1H, m, C(3)H), 7.42-7.51 (6H, m, Ph), 7.73-7.78 (4H, m, Ph); δ_C (100 MHz, CDCl₃) 19.3 (SiCMe₃), 26.9 (SiCMe₃), 28.2 (OCMe₃), 63.0 (C(4)), 80.2 (CMe₃), 121.6 (C(2)), 127.9, 129.9, 133.1, 135.5 (Ph), 145.6 (C(3)), 166.0 (C(1)); m/z (CI^{+}) 414 ($[M+NH_4]^{+}$, 100%); HRMS (CI^{+}) C₂₄H₃₆NO₃Si ($[M+NH_4]^{+}$) requires 414.2464; found 414.2454.

Methyl (2*S*,3*S*,α*S*)-2-hydroxy-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-4-(*tert*butyldimethylsilyloxy)butanoate 31

BuLi (2.5 M in hexanes, 2.7 mL, 6.74 mmol) was added dropwise *via* syringe to a stirred solution of (*S*)-*N*-benzyl-*N*-(α -methylbenzyl)amine (1.47 g, 6.96 mmol) in THF (20 mL) at -78 °C. After stirring for 30 min a solution of **26** (1.0 g, 4.35 mmol) in THF (10 mL) at -78 °C was added dropwise *via* cannula. After stirring for a further 2 h at -78 °C the reaction mixture was quenched with (+)-CSO (4.2 g, 18.4 mmol) and

allowed to warm to rt over 12 h. Sat aq NH₄Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated *in vacuo*. The residue was partitioned between DCM (50 mL) and 10% aq citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2 × 50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO₃ (50 mL) and brine (50 mL), dried and concentrated *in vacuo*. The residue was dissolved in Et₂O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et₂O (2 × 20 mL). The filtrate was concentrated *in vacuo* and the process was repeated. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1) gave **31** as a colourless oil (1.55 g, 78%, >98% de); R_f 0.25 (30-40 °C petrol/Et₂O 20:1); $[\alpha]_D^{21}$ +26.2 (*c* 1.0 in CHCl₃); {lit.⁷ $[\alpha]_D^{21}$ +25.0 (*c* 1.2 in CHCl₃)}; δ_H (400 MHz, CDCl₃) 0.02 (3H, s, Si Me_A), 0.03 (3H, s, Si Me_B), 0.88 (SiC Me_3), 1.37 (3H, d, *J* 6.8, C(α)Me), 2.98 (1H, d, *J* 6.5, OH), 3.55-3.62 (1H, m, C(3)H), 3.68 (3H, s, OMe), 3.70-3.76 (1H, m, C(4) H_A), 3.83 (1H, d, *J* 15.2, NC H_B), 3.87-4.02 (3H, m, C(2)H, C(4) H_B , C(α)H), 4.14 (1H, d, *J* 15.2, NC H_B), 7.16-7.48 (10H, m, Ph).

tert-Butyl (2*S*,3*S*,α*S*)-2-hydroxy-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-4-*tert*-butyldimethylsilyloxybutanoate 32

BuLi (2.5 M in hexanes, 5.7 mL, 14.2 mmol) was added dropwise *via* syringe to a stirred solution of (*S*)-*N*-benzyl-*N*-(α -methylbenzyl)amine (3.1 g, 14.7 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of **27** (2.5 g, 9.19 mmol) in THF (20 mL) at -78 °C was added dropwise *via* cannula. After stirring for a further 2 h at -78 °C the reaction mixture was quenched with (+)-CSO (4.2 g, 18.4 mmol) and allowed to warm to rt over 12 h. Sat aq NH₄Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated *in vacuo*. The residue was partitioned between DCM (50 mL) and 10% aq citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2 × 50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO₃ (50 mL) and brine (50 mL), dried and concentrated *in vacuo*. The residue was dissolved in Et₂O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et₂O (2 × 20 mL). The filtrate was concentrated *in vacuo* and the process was repeated. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 30:1)

⁷ E. Abraham, J. W. B. Cooke, S. G. Davies, A. Naylor, R. L. Nicholson, P. D. Price and A. D. Smith, *Tetrahedron*, **2007**, *63*, 5855.

gave **32** as a colourless oil (3.33 g, 91%, >98% de); R_f 0.05 (30-40 °C petrol:Et₂O, 30:1); $[\alpha]_D^{22}$ +58.7 (*c* 1.05 in CHCl₃); v_{max} (film) 3491 (O–H), 1724 (C=O); δ_H (400 MHz, CDCl₃) 0.01 (3H, s, Si*Me*_A), 0.04 (3H, s, Si*Me*_B), 0.90 (9H, s, SiC*Me*₃), 1.35 (3H, d, *J* 7.0, C(α)*Me*), 1.43 (9H, s, OC*Me*₃), 3.04 (1H, d, *J* 6.1, O*H*), 3.51-3.56 (1H, m, C(3)*H*), 3.73-3.83 (3H, m, C(4)*H*₂, NC*H*_A), 3.92 (1H, dd, *J* 6.3, 1.8, C(2)*H*), 4.00 (1H, q, *J* 6.8, C(α)*H*), 4.21 (1H, d, *J* 15.2, NC*H*_B), 7.20-7.47 (10H, m, *Ph*); δ_C (100 MHz, CDCl₃) –5.6 (Si*Me*_A), -5.5 (Si*Me*_B), 18.5 (Si*C*Me₃), 18.8 (C(α)*Me*), 26.1 (Si*CMe*₃), 28.1 (OC*Me*₃), 51.2 (NCH₂), 58.0 (*C*(α)), 59.9 (*C*(3)), 61.9 (*C*(4)), 71.7 (*C*(2)), 82.0 (OCMe₃), 126.4, 126.8 (*p*-*Ph*), 127.8, 127.9, 128.1, 128.2 (*o*-*Ph*, *m*-*Ph*), 142.2, 143.5 (*i*-*Ph*), 173.7 (*C*(1)); *m*/z (ESI⁺) 500 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₉H₄₅NO₄Si⁺ ([M+H]⁺) requires 500.3196; found 500.3209.

Methyl (2*S*,3*S*,α*S*)-2-hydroxy-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-4-tri-*iso*-propylsilyloxybutanoate 33

BuLi (2.5 M in hexanes, 8.14 mL, 11.4 mmol) was added dropwise via syringe to a stirred solution of (S)-Nbenzyl-N-(α-methylbenzyl)amine (2.48 g, 11.8 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of 28 (2.0 g, 7.35 mmol) in THF (20 mL) at -78 °C was added dropwise via cannula. After stirring for a further 2 h at -78 °C the reaction mixture was guenched with (+)-CSO (3.37 g, 14.7 mmol) and allowed to warm to rt over 12 h. Sat aq NH₄Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated in vacuo. The residue was partitioned between DCM (50 mL) and 10% ag citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO₃ (50 mL) and brine (50 mL), dried and concentrated in vacuo. The residue was dissolved in Et₂O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et_2O (2 × 20 mL). The filtrate was concentrated in vacuo and the process was repeated. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1) gave **33** as a colourless oil (2.75 g, 75%, >98% de); *R*_f 0.18 (30-40 °C petrol/Et₂O, 20:1); C₂₉H₄₅NO₄Si requires C, 69.7; H, 9.1; N, 2.8%; found C, 69.6; H, 9.1; N, 2.8%; [α]_D²² +37.0 (c 2.3 in CHCl₃); ν_{max} (film) 3515 (O–H), 1737 (C=O); δ_H (400 MHz, CDCl₃) 1.02-1.06 (21H, m, Si(CHMe₂)₃), 1.36 (3H, d, J 6.8, C(α)Me), 3.03 (1H, d, J 6.2, OH), 3.55-3.61 (1H, m, C(3)H), 3.67 (3H, s, OMe), 3.82 (1H, d, J 15.0, NCH_A), 3.79-3.85 (1H, m, C(4)H_A), 3.93-4.02 (2H, m, C(4)H_B, C(α)H), 4.05-4.10 (1H, m, C(2)H),

4.14 (1H, d, J 15.0, NCH_B), 7.20-7.46 (10H, m, Ph); δ_{C} (100 MHz, CDCl₃) 11.9 (Si(CHMe₂)₃), 17.9 (Si(CHMe₂)₃), 18.1 (C(α)Me), 51.4 (NCH₂), 52.1 (OMe), 58.0 (C(α)), 60.1 (C(3)), 62.2 (C(4)), 71.0 (C(2)), 126.6, 127.0 (*p*-Ph), 127.9, 128.1, 128.2, 128.3 (*o*-Ph, *m*-Ph), 141.7, 143.1 (*i*-Ph), 174.7 (C(1)); *m/z* (ESI⁺) 522 ([M+Na]⁺, 28%), 500 (100); HRMS (ESI⁺) C₂₉H₄₆NO₄Si⁺ ([M+H]⁺) requires 500.3196; found 500.3194.

tert-Butyl (2*S*,3*S*,α*S*)-2-hydroxy-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-4-tri-*iso*-propylsilyloxybutanoate 34

BuLi (2.5 M in hexanes, 4.9 mL, 12.3 mmol) was added dropwise via syringe to a stirred solution of (S)-Nbenzyl-N-(α-methylbenzyl)amine (2.70 g, 12.7 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of 29 (2.5 g, 8.0 mmol) in THF (20 mL) at -78 °C was added dropwise via cannula. After stirring for a further 2 h at -78 °C the reaction mixture was quenched with (+)-CSO (3.64 g, 16.0 mmol) and allowed to warm to rt over 12 h. Sat ag NH₄Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated in vacuo. The residue was partitioned between DCM (50 mL) and 10% ag citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO₃ (50 mL) and brine (50 mL), dried and concentrated in vacuo. The residue was dissolved in Et₂O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et₂O (2 \times 20 mL). The filtrate was concentrated in vacuo and the process was repeated. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1) gave **34** as a colourless oil (3.56 g, 82%, >98% de); R_f 0.24 (30-40 °C petrol/Et₂O, 10:1); $[\alpha]_{D}^{28}$ +37.4 (c 1.1 in CHCl₃); ν_{max} (film) 3505 (O–H), 1724 (C=O); δ_{H} (400 MHz, CDCl₃) 0.98-1.14 (21H, m, Si(CHMe₂)₃), 1.35 (3H, d, J 6.8, C(α)Me), 1.42 (9H, s, CMe₃), 3.48-3.54 (1H, m, C(3)H), 3.80 (1H, d, J 15.2, NCH_A), 3.84-3.88 (2H, m, C(4)H₂), 3.97-4.00 (1H, m, C(2)H), 4.02 (1H, q, J 6.8, C(α)H), 4.20 (1H, d, J 15.2, NCH_B), 7.20-7.47 (10H, m, Ph); δ_C (100 MHz, CDCl₃) 12.0 (Si(CHMe₂)₃), 18.1 (Si(CHMe₂)₃), 18.2 $(C(\alpha)Me)$, 28.1 (CMe_3) , 51.2 (NCH_2) , 58.3 $(C(\alpha))$, 60.6 (C(3)), 62.0 (C(4)), 71.8 (C(2)), 82.1 (CMe_3) , 126.5, 126.8 (p-Ph), 128.0, 128.1, 128.2, 128.3 (o-Ph, m-Ph), 142.2, 144.0 (i-Ph), 173.7 (C(1)); m/z (ESI⁺) 542 $([M+H]^+, 100\%)$; HRMS (ESI⁺) C₃₂H₅₂NO₄Si ($[M+H]^+$) requires 542.3666; found 542.3676.

tert-Butyl (2*S*,3*S*,α*S*)-2-hydroxy-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-4-*tert*-butyldiphenylsilyloxybutanoate 35

BuLi (2.5 M in hexanes, 3.9 mL, 9.8 mmol) was added dropwise via syringe to a stirred solution of (S)-Nbenzyl-N-(α-methylbenzyl)amine (2.12 g, 10.1 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of **30** (2.5 g, 6.3 mmol) in THF (20 mL) at -78 °C was added dropwise via cannula. After stirring for a further 2 h at -78 °C the reaction mixture was guenched with (+)-CSO (2.9 g, 12.6 mmol) and allowed to warm to rt over 12 h. Sat aq NH₄Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated in vacuo. The residue was partitioned between DCM (50 mL) and 10% aq citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO₃ (50 mL) and brine (50 mL), dried and concentrated in vacuo. The residue was dissolved in Et₂O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et_2O (2 × 20 mL). The filtrate was concentrated *in vacuo* and the process was repeated. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1) gave **35** as a colourless oil (3.5 g, 89%, >98% de); $R_f 0.2$ (30-40 °C petrol/Et₂O, 10:1); $[\alpha]_D^{28}$ +40.1 (c 1.1 in CHCl₃); ν_{max} (film) 3499 (O–H), 1724 (C=O); δ_H (400 MHz, CDCl₃) 1.06 (9H, s, SiCMe₃), 1.27 (3H, d, J 6.8, C(α)Me), 1.31 (9H, s, OCMe₃), 3.03 (1H, d, J 5.6, OH), 3.59 (1H, td, J 6.8, 1.8, C(3)H), 3.80 (1H, d, J 15.2, NCH_A), 3.84 (2H, d, J 7.3, C(4)H₂), 4.00 (1H, q, J 6.8, C(α)H), 4.02-4.06 (1H, m, C(2)H), 4.13 (1H, d, J 14.9, NCH_B), 7.20-7.76 (20H, m, Ph); δ_C (100 MHz, CDCl₃) 18.4 (SiCMe₃), 19.2 (C(α)Me), 27.0 (SiCMe₃), 28.0 (OCMe₃), 51.2 (NCH₂), 58.0 (C(α)), 60.4 (C(3)), 62.5 (C(4)), 71.6 (C(2)), 82.2 (OCMe₃), 126.5, 126.9, 127.6, 127.72, 127.74, 127.9, 128.2, 128.3, 129.6, 129.7, 133.4, 134.8, 135.56, 135.59, 141.9, 143.9 (*Ph*), 173.5 (*C*(1)); m/z (ESI⁺) 625 ([M+H]⁺, 100%); HRMS (ESI⁺) C₃₉H₅₀NO₄Si ([M+H]⁺) requires 624.3509; found 624.3514.

Methyl (2S,3S)-2-hydroxy-3-[N-(tert-butoxycarbonyl)amino]-4-tert-butyldimethylsilyloxy-butanoate 36

Pearlman's catalyst (125 mg, 25% w/w) was added to a vigorously stirred solution of **31** (500 mg, 1.09 mmol) and Boc₂O (262 mg, 1.20 mmol) in EtOAc (15 mL) and the mixture was placed under H_2 (5 atm).

Stirring continued for 12 h, after which time the reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 5:1; then 30-40 °C petrol/Et₂O, 1:1) gave **36** as a colourless oil (270 mg, 68%, >98% de); R_f 0.08 (30-40 °C petrol/Et₂O, 5:1); C₁₆H₃₃NO₆Si requires C, 52.9; H, 9.15; N, 3.85%; found C, 52.9; H, 9.2; N, 4.0%; $[\alpha]_D^{21}$ +26.8 (*c* 1.0 in CHCl₃); v_{max} (film) 3452 (O–H), 1719 (C=O); δ_H (400 MHz, CDCl₃) 0.04 (6H, s, Si*Me*₂), 0.87 (9H, s, SiC*Me*₃), 1.43 (9H, s, C*Me*₃), 3.38-3.49 (1H, br s, O*H*), 3.64-3.78 (2H, m, C(4)*H*₂), 3.75 (3H, s, O*Me*), 3.97-4.06 (1H, m, C(3)*H*), 4.21-4.28 (1H, m, C(2)*H*), 5.12 (1H, d, *J* 8.9, N*H*); δ_C (100 MHz, CDCl₃) -5.7 (Si*Me*_A), -5.7 (Si*Me*_B), 18.3 (SiCMe₃), 25.8 (SiC*Me*₃), 28.3 (OC*Me*₃), 52.4 (O*Me*), 53.4 (C(3)), 62.0 (C(4)), 71.6 (C(2)), 79.7 (OCMe₃), 155.3 (NCO), 173.2 (C(1)); *m*/*z* (ESI⁺) 386 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₁₆H₃₃NNaO₆Si ([M+Na⁺]) requires 386.1975; found 386.1962.

tert-Butyl (2*S*,3*S*)-2-hydroxy-3-[*N*-(*tert*-butoxycarbonyl)amino]-4-*tert*-butyldimethylsilyloxy-butanoate 37

Pearlman's catalyst (62.5 mg, 25% w/w) was added to a vigorously stirred solution of **32** (250 mg, 0.50 mmol) and Boc₂O (120 mg, 0.55 mmol) in EtOAc (10 mL) and the mixture was placed under H₂ (5 atm). Stirring continued for 12 h, after which time the reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 5:1; then 30-40 °C petrol/Et₂O, 1:1) gave **37** as a colourless oil (175 mg, 86%, >98% de); R_f 0.18 (30-40 °C petrol/Et₂O, 5:1); $[\alpha]_D^{17}$ +22.0 (*c* 0.8 in CHCl₃); v_{max} (film) 3447 (O–H), 1722 (C=O), 1716 (C=O); δ_H (400 MHz, CDCl₃) 0.065 (3H, s, SiMe_A), 0.068 (3H, s, SiMe_B), 0.90 (9H, s, SiCMe₃), 1.46 (9H, s, OCMe₃), 1.50 (9H, s, OCMe₃), 3.41 (1H, d, *J* 8.9, OH), 3.76 (2H, dq, *J* 13.7, 3.8, C(4)H₂), 3.91-4.00 (1H, m, C(3)H), 4.18 (1H, dd, *J* 8.9, 4.4, C(2)H), 5.20 (1H, d, *J* 8.9, NH); δ_C (100 MHz, CDCl₃) –6.6 (SiMe₂), 17.3 (SiCMe₃) 24.8 (SiCMe₃) 27.0 (OCMe₃), 27.4 (OCMe₃), 52.1 (C(3)), 62.1 (C(4)), 71.7 (C(2)), 78.6 (OCMe₃), 81.5 (OCMe₃), 154.4 (NCO), 170.6 (C(1)); *m*/z (ESI⁺) 406 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₁₉H₄₀NO₆Si ([M+H⁺]) requires 406.2625; found 406.2633.

Methyl (2S,3S)-2-hydroxy-3-[N-(tert-butoxycarbonyl)amino]-4-tri-iso-propylsilyloxy-butanoate 38

Pearlman's catalyst (1.25 g, 25% w/w) was added to a vigorously stirred solution of **33** (5.0 g, 10.0 mmol) and Boc₂O (2.4 g, 11.0 mmol) in EtOAc (50 mL) and the mixture was placed under H₂ (5 atm). Stirring continued for 12 h, after which time the reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1; then 30-40 °C petrol/Et₂O, 1:1) gave **38** as a colourless oil (3.81 g, 94%, >98% de); R_f 0.08 (30-40 °C petrol/Et₂O, 10:1); C₁₉H₃₉NO₆Si requires C, 56.3; H, 9.7; N, 3.45%; found C, 56.2; H, 9.7; N, 3.5%; $[\alpha]_D^{21}$ +17.3 (*c* 0.4 in CHCl₃); v_{max} (film) 3453 (O–H), 1732 (C=O), 1720 (C=O); δ_H (400 MHz, CDCl₃) 1.01-1.09 (21H, m, Si(CHMe₂)₃), 1.45 (9H, s, CMe₃), 3.54 (1H, br s, OH), 3.74-3.91 (2H, m, C(4)H₂), 3.78 (3H, s, OMe), 3.95-4.05 (1H, m, C(3)H), 4.26-4.34 (1H, m, C(2)H), 5.19 (1H, d J 8.5, NH); δ_C (100 MHz, CDCl₃) 11.8 (Si(CHMe₂)₃), 17.8 (Si(CHMe₂)₃), 28.3 (CMe₃), 52.5 (OMe), 53.5 (C(3)), 62.9 (C(4)), 72.1 (C(2)), 79.7 (CMe₃), 155.4 (NCO), 173.1 (C(1)); m/z (ESI⁺) 428 ([M+Na]⁺, 44%), 406 (100); HRMS (ESI⁺) C₁₉H₄₀NO₆Si⁺ ([M+H]⁺) requires 406.2625; found 406.2615.

tert-Butyl (2S,3S)-2-hydroxy-3-[N-(tert-butoxycarbonyl)amino]-4-tri-iso-propylsilyloxy-butanoate 39

Pearlman's catalyst (250 mg, 25% w/w) was added to a vigorously stirred solution of **34** (1.0 g, 1.85 mmol) and Boc₂O (443 mg, 2.03 mmol) in EtOAc (20 mL) and the mixture was placed under H₂ (5 atm). Stirring continued for 12 h, after which time the reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 9:1; then 30-40 °C petrol/Et₂O, 1:1) gave **39** as a colourless oil (744 mg, 90%, >98% de); R_f 0.08 (30-40 °C petrol/Et₂O, 9:1); C₂₂H₄₅NO₆Si requires C 59.0, H 10.1, N 3.1%; found C 59.0, H 10.15, N 3.1%; [α]¹⁸_D +36.9 (*c* 1.0 in CHCl₃); ν_{max} (film) 3452 (O–H), 1721 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.03-1.16 (21H, m, Si(CHMe₂)₃), 1.45 (9H, s, CMe₃), 1.49 (9H, s, CMe₃), 3.54 (1H, d, *J* 9.6, OH), 3.82-3.98 (3H, m, C(3)*H*, C(4)*H*₂), 4.22 (1H, dd, *J* 9.6, 4.3, C(2)*H*), 5.31 (1H, d, *J* 8.8, N*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.6 (Si(CHMe₂)₃), 17.8 (Si(CHMe₂)₃), 27.9 (CMe₃), 28.3 (CMe₃), 53.1 (C(3)), 63.4 (C(4)), 72.8 (C(2)), 79.4 (CMe₃), 82.3

 (CMe_3) , 155.3 (NCO), 171.5 (C(1)); m/z (ESI⁺) 448 ([M+H]⁺, 100%]; HRMS (ESI⁺) C₂₂H₄₆NO₆Si ([M+H⁺]) requires 448.3094; found 448.3088.

tert-Butyl (2*S*,3*S*)-2-hydroxy-3-[*N*-(*tert*-butoxycarbonyl)amino]-4-*tert*-butyldiphenylsilyloxy-butanoate 40

Pearlman's catalyst (500 mg, 25% w/w) was added to a vigorously stirred solution of **35** (1.00 g, 1.60 mmol) and Boc₂O (350 mg, 1.76 mmol) in EtOAc (50 mL) and the mixture was placed under H₂ (5 atm). Stirring continued for 12 h, after which time the reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 9:1; then 30-40 °C petrol/Et₂O, 1:1) gave **40** as a colourless oil (696 mg, 82%, >98% de); R_f 0.05 (30-40 °C petrol/Et₂O, 9:1); [α]_D¹⁸ +17.2 (*c* 1.1 in CHCl₃); ν_{max} (film) 3452 (O–H), 1720 (C=O); δ_{H} (400 MHz, CDCl₃) 1.07 (9H, s, SiC*Me*₃), 1.41 (9H, s, OC*Me*₃), 1.47 (9H, s, OC*Me*₃), 3.40 (1H, d, *J* 8.8, OH), 3.68-3.83 (2H, m, C(4)*H*₂), 3.97-4.08 (1H, m, C(3)*H*), 4.24 (1H, dd, *J* 8.6, 4.3, C(2)*H*), 5.24 (1H, d, *J* 8.8, N*H*), 7.34-7.48 (6H, m, *Ph*), 7.63-7.71 (4H, m, *Ph*); δ_{C} (100 MHz, CDCl₃) 19.1 (SiCMe₃), 26.8 (SiC*Me*₃), 27.9 (OC*Me*₃), 28.4 (OC*Me*₃), 53.5 (*C*(3)), 63.7 (*C*(4)), 72.6 (*C*(2)), 79.6 (OCMe₃), 82.7 (OCMe₃), 127.8, 129.9, 132.5, 132.6 (*Ph*), 155.5 (NCO), 171.6 (*C*(1)); *m/z* (ESI⁺) 552 ([M+Na]⁺, 100%), 530 (11); HRMS (ESI⁺) C₂₉H₄₃NNaO₆Si ([M+Na]⁺) requires 552.2757; found 552.2758.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-*tert*-butyldimethylsilyloxymethyl-5methoxycarbonyl-oxazolidine 41

 $BF_3 \cdot Et_2O$ (1 M in Et_2O) was added dropwise to a stirred solution of **36** (240 mg, 0.66 mmol) and 2,2dimethoxypropane (5 mL) in acetone (10 mL) until a permanent colour change from colourless to dark orange was observed. After stirring at rt for 12 h Et_3N was added dropwise until pH 7 was achieved and the reaction mixture was concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/ Et_2O , 10:1; then 30-40 °C petrol/ Et_2O , 2:1) gave **41** as a colourless oil (first to elute, 132 mg, 48%, >98% de) and unreacted **36** as a colourless oil (second to elute, 93 mg, 39%, >98% de). Data for **41**: $R_f 0.4$ (30-40 °C petrol/Et₂O, 2:1); C₁₉H₃₇NO₆Si requires C, 56.5; H, 9.2; N, 3.5%; found C, 56.7; H, 9.25; N, 3.5%; $[\alpha]_D^{22}$ +18.9 (*c* 0.2 in CHCl₃); v_{max} (film) 1770 (C=O), 1704 (C=O); δ_H (400 MHz, CDCl₃) 0.03-0.05 (6H, m, Si*Me*₂), 0.86-0.90 (9H, m, Si*CMe*₃), 1.46-1.50 (9H, s, OC*Me*₃), 1.50-1.56 (3H, m, C(2)*Me*_A), 1.61-1.67 (3H, m, *CMe*_B), 3.59-3.87 (2H, m, C(4)*CH*₂), 3.77 (3H, s, O*Me*), 4.08-4.26 (1H, m, C(4)*H*), 4.61-4.67 (1H, m, C(5)*H*); *m*/*z* (ESI⁺) 404 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₉H₃₈NO₆Si⁺ ([M+H]⁺) requires 404.2468; found 404.2463.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3),5-di*-tert*-butoxycarbonyl-4*-tert*-butyldimethylsilyloxymethyl-oxazolidine 42 and (4*S*,5*S*)-2,2-dimethyl-*N*(3)*-tert*-butoxycarbonyl-4*-tert*-butyldimethylsilyloxymethyl-oxazolidine-5-carboxylic acid 43

 $BF_3 \cdot Et_2O$ (1 M in Et_2O) was added dropwise to a stirred solution of **37** (1.20 g, 2.96 mmol) and 2,2dimethoxypropane (25 mL) in acetone (100 mL) until a permanent colour change from colourless to dark orange was observed. After stirring at rt for 12 h Et_3N was added dropwise until pH 7 was achieved and the reaction mixture was concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/ Et_2O , 10:1; then 30-40 °C petrol/ Et_2O , 2:1) gave **42** as a colourless oil (first to elute, 686 mg, 52%, >98% de) and **43** as a pale yellow oil (second to elute, 230 mg, 20%, >98% de).

Data for **42**: R_f 0.54 (30-40 °C petrol/Et₂O, 2:1); $[\alpha]_D^{22}$ +10.5 (*c* 1.6 in CHCl₃); v_{max} (film) 1759 (C=O), 1699 (C=O); δ_H (400 MHz, CDCl₃) 0.03-0.08 (6H, m, Si*Me*₂), 0.86-0.91 (9H, m, SiC*Me*₃), 1.42-1.67 (24H, m, , C(2)*Me*₂, 2 × OC*Me*₃), 3.58-3.76 (1H, m, C(4)CH_A), 3.82-3.99 (1H, m, C(4)CH_B), 4.03-4.23 (1H, m, C(4)*H*), 4.49-4.56 (1H, m, C(5)*H*); δ_H (250 MHz, DMSO-*d*₆, 363 K) 0.04 (6H, s, Si*Me*₂), 0.88 (9H, s, SiC*Me*₃), 1.45 (9H, s, OC*Me*₃), 1.47 (9H, s, OC*Me*₃), 1.54 (6H, s, C(2)*Me*₂), 3.66 (1H, dd, *J* 10.4, 3.4, C(4)*CH*_A), 3.87 (1H, dd, *J* 10.4, 5.2, C(4)*CH*_B), 4.05 (1H, ddd, *J* 6.4, 5.2, 3.4, C(4)*H*), 4.59 (1H, d, *J* 6.4, C(5)*H*); *m*/*z* (ESI⁺) 446 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₂H₄₄NO₆Si⁺ ([M+H]⁺) requires 446.2938; found 446.2937.

Data for **43**: R_f 0.38 (30-40 °C petrol/Et₂O, 2:1); $[\alpha]_D^{22}$ +7.56 (*c* 1.6 in CHCl₃); v_{max} (film) 1801 (C=O), 1716 (C=O); δ_H (250 MHz, CDCl₃) 0.03 (6H, s, Si*Me*₂), 0.85 (9H, s, Si*CMe*₃), 1.39 (9H, s, OC*Me*₃), 1.52 (3H, s, C(2)*Me*_A), 1.55 (3H, s, C(2)*Me*_B), 3.59-3.65 (1H, m, C(4)*CH*_A), 3.71-3.78 (1H, m, C(4)*CH*_B), 3.93-3.97 (1H, m, C(4)*H*), 4.56 (1H, d, *J* 2.7, C(5)*H*); δ_C (62.5 MHz, CDCl₃) –5.1 (Si*Me*₂), 18.6 (Si*C*Me₃), 26.2 (Si*CMe*₃),

26.8 (C(2) Me_A), 27.3 (C(2) Me_B), 28.7 (OC Me_3), 53.1 (C(4)), 61.5 (C(4)CH₂), 73.8 (C(5)), 80.4 (OCMe₃), 111.2 (C(2)), 155.6 (NCO), 171.2 (CO₂H); m/z (ESI⁺) 390 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₈H₃₆NO₆Si ([M+H]⁺) requires 390.2312; found 390.2300.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-tri-*iso*-propylsilyloxymethyl-5-methoxycarbonyl-oxazolidine 44

 $BF_3 \cdot Et_2O$ (1 M in Et_2O) was added dropwise to a stirred solution of **38** (1.10 g, 2.72 mmol) and 2,2dimethoxypropane (10 mL) in acetone (20 mL) until a permanent colour change from colourless to dark orange was observed. After stirring at 50 °C for 12 h the reaction mixture was allowed to cool to rt and Et_3N was added dropwise until pH 7 was achieved. The reaction mixture was then concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/ Et_2O , 10:1; then 30-40 °C petrol/ Et_2O , 2:1) gave **44** as a colourless oil (first to elute, 907 mg, 75%, >98% de) and unreacted **38** as a colourless oil (second to elute, 218 mg, 20%, >98% de).

Data for 44: $R_f 0.53$ (30-40 °C petrol/Et₂O, 2:1); $[\alpha]_D^{22} + 15.2$ (*c* 1.8 in CHCl₃); v_{max} (film) 1739 (C=O), 1699 (C=O); δ_H (400 MHz, CDCl₃) 1.01-1.10 (21H, m, Si(CHMe₂)₃), 1.47 (9H, s, CMe₃), 1.50-1.57 (3H, m, C(2)Me_A), 1.63-1.69 (3H, m, C(2)Me_B), 3.70-3.98 (2H, m, C(4)CH₂), 3.77 (3H, s, OMe), 4.12-4.29 (1H, m, C(4)H), 4.62-4.69 (1H, m, C(5)H); δ_H (500 MHz, DMSO-*d*₆, 363 K) 1.02-1.10 (21H, m, Si(CHMe₂)₃), 1.45 (9H, s, CMe₃), 1.50 (3H, s, C(2)Me_A), 1.56 (3H, s, C(2)Me_B), 3.70 (3H, s, OMe), 3.73 (1H, dd, *J* 10.1, 3.0, C(4)CH_A), 3.84 (1H, dd, *J* 10.1, 6.7, C(4)CH_B), 4.12 (1H, dt, *J* 6.3, 3.0, C(4)H), 4.76 (1H, d, C(5)H); δ_C (125 MHz, DMSO-*d*₆, 363 K) 12.4 (Si(CHMe₂)₃), 18.6 (Si(CHMe₂)₃), 25.1 (C(2)Me_A), 27.6 (C(2)Me_B), 28.9 (CMe₃), 52.2 (OMe), 60.7 (C(4)CH₂), 61.3 (C(4)), 74.0 (C(5)), 80.6 (CMe₃), 94.1 (C(2)), 151.8 (NCO), 168.5 (CO₂Me); m/z (ESI⁺) 468 ([M+Na]⁺, 54%), 446 (100); HRMS (ESI⁺) C₂₂H₄₄NO₆Si⁺ ([M+H]⁺) requires 446.2938; found 446.2934.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3),5-di-*tert*-butoxycarbonyl-4-tri-*iso*-propylsilyloxymethyl-oxazolidine 45 and (4*S*,5*S*)-2,2-dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-tri-*iso*-propylsilyloxymethyl-oxazolidine-5-carboxylic acid 46

 $BF_3 \cdot Et_2O$ (1 M in Et_2O) was added dropwise *via* syringe to a stirred solution of **39** (400 mg, 0.89 mmol) and 2,2-dimethoxypropane (10 mL) in acetone (50 mL) until a permanent colour change from colourless to dark orange was observed. After stirring at rt for 12 h Et_3N was added dropwise until pH 7 was achieved and the reaction mixture was concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/ Et_2O , 2:1) gave **45** as a colourless oil (first to elute, 328 mg, 75%, >98% de) and **46** as a colourless oil (second to elute, 96 mg, 25%, >98% de).

Data for 45: R_f 0.53 (30-40 °C petrol/Et₂O, 2:1); C₂₅H₄₉NO₆Si requires C, 61.6; H, 10.1; N, 2.9%; found C, 61.7; H, 10.1; N, 2.9%; $[\alpha]_D^{22}$ +8.1 (c 1.8 in CHCl₃); v_{max} (film) 1759 (C=O), 1701 (C=O); δ_H (400 MHz, CDCl₃) 1.06-1.11 (21H, m, Si(CHMe₂)₃), 1.48 (9H, s, CMe₃), 1.49-1.59 (12H, m, C(2)Me_A, CMe₃), 1.61-1.69 (3H, s, C(2)Me_B), 3.70-4.04 (2H, m, C(4)CH₂), 4.07-4.31 (1H, m, C(4)H), 4.50-4.56 (1H, m, C(5)H); δ_H (500 MHz, PhMe-d₈, 363 K) 1.16-1.20 (21H, m, Si(CHMe₂)₃), 1.44 (9H, s, CMe₃), 1.45 (9H, s, CMe₃), 1.67 (6H, s, C(2)Me₂), 4.02 (1H, dd, J 10.1, 3.8, C(4)CH_A), 4.19 (1H, dd, J 10.1, 5.7, C(4)CH_B), 4.24-4.30 (1H, m, C(4)H), 4.45 (1H, d, J 6.3, C(5)H); δ_C (500 MHz, PhMe-d₈, 363 K) 12.3 (Si(CHMe₂)₃), 17.9 (Si(CHMe₂)₃), 27.0 (C(2)Me_A), 27.9 (C(2)Me_B), 28.0 (CMe₃), 29.2 (CMe₃), 60.6 (C(4)CH₂), 61.6 (C(4)), 74.9 (C(5)), 79.3 (CMe_3), 80.8 (CMe_3), 94.7 (C(2)), 151.5 (NCO), 166.1 ($C(5)CO_2^{t}Bu$); m/z (ESI⁺) 510 $([M+Na]^+, 32\%), 488 (100); HRMS (ESI^+) C_{25}H_{50}NO_6Si^+ ([M+H]^+) requires 488.3407; found 488.3427.$ Data for 46: *R*_f 0.38 (30-40 °C petrol/Et₂O, 2:1); C₂₁H₄₁NO₆Si requires C, 58.4; H, 9.6; N, 3.25%; found C, 58.5; H, 9.6; N, 3.3%; $[\alpha]_{D}^{21}$ +11.1 (c 1.9 in CHCl₃); v_{max} (film) 3358 (O–H), 1802 (C=O), 1721 (C=O); δ_{H} (400 MHz, CDCl₃) 1.01-1.08 (21H, m, Si(CHMe₂)₃), 1.43 (9H, s, CMe₃), 1.53 (3H, s, C(2)Me_A), 1.60 (3H, s, C(2)Me_B), 3.82 (2H, d, J 5.8, C(4)CH₂), 4.10-4.21 (1H, m, C(4)H), 4.48-4.61 (1H, m, C(5)H), 4.75 (1H, d, J 9.2, NH); δ_C (100 MHz, CDCl₃) 11.8 (Si(CHMe₂)₃), 17.8 (Si(CHMe₂)₃), 26.2 (C(2)Me_A), 26.9 (C(2)Me_B), 28.2 (CMe₃), 52.8 (C(4)), 61.5 (C(4)CH₂), 73.1 (C(5)), 79.7 (CMe₃), 110.6 (C(2)), 155.2 (NCO), 170.7

 $(CO_2H); m/z (ESI^+) 454 ([M+Na]^+, 45\%) 432 (100); HRMS (ESI^+) C_{21}H_{41}NNaO_6Si^+ ([M+Na]^+) requires 454.2595; found 454.2587.$

(4S,5S)-2,2-Dimethyl-N(3)-tert-butoxycarbonyl-4,5-bis(hydroxymethyl)oxazolidine 47

From **42**: LiAlH₄ (1 M in THF, 0.11 mL, 0.11 mmol) was added dropwise *via* syringe to a stirred solution of **42** (50 mg, 0.11 mmol) in THF (2 mL) at 0 °C. After stirring for 12 h, the reaction was quenched with crushed ice, diluted with EtOAc (5 mL), and stirred for a further 3 h. The resultant mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo* to give **47** as a colourless oil (29 mg, quant, >98% de).

From **45**: LiAlH₄ (1 M in THF, 0.4 mL, 0.4 mmol) was added dropwise *via* syringe to a stirred solution of **45** (50 mg, 0.10 mmol) in THF (5 mL) at 0 °C. After stirring for 12 h, the reaction was quenched with crushed ice, diluted with EtOAc (10 mL), and stirred for a further 3 h. The resultant mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo* to give **47** as a colourless oil (27 mg, quant, >98% de).

Data for **47**: $[\alpha]_D^{21}$ +0.9 (*c* 0.9 in CHCl₃); v_{max} (film) 3425 (O–H), 1669 (C=O); δ_H (400 MHz, CDCl₃) 1.48 (9H, s, *CMe*₃), 1.49-1.60 (6H, m, C(2)*Me*₂), 3.18 (2H, br s, 2 × OH), 3.62-3.80 (2H, m, C(4)*CH*₂), 3.81-4.16 (3H, m, C(4)*H*, C(5)*CH*₂), 4.19-4.34 (1H, m, C(5)*H*); *m*/*z* (ESI⁺) 262 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₂H₂₄NO₅ ([M+H]⁺) requires 262.1654; found 262.1656.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-*tert*-butyldimethylsilyloxymethyl-5-hydroxymethyl-oxazolidine 48

DIBAL-H (1 M in DCM, 0.47 mL, 0.47 mmol) was added dropwise *via* syringe to a stirred solution of **42** (50 mg, 0.12 mmol) in DCM (5 mL) at 0 °C. After stirring for 12 h the reaction was quenched with sat aq NH₄Cl (0.1 mL) and stirred for a further 1 h. The resultant mixture was filtered through Celite (eluent DCM) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40°C petrol/Et₂O, 1:1) gave **48** as a colourless oil (first to elute, 24 mg, 51%, >98% de) and **47** as a colourless oil (second to elute, 8 mg, 24%, >98% de).

Data for **48**: R_f 0.09 (30-40°C petrol/Et₂O, 1:1); $[\alpha]_D^{22}$ +12.4 (*c* 0.9 in CHCl₃); v_{max} (film) 3501 (O–H), 1703 (C=O); δ_H (400 MHz, CDCl₃) 0.06-0.16 (6H, m, Si*Me*₂), 0.88-0.94 (9H, m, SiC*Me*₃), 1.45-1.56 (12H, m, C(2)*Me*₂, OC*Me*₃), 3.10-3.30 (1H, m, OH), 3.59-3.76 (2H, m, C(4)CH₂), 3.79-3.88 (2H, m, C(5)CH₂), 3.93-4.09 (1H, m, C(4)H), 4.23-4.31 (1H, m, C(5)H); δ_H (250 MHz, DMSO- d_6 , 363 K) 0.07 (3H, s, Si*Me*_A), 0.08 (3H, s, Si*Me*_B), 0.91 (9H, s, SiC*Me*₃), 1.45 (9H, s, OC*Me*₃), 1.47 (3H, s, C(2)*Me*_A), 1.50 (3H, s, C(2)*Me*_B), 3.06 (1H, br s, OH), 3.55-3.85 (4H, m, C(4)CH₂, C(5)CH₂), 4.17 (1H, dt, *J* 7.3, 5.5 C(4)H), 4.33 (1H, t, *J* 5.5, C(5)H); *m*/*z* (ESI⁺) 376 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₈H₃₈NO₅Si ([M+H]⁺) requires 376.2519; found 376.2520.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3)*-tert*-butoxycarbonyl-4-tri-*iso*-propylsilyloxymethyl-5-hydroxymethyloxazolidine 49

From **44**: DIBAL-H (1 M in DCM, 5.38 mL, 5.38 mmol) was added dropwise *via* syringe to a stirred solution of **44** (1.2 g, 2.69 mmol) in DCM (20 mL) at 0 °C. After stirring for 6 h, the reaction mixture was quenched with sat aq NH₄Cl (0.5 mL), filtered through Celite (eluent DCM) and concentrated *in vacuo* to give **49** as a colourless oil (1.1 g, 98%, >98% de) that was used without purification. Purification of an aliquot *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 2:1) gave an analytical sample; R_f 0.09 (30-40 °C petrol/Et₂O, 2:1); $[\alpha]_D^{22}$ +9.8 (*c* 0.8 in CHCl₃); v_{max} (film) 3495 (O–H), 1700 (C=O); δ_{H} (400 MHz, CDCl₃) 1.04-1.44 (21H, m, Si(CHMe₂)₃), 1.44-1.57 (15H, m, C(2)Me₂, CMe₃), 3.09-3.33 (1H, br m, OH), 3.67-3.82 (2H, m, C(5)CH₂), 3.84-3.92 (2H, m, C(4)CH₂), 3.98-4.16 (1H, m, C(4)H), 4.25-4.33 (1H, m, C(5)H); δ_{H} (500 MHz, DMSO- d_{6} , 363 K) 1.05-1.12 (21H, m, Si(CHMe₂)₃), 1.45 (9H, s, CMe₃), 1.48 (3H, s, C(2)Me_A), 1.50 (3H, s, C(2)Me_B), 3.72-3.91 (4H, m, C(4)CH₂, C(5)CH₂), 4.12-4.22 (1H, m, C(4)H), 4.35 (1H, app t, *J* 5.8, C(5)H); δ_C (125 MHz, DMSO- d_6 , 363 K) 12.5 (Si(CHMe₂)₃), 18.7 (Si(CHMe₂)₃), 29.0 (CMe₃), 32.2 (C(2)Me₂), 60.2 (C(4)), 60.7 (C(4)CH₂, C(5)CH₂), 79.8 (C(5)), 80.8 (CMe₃), 93.1 (C(2)), 152.0 (NCO); *m/z* (ESI⁺) 440 ([M+Na]⁺, 14%), 418 (100); HRMS (ESI⁺) C₂₁H₄₄NO₅Si⁺ ([M+H]⁺) requires 418.2989; found 418.2997.

From **45**: DIBAL-H (1 M in DCM, 0.80 mL, 0.80 mmol) was added dropwise *via* syringe to a stirred solution of **45** (200 mg, 0.40 mmol) in DCM (5 mL) at 0 °C. After stirring for 18 h, the reaction was quenched with sat aq NH₄Cl (0.1 mL) and stirred for a further 1 h. The resultant mixture was filtered

through Celite (eluent DCM) and concentrated *in vacuo* to give **49** as a colourless oil (157 mg, 92%, >98% de) that was used without purification.

(4*S*,5*S*)-2,2-Dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-tri-*iso*-propylsilyloxymethyl-5-carbonylmethyl-oxazolidine 50

IBX (2.21 g, 7.89 mmol) was added to a solution of **49** (1.10 g, 2.63 mmol) in DMSO (20 mL) at rt and stirred for 12 h. The reaction mixture was diluted with Et₂O (20 mL), washed with H₂O (5 × 20 mL), dried and concentrated *in vacuo* to give **50** as a colourless oil (1.09 g, quant, >98% de) that was used without purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.00-1.10 (21H, m, Si(CHMe₂)₃), 1.43-1.57 (12H, m, C(2)Me_A, CMe₃), 1.63-1.69 (3H, m, C(2)Me_B), 3.67-3.97 (2H, m, C(4)CH₂), 4.20-4.36 (1H, m, C(4)H), 4.44-4.54 (1H, m, C(5)H), 9.72-9.82 (1H, m, CHO).

(4*S*,5*R*,1′*Z*)-2,2-Dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-tri-*iso*-propylsiloxymethyl-5-pentadec-1′-en-1′yl-oxazolidine (*Z*)-51

BuLi (2.5M in hexanes, 2.1 mL, 5.29 mmol) was added dropwise *via* syringe to a stirred solution of (1-tetradecyl)triphenylphosphonium bromide (3.25 g, 6.01 mmol) in THF (60 mL) at -78 °C. After 30 min hexane (75 mL) was added, followed by the dropwise addition of a solution of **50** (500 mg, 1.20 mmol) in THF (15 mL) *via* cannula. The reaction mixture was allowed to warm to rt over 12 h and quenched with sat aq NH₄Cl (10 mL). Brine (100 mL) was added, the organic layer was separated, and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 200:1; increased to 30-40 °C petrol/Et₂O, 10:1) gave (*Z*)-**51** as a colourless oil (645 mg, 90%, >98% de); *R_f* 0.16 (30-40 °C petrol/Et₂O, 10:1); $[\alpha]_{D}^{22}$ -7.8 (*c* 1.7 in CHCl₃); v_{max} (film) 2926 (C–H), 1702 (C=O); δ_{H} (400 MHz, CDCl₃) 0.89-0.91 (3H, m, C(15')*H*₃), 1.02-1.09 (21H, m, Si(CHMe₂)₃), 1.20-1.65 (37H, m, C(2)Me₂, C(4')H₂-C(14')H₂, *CMe*₃,), 1.99-2.20 (2H, m, C(3')H₂), 3.64 (1H, dd, *J* 10.2, 2.0, C(4)CH_A), 3.71-3.93 (1H, m, C(4)H), 4.00 (1H, dd, *J* 10.2, 4.6, C(4)CH_B), 4.88-4.95 (1H, m, C(5)H), 5.62-5.77 (2H, m, C(1')H, C(2')H); δ_{H} (500 MHz,

PhMe- d_8 , 363 K) 0.92 (3H, t, J 6.9, C(15') H_3), 1.08-1.20 (21H, m, Si(CHM e_2)₃), 1.27-1.46 (22H, m, C(4') H_2 -C(14') H_2), 1.47 (9H, s, CM e_3), 1.62 (3H, s, C(2) Me_A), 1.70 (3H, s, C(2) Me_B), 2.04-2.20 (2H, m, C(3') H_2), 3.86 (1H, dd, J 9.8, 2.5, C(4)C H_A), 4.01 (1H, br s, C(4)H), 4.12 (1H, dd, J 9.8, 6.4, C(4)C H_B), 4.96-4.99 (1H, m, C(5)H), 5.62-5.67 (1H, m, C(2')H), 5.91-5.96 (1H, m, C(1')H); δ_C (125 MHz, PhMe- d_8 , 363 K) 12.2 (Si(CHM e_2)₃), 13.6 (C(15')), 17.9 (Si(CH Me_2)₃), 22.5, 27.8, 28.2, 29.15, 29.23, 29.5, 29.55, 29.59, 29.61, 29.64, 29.7, 31.9 (C(2) Me_2 , C(3')-C(14'), C Me_3), 61.3 (C(4)) 61.8 (C(4)CH₂), 72.3 (C(5)), 79.0 (CM e_3), 92.0 (C(2)), 125.7 (C(2')), 133.9 (C(1')), 151.5 (NCO); m/z (CI⁺) 596.5 ([M+H]⁺, 100%); HRMS (CI⁺) C₃₅H₇₀NO₄Si⁺ ([M+H]⁺) requires 596.5074; found 596.5054.

(4*S*,5*R*,1*'E*)-2,2-Dimethyl-*N*(3)-*tert*-butoxycarbonyl-4-tri-*iso*-propylsiloxymethyl-5-pentadec-1'-en-1'yl-oxazolidine (*E*)-52

BuLi (2.5M in hexanes, 2.1 mL, 5.29 mmol) was added dropwise via syringe to a stirred solution of (1tetradecyl)triphenylphosphonium bromide (3.25 g, 6.01 mmol) in THF (60 mL) at -78 °C. After 30 min hexane (75 mL) was added, followed by the dropwise addition of a solution of 50 (500 mg, 1.20 mmol) in THF (15 mL) via cannula. The reaction mixture was stirred at -78 °C for 2 h before the addition of MeOH (50 mL). The reaction mixture was allowed to warm to rt over a further 12 h and quenched with sat aq NH₄Cl (10 mL). Brine (100 mL) was added, the organic layer was separated, and the aqueous layer was extracted with Et₂O (3 \times 50 mL). The combined organic extracts were dried and concentrated *in vacuo*. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 10:1) gave (E)-52 as a colourless oil (523 mg, 73%, (E):(Z) 94:6); R_f 0.16 (30-40 °C petrol/Et₂O, 10:1); $[\alpha]_D^{20}$ +3.5 (c 2.2 in CHCl₃); ν_{max} (film) 2926 (C–H), 1703 (C=O); δ_H (400 MHz, CDCl₃) 0.95-0.99 (3H, m, C(15')H₃), 1.10-1.23 (21H, m, Si(CHMe₂)₃), 1.31-1.72 (37H, m, C(2)Me₂, C(4')H₂-C(14')H₂, CMe₃), 2.10-2.19 (2H, m, C(3')H₂), 3.70-3.78 (1H, m, C(4)CH_A), 3.84-4.12 (2H, m, C(4)H, C(4)CH_B), 4.59-4.64 (1H, m, C(5)H), 5.80-5.96 (2H, m, C(1')H, C(2')H); δ_H (500 MHz, PhMe-d₈, 363 K) 0.92 (3H, t, J 6.9, C(15')H₃), 1.11-1.18 (21H, m, Si(CHMe₂)₃), 1.26-1.50 (31H, m, C(4')H₂-C(14')H₂, CMe₃), 1.58 (3H, s, C(2)Me_A), 1.68 (3H, s, C(2)Me_B), 2.10-2.14 (2H, m, C(3')H₂), 3.80-3.86 (1H, m, C(4)CH_A), 3.93 (1H, br s, C(4)H), 4.04 (1H, dd, J 9.8, 7.6, C(4)CH_B), 4.50-4.52 (1H, m, C(5)H), 5.77-5.85 (1H, m, C(2')H), 5.87-5.93 (1H, m, C(1')H); δ_C (125 MHz, PhMe- d_8 , 363 K) 12.2 (Si(CHMe₂)₃), 13.6 (C(15')), 17.9 (Si(CHMe₂)₃), 22.5, 24.1, 27.3, 28.1, 29.2, 29.27, 29.30, 29.53, 29.57, 29.61, 29.7, 31.9 (C(2) Me_2 , C(3')-C(14'), CMe₃), 61.3 (C(4)), 62.0 (C(4)CH₂), 77.2 (C(5)), 79.0 (CMe₃), 92.4 (C(2)), 125.7 (C(2')), 134.1 (C(1')), 151.5 (NCO); m/z (CI⁺) 596.5 ([M+H]⁺, 100%); HRMS (CI⁺) C₃₅H₇₀NO₄Si⁺ ([M+H]⁺) requires 596.5074; found 596.5084.

(4*S*,5*R*)-2,2-Dimethyl-*N*(3)*-tert*-butoxycarbonyl-4-tri*-iso*-propylsiloxymethyl-5-pentadecan-1'-yl-oxazolidine 53

Pd/C (5 mg, 10% w/w) was added to a stirred solution of (*Z*)-**51** (50 mg, 0.08 mmol) in EtOAc (5 mL) at rt. The reaction mixture was stirred under H₂ (1 atm) for 6 h. The reaction mixture was filtered through Celite (eluent EtOAc) and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30-40 °C petrol/Et₂O, 2:1) gave **53** as a colourless oil (43 mg, 86%, >98% de); R_f 0.8 (30-40 °C petrol/Et₂O, 2:1); $[\alpha]_D^{17}$ +10.0 (*c* 2.2 in CHCl₃); v_{max} (film) 2925 (C–H), 1702 (C=O); δ_H (400 MHz, CDCl₃) 0.85-0.91 (3H, m, C(15')H₃), 1.02-1.12 (21H, m, Si(CHMe₂)₃), 1.20-1.37 (26H, m, C(2')H₂-C(14')H₂), 1.45-1.54 (15H, m, C(2)Me₂, CMe₃), 1.55-1.85 (2H, m, C(1')H₂), 3.59-3.89 (3H, m, C(4)H, C(4)H₂), 4.00-4.06 (1H, m, C(5)H); δ_H (500 MHz, PhMe- d_8 , 363 K) 0.88-1.68 (65H, m, C(2)Me₂, C(2')-C(13')H₂, C(14')H₃, CMe₃, Si(CHMe₂)₃), 1.80-1.92 (2H, m, C(1')H₂), 3.78-4.05 (4H, m, C(4)HCH₂, C(5)H); δ_C (125 MHz, PhMe- d_8 , 363 K) 12.2, 13.5, 17.8, 22.5, 23.9, 26.8, 27.4, 28.0, 28.1, 29.2, 29.3, 29.6, 29.7, 31.8, 61.2, 76.7, 78.9, 92.0, 151.5; *m/z* (ESI⁺) 598.5 ([M+H]⁺, 100%); HRMS (ESI⁺) C₃₅H₇₂NO₄Si⁺ ([M+H]⁺) requires 598.5231; found 598.5252.

(2S,3R)-1,3-Diacetoxy-2-acetamido-octadecane [N,O-diacetyl sphinganine] 54

3 M aq HCl (1 mL) was added to a solution of **53** (30 mg, 0.05 mmol) in MeOH (10 mL) and heated at 50 °C for 3 h. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in pyridine (10 mL) and Ac₂O (0.1 mL, excess) and DMAP (2 mg) were added sequentially. The reaction mixture was stirred for 12 h before being quenched with H₂O (2 mL). The reaction mixture was diluted with H₂O (10 mL) and Et₂O (10 mL) and the layers were separated. The aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic layers were washed sequentially with sat aq CuSO₄ (2 × 10 mL), H₂O (10 mL) and brine

(10 mL), dried and concentrated *in vacuo*. Recrystallisation from CHCl₃/pentane (1:1) gave **54** as a white solid (11 mg, 75%, >98% de); mp 83-85 °C (CHCl₃/pentane); $[\alpha]_D^{22}$ +18.4 (*c* 0.25 in CHCl₃); {lit.⁸ $[\alpha]_D^{22}$ +19.2 (*c* 1.0 in CHCl₃); lit.⁹ $[\alpha]_D^{24}$ +17.2 (*c* 0.2 in CHCl₃)}; v_{max} (KBr) 3306, 2912, 2853, 1732, 1649, 1545, 1232; δ_H (400 MHz, CDCl₃) 0.87 (3H, t, *J* 6.7, C(18)*H*₃), 1.21-1.38 (22H, m, C(7)*H*₂-C(17)*H*₂), 1.52-1.70 (2H, m, C(6)*H*₂), 2.01 (3H, s, CO*Me*), 2.07 (3H, s, CO*Me*), 2.08 (3H, s, CO*Me*), 4.07 (1H, dd, *J* 11.6, 3.9, C(1)*H*_A), 4.26 (1H, dd, *J* 11.6, 6.1, C(1)*H*_B), 4.34-4.45 (1H, m, C(2)*H*), 4.88-4.95 (1H, m, C(3)*H*), 5.85 (1H, d, *J* 8.9 N*H*); δ_C (100 MHz, CDCl₃) 14.1, 20.8, 21.0, 22.7, 23.3, 25.3, 29.3, 29.4, 29.5, 29.60, 29.63, 29.7, 31.5, 31.9, 50.5, 62.6, 73.9, 169.8, 170.9, 171.0; *m*/z (ESI⁺) 450 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₄H₄₅NNaO₅⁺ ([M+Na]⁺) requires 450.3190; found 450.3180.

(2S,3R,4Z)-1,3-Diacetoxy-2-acetamido-octadec-4-ene [N,O,O-triacetyl-(Z)-sphingosine] 55

3 M aq HCl (1 mL) was added to a solution of (*Z*)-**51** (30 mg, 0.05 mmol) in MeOH (10 mL) and heated at 50 °C for 3 h. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in pyridine (10 mL) and Ac₂O (0.1 mL, excess) and DMAP (2 mg) were added sequentially. The reaction mixture was stirred for 12 h before being quenched with H₂O (2 mL). The reaction mixture was diluted with H₂O (10 mL) and the layers were separated. The aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic layers were washed sequentially with sat aq CuSO₄ (2 × 10 mL), H₂O (10 mL) and brine (10 mL), dried and concentrated *in vacuo*. Recrystallisation from CHCl₃/pentane (1:1) gave **55** as a white solid (13 mg, 87%, >98% de); mp 83-85 °C (CHCl₃/pentane); $[\alpha]_D^{22}$ +6.6 (*c* 0.9 in CHCl₃); {lit.¹⁰ $[\alpha]_D^{24}$ +4.3 (*c* 0.9 in CHCl₃)}; v_{max} (KBr) 3336, 2926, 2851, 1734, 1655, 1539, 1236; δ_H (400 MHz, CDCl₃) 0.88 (3H, t, *J* 6.8, C(18)*H*₃), 1.14-1.43 (22H, m, C(7)*H*₂-C(17)*H*₂), 1.99 (3H, s, CO*Me*), 2.05 (3H, s, CO*Me*), 2.08 (3H, s, CO*Me*), 2.00-2.27 (2H, m, C(6)*H*₂), 4.04 (1H, dd, *J* 11.6, 3.9, C(1)*H*_A), 4.34 (1H, dd, *J* 11.6, 6.5, C(1)*H*_B), 4.39-4.47 (1H, m, C(2)*H*), 5.28-5.36 (1H, m, C(3)*H*), 5.60-5.73 (2H, m, C(4)*H*, C(5)*H*); δ_C (125 MHz, CDCl₃) 14.1, 20.8, 21.1, 22.7, 23.4, 28.0, 29.3, 29.35, 29.42, 29.5, 29.6, 29.64, 29.66, 29.67, 31.9, 51.1, 62.6, 69.6, 77.2, 123.8, 137.0, 169.8, 170.0, 171.0; *m*/z (ESI⁺) 448 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₄H₄₃NNaO₅⁺ ([M+Na]⁺) requires 448.3033; found 448.3030.

⁸ H. E. Carter and D. Shapiro, J. Am. Chem. Soc., **1953**, 75, 5131.

⁹ R. A. Fernandes and P. Kumar, *Tetrahedron: Asymmetry*, **1999**, *10*, 4797.

¹⁰ H. Shibuya, K. Kawashima, N. Narita, M. Ikeda and I. Kitagawa, Chem. Pharm. Bull., 1992, 40, 1154.

(2S,3R,4E)-1,3-Diacetoxy-2-acetamido-octadec-4-ene [N,O,O-triacetyl sphingosine] 56

3 M aq HCl (1 mL) was added to a solution of (E)-52 (50 mg, 0.05 mmol, (E):(Z) 94:6) in MeOH (10 mL) and heated at 50 °C for 3 h. The reaction mixture was concentrated in vacuo. The residue was dissolved in pyridine (10 mL) and Ac₂O (0.1 mL, excess) and DMAP (2 mg) were added sequentially. The reaction mixture was stirred for 12 h before being quenched with H₂O (2 mL). The reaction mixture was diluted with H₂O (10 mL) and Et₂O (10 mL) and the layers were separated. The aqueous layer was extracted with Et₂O $(2 \times 10 \text{ mL})$. The combined organic layers were washed sequentially with sat aq CuSO₄ (2 × 10 mL), H₂O (10 mL) and brine (10 mL), dried and concentrated in vacuo. Recrystallisation from CHCl₃/pentane (1:1) gave 56 as a white solid (29 mg, 80%, >98% de); mp 99-101 °C (CHCl₃/pentane); $[\alpha]_{D}^{20}$ -12.0 (c 1.0 in CHCl₃); {lit.¹¹ $[\alpha]_D^{24}$ -13.0 (c 1.6 in CHCl₃)}; v_{max} (KBr) 3287, 2919, 2850, 1734, 1656, 1552, 1232; δ_H (400 MHz, CDCl₃) 0.88 (3H, t, J 6.8, C(18)H₃), 1.19-1.40 (22H, m, C(7)-C(17)H₂), 1.95-2.09 (2H, m, $C(6)H_2$) overlapping 1.99 (3H, s, COMe) and 2.07 (6H, s, 2 × COMe), 4.04 (1H, dd, J 11.6, 4.1, C(1)H_A), 4.30 (1H, dd, J 11.6, 6.1, C(1)H_B), 4.39-4.48 (1H, m, C(2)H), 5.26-5.28 (1H, m, C(3)H), 5.39 (1H, dd, J 15.4, 7.5, C(4)H), 5.68 (1H, d, J 9.2, NH), 5.79 (1H, dd, J 15.4, 6.8, C(5)H); δ_C (100 MHz, CDCl₃) 14.1, 20.8, 21.1, 22.7, 23.4, 28.9, 29.2, 29.3, 29.4, 29.6, 29.7, 31.9, 32.3, 50.6, 60.4, 62.6, 73.8, 124.1, 137.5, 169.7, 170.0, 171.0; m/z (ESI⁺) 448 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₄H₄₃NNaO₅⁺ ([M+Na]⁺) requires 448.3033; found 448.3023.