Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2008

Electronic Supplementary Information

Aminolysis of 4-nitrophenyl phenyl carbonate and thionocarbonate: Effects of amine nature and modification of electrophilic center from C=O to C=S on reactivity and mechanism

Ik-Hwan Um,^{*} Sora Yoon, Hye-Ran Park[†] and Hyun-Joo Han[‡]

Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea

Tel: 82-2-3277-2349; Fax: 82-2-3277-2844; E-mail; ihum@ewha.ac.kr

[†]Present address: Hansolchemical, Wanju-Kun, Chonlabuk-do 565-900, Korea

^{*}Present address: Advanced PKG Development Central R & D Institute, Samsung Electro-Mechanics, Suwon, Gyunggi-do 443-743, Korea

Table of Contents

(1) Tables $S1 - S14$. Summary of kinetic results for reactions of 4-nitrophenyl phenyl
carbonate (5) and thionocarbonate (6) with alicyclic secondary amines in 80 mol $\%$
$H_2O/20 \text{ mol }\% \text{ DMSO at } 25.0 \pm 0.1 ^{\circ}\text{C.}$ (S3-S9)
(2) Fig. S1 – S7. Plots of k_{obsd} vs. [amine] for reactions of 4-nitrophenyl phenyl
carbonate (5) and thionocarbonate (6) with alicyclic secondary amines in 80 mol $\%$
$H_2O/20 \text{ mol }\% \text{ DMSO at } 25.0 \pm 0.1 ^{\circ}\text{C.}$ (S10-S13)
(3) Fig. S8 and S9. Plots of k_{obsd} /[amine] vs. [amine] and [amine]/ k_{obsd} vs. 1/[amine] for
reactions of 4-nitrophenyl phenyl thionocarbonate (6) with 1-formylpiperazine in
80 mol % H ₂ O/20 mol % DMSO at 25.0 ± 0.1 °C (S14)
(4) Equations to determine the k_2/k_{-1} ratios (eqns S1 –S6) (S15)

	$[R_2NH] / 10^{-3}M$	$k_{\rm obsd} / 10^{-4} {\rm s}^{-1}$
1	17.3	9.32
2	31.7	17.8
3	44.0	25.1
4	54.4	32.0
5	63.5	38.1

Table S1 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with piperazinium ion in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

 $k_{\rm N} = (6.22 \pm 0.11) \times 10^{-2} \,{\rm M}^{-1} {\rm s}^{-1}$ intercept = (-1.76 ± 0.52) × 10⁻⁴ s⁻¹ ${\rm R}^2 = 0.9995$

Table S2 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with 1-formylpiperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd}$ / 10^{-3} s ⁻¹
1	10.6	17.9
2	20.3	33.5
3	29.2	48.4
4	47.0	78.1
5	55.9	93.9

 $k_{\rm N} = 1.68 \pm 0.01 \,{\rm M}^{-1}{\rm s}^{-1}$ intercept = (-2.91 ± 4.71) × 10⁻⁴ s⁻¹ R² = 0.9999

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-2} {\rm s}^{-1}$
1	10.8	12.3
2	21.6	24.0
3	32.4	36.5
4	43.2	48.5
5	54.0	61.0

Table S3 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with morpholine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

 $k_{\rm N} = 11.3 \pm 0.1 \text{ M}^{-1} \text{s}^{-1}$ intercept = (-0.11 ± 0.25) × 10⁻² s⁻¹ R² = 0.9999

Table S4 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with 1-(2-hydroxyethyl)piperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	11.0	2.89
2	22.0	5.77
3	33.0	8.75
4	44.0	11.7
5	55.0	15.1

 $k_{\rm N} = 27.6 \pm 0.5 \text{ M}^{-1} \text{s}^{-1}$ intercept = (-2.63 ± 1.82) × 10⁻² s⁻¹ R² = 0.9995

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	11.0	11.2
2	21.9	22.7
3	32.9	34.7
4	43.8	45.7
5	54.8	58.8

Table S5 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with piperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

 $k_{\rm N} = 108 \pm 2 \text{ M}^{-1}\text{s}^{-1}$ intercept = $(-8.73 \pm 5.48) \times 10^{-2} \text{ s}^{-1}$ $\text{R}^2 = 0.9997$

Table S6 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with 3-methylpiperidine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd}$ / s ⁻¹
1	10.5	2.38
2	20.9	4.91
3	31.4	7.43
4	41.8	10.0
5	52.3	12.8

 $k_{\rm N} = 248 \pm 3 \,{\rm M}^{-1}{\rm s}^{-1}$ intercept = (-2.83 ± 1.02) × 10⁻¹ s⁻¹ R² = 0.9997

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd}$ / s ⁻¹
1	10.9	2.98
2	21.8	5.99
3	32.7	9.24
4	43.6	12.4
5	54.5	15.7

Table S7 Kinetic data for the reaction of 4-nitrophenyl phenyl carbonate (5) with piperidine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

 $k_{app} = 292 \pm 3 \text{ M}^{-1} \text{s}^{-1}$ intercept = (-2.9 ± 0.9) × 10⁻¹ s⁻¹ R² = 0.9998

Table S8 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with piperazinium ion in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-3} {\rm s}^{-1}$
1	9.07	1.22
2	17.3	2.74
3	31.8	6.37
4	44.8	11.0
5	54.5	15.6
6	63.6	19.9
7	76.3	27.9

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-2} {\rm s}^{-1}$
1	10.6	1.79
2	20.3	4.69
3	29.2	8.22
4	37.3	11.3
5	44.7	14.5
7	51.6	18.2
8	58.0	21.5

Table S9 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with 1-formylpiperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Table S10 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with morpholine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	12.4	0.856
2	20.4	1.52
3	30.6	2.86
4	40.8	3.94
5	51.0	5.30
6	61.2	6.65
7	71.4	7.91
8	81.6	9.07

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	4.19	0.268
2	8.82	0.615
3	14.0	1.18
4	20.4	1.98
5	30.6	3.41
6	40.8	4.49
7	51.0	6.10

Table S11 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with 1- (2-hydroxyethyl) piperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Table S12 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with piperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	5.50	1.39
2	11.0	3.04
3	22.0	6.68
4	33.0	11.1
5	44.0	14.8
6	55.0	19.5
7	66.0	23.7

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	10.4	3.29
2	20.7	6.92
3	31.1	10.7
4	41.4	14.6
5	51.8	18.7
6	62.1	23.1
7	72.5	28.0

Table S13 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with 3-methylpiperidine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Table S14 Kinetic data for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with piperidine in 80 mol % $H_2O/20$ mol % DMSO at 25.0 ± 0.1 °C.

	$[R_2 NH] / 10^{-3} M$	$k_{\rm obsd} / 10^{-1} {\rm s}^{-1}$
1	5.45	1.49
2	10.6	2.82
3	21.1	5.71
4	32.7	8.91
5	43.6	13.1
6	54.5	16.3
7	65.4	20.3
8	76.3	24.4

Fig. S1 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with piperazinium ion in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S2 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with 1-formylpiperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S3 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with morpholine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S4 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with 1-(2-hydroxylethyl)piperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S5 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with piperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S6 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with 3-methylpiperidine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S7 Plots of k_{obsd} vs. amine concentration for reactions of 4-nitrophenyl phenyl carbonate (\circ) and thionocarbonate (\bullet) with piperidine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S8 Plot of k_{obsd} /[amine] vs. [amine] for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with 1-formylpiperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S9 Plot of [amine]/ k_{obsd} vs. 1/[amine] for the reaction of 4-nitrophenyl phenyl thionocarbonate (6) with 1-formylpiperazine in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

The k_2/k_{-1} ratios for the reaction of 4–nitrophenyl phenyl carbonate (5) and secondary amines have been determined using eqns S1 - S6.

Eqn (3) can be simplified to eqns (S1) and (S2). Then, β_1 and β_2 can be expressed as eqns (S3) and (S4), respectively.

$$k_{\rm N} = k_1 k_2 / (k_{-1} + k_2) \tag{3}$$

$$k_{\rm N} = k_1 k_2 / k_{-1}$$
, when $k_2 \ll k_{-1}$ (S1)

$$k_{\rm N} = k_1$$
, when $k_2 >> k_{-1}$ (S2)

$$\beta_1 = d(\log k_1)/d(pK_a) \tag{S3}$$

$$\beta_2 = d(\log k_1 k_2/k_{-1})/d(pK_a)$$

= $\beta_1 + d(\log k_2/k_{-1})/d(pK_a)$ (S4)

Eqn (S4) can be rearranged as eqn (S5). Integral of eqn (S5) from pK_a^{o} results in eqn (S6). Since $k_2 = k_{-1}$ at pK_a^{o} , the term $(\log k_2/k_{-1})_{pKa}^{o}$ is zero. Therefore, one can calculate the k_2/k_{-1} ratio from eqn (S6) using $\beta_1 = 0.26$, $\beta_2 = 0.98$, $pK_a^{o} = 10.1$ with all the secondary amines.

$$\beta_2 - \beta_1 = d(\log k_2/k_{-1}) / d(pK_a)$$
(S5)

$$(\log k_2/k_{-1})_{pKa} = (\beta_2 - \beta_1)(pK_a - pK_a^{o})$$
(S6)