# A stereodivergent synthesis of $\beta$ -hydroxy- $\alpha$ -methylene lactone via vinyl epoxides

## Marion Davoust,<sup>a</sup> Frédéric Cantagrel,<sup>a</sup> Patrick Metzner,<sup>\*a</sup> and Jean-François Brière<sup>\*a,b,c</sup>

<sup>a</sup> Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen, CNRS,
6 Boulevard du Maréchal Juin, 14050 Caen, France. Fax: +33 (0)231452885; Tel: +33 (0)23145285; E-mail: patrick.metzner@ensicaen.fr

<sup>b</sup> INSA de Rouen, IRCOF, rue Tesnière, 76131 Mont-Saint-Aignan, France. Fax: +33 (0)235522962; Tel: +33 (0)235522464; E-mail: jean-francois.briere@insa-rouen.fr

<sup>c</sup> CNRS, Université de Rouen, UMR 6014 COBRA, rue Tesnière, 76131 Mont-Saint-Aignan, France.

| General informations                            | .2 |
|-------------------------------------------------|----|
| Optimisation of the lactonisation of epoxide 3a | .3 |
| NOE experiments carried out on lactone 4a       | .4 |
| NOE experience carried out on lactone 4g        | .5 |
| NOE experience carried out on carbonate 11a     | .6 |
| NMR of the sulfonium salt 8                     | .7 |

#### **General informations**

**NMR spectra** were recorded on a Bruker DPX 250 (<sup>1</sup>H: 250 MHz, <sup>13</sup>C: 63 MHz) or on a Bruker DRX 400 (<sup>1</sup>H: 400 MHz, <sup>13</sup>C: 100 MHz) instruments in CDCl<sub>3</sub> unless indicated otherwise. Data appear in the following order: chemical shift  $\delta$  in ppm, multiplicity (s singulet, d doublet, t triplet, m multiplet), number of protons, coupling constant *J* in Hz. TMS is the internal standard for the CDCl<sub>3</sub> solutions.

**IR spectra** were recorded on a Perkin-Elmer Spectrum-One ATR spectrophotometer. Vibrations v were reported in cm<sup>-1</sup>.

**Mass spectra** were recorded on a Varian GC/MS/MS instrument equipped with CP 3800 (GC) and Saturn 2000 (MS/MS) modules.

**Exact mass spectra** were recorded on a Waters Q-TOF Micro apparatus (LC/MS) with a Xterra MS column.

**Purification** by flash<sup>1</sup> chromatography of compounds was achieved with Merck 60 silica gel (40-63  $\mu$ m).

**Thin layer chromatography** (TLC) was performed on silica gel 60  $F_{254}$  (1.1 mm, Merck) and the plates were visualised with UV light (254 nm), a potassium permanganate solution (1 g with 2 g of  $K_2CO_3$  in 200 mL of water) or a phosphomolybdic acid solution (1 g in 100 mL of *i*-PrOH).

All reagents and solvents are commercially available and used without further purification unless otherwise noted.

Dry solvents were obtained from a PURESOLV<sup>TM</sup> apparatus developed by Innovative Technology Inc. (http://www.solventpurification.com). Toluene,  $CH_2Cl_2$ , MeCN, THF and ether were passed through activated alumina columns under nitrogen pressure. Toluene was also treated by mean of a copper column to remove traces of oxygen. The content of water was measured with a Coulometer (Karl Fisher method). The system provided solvent with 5-15 ppm of water.

<sup>&</sup>lt;sup>1</sup> Still W. C., Kahn M., Mitra A., J. Org. Chem., **1978**, 43, 2923.

# Optimisation of the lactonisation of epoxide 3a

#### Scheme 1



| $R^1$        | Acid                                     | Solvent                            | Temp<br>(°C) | Time  | $\operatorname{Conv}^a$ (%) | Yield<br>4 (%)  | dr <sup>b</sup><br>( <i>trans/cis</i> ) |
|--------------|------------------------------------------|------------------------------------|--------------|-------|-----------------------------|-----------------|-----------------------------------------|
| Ph           | H <sub>2</sub> SO <sub>4</sub> 6M (cat.) | THF                                | rt           | 21 h  | 100                         | 15 <sup>c</sup> | 92:8                                    |
| Ph           | $H_2SO_4$ 5% aq                          | H <sub>2</sub> O                   | 60           | 0,5 h | 100                         | 13              | 64:36                                   |
| Ph           | HCl 2M                                   | H <sub>2</sub> O                   | 60           | 1,5 h | 100                         | $14^c$          | 52:48                                   |
| Ph           | BF <sub>3</sub> .Et <sub>2</sub> O       | THF                                | 0 to rt      | 3 h   | 100                         | 0               | -                                       |
| Ph           | Bi(OTf) <sub>2</sub> (5 mol%)            | MeCN/H <sub>2</sub> O <sup>d</sup> | rt à 80      | 1 d   | 0                           | -               | -                                       |
| Ph           | TFA, H <sub>2</sub> O                    | THF                                | 0 à rt       | 2 d   | 100                         | traces          | 100:0                                   |
| Ph           | APTS.H <sub>2</sub> O                    | MeCN                               | Rt to 80     | 22 h  | 100                         | 0               | -                                       |
| Ph           | HClO <sub>4</sub>                        | H <sub>2</sub> O/THF               | rt           | 1 d   | 8                           | -               | -                                       |
| Ph           | HClO <sub>4</sub>                        | H <sub>2</sub> O/THF               | 40           | 3 d   | 0                           | -               | -                                       |
| Ph           | Tartaric acid                            | H <sub>2</sub> O/THF               | rt           | 1 d   | 100                         | -               | 93:7                                    |
| <i>n</i> -Bu | H <sub>2</sub> SO <sub>4</sub> 10% aq    | H <sub>2</sub> O                   | 60           | 6,5 h | 100                         | 30              | 76:24                                   |
| <i>n</i> -Bu | H <sub>2</sub> SO <sub>4</sub> 10% aq    | H <sub>2</sub> O                   | 60           | 0,7 h | 100                         | 66              | 78:22 <sup>e</sup>                      |
| <i>n</i> -Bu | H <sub>2</sub> SO <sub>4</sub> 5% aq     | H <sub>2</sub> O                   | 60           | 0,3 h | 100                         | 62              | 79:21 <sup><i>f</i></sup>               |

<sup>*a*</sup> With respect to the epoxide. <sup>*b*</sup> Determined on the NMR of the crude product. <sup>*c*</sup> Traces of furanone **5**. <sup>*d*</sup> MeCN/H<sub>2</sub>O (10:1). <sup>*e*</sup> 86:14 (**4:5**). <sup>*f*</sup> 90:10 (**4:5**).

| lactone | irradiated H   | $H_a$ - $H_b$ <sup><i>a</i></sup> | H-OH <sup>a</sup> | H-Ph <sup>a</sup> | H-CH <sub>2</sub> <sup>a</sup> |
|---------|----------------|-----------------------------------|-------------------|-------------------|--------------------------------|
| trans   | H <sub>a</sub> | 1.2                               | 0.8               | 1.1               | 0.1 + 0.4                      |
| trans   | H <sub>b</sub> | 0.9                               | 0.5               | 1.8               | -                              |
| ain     | Ha             | 1.4                               | 0.5               | 0.1               | $\epsilon + 0.2$               |
| CIS     | $H_b$          | 1.5                               | 0.2               | 1.7               | -                              |

## NOE experiments carried out on lactone 4a

**NOE 1D selective**: determination of the relative configuration *trans/cis*.

<sup>*a*</sup> Correlation values are obtained from NOE selective 1D spectra which have been normalized to the irradiated peak intensity, and are given in percentage (%).

Pł

1.2

cis

0.1%

О







# NOE experience carried out on lactone 4g

| lactone | Irradiated H | $H_a$ - $H_b^a$ | H-OH <sup>a</sup> | $H-(n-Bu)^a$ | H-CH <sub>2</sub> <sup>a</sup> |
|---------|--------------|-----------------|-------------------|--------------|--------------------------------|
| trans   | $H_a$        | 1.3             | 1.1               | 4.6          | 0.1 + 0.7                      |
|         | $H_b$        | 1.1             | 0.7               | 5.3          | -                              |
| cis     | $H_a$        | 2.2             | 1                 | 1.8          | 0.1 + 0.8                      |
|         | $H_b$        | 2.2             | 0.1               | 4.3          | -                              |

NOE 1D selective: determination of the relative configuration *trans/cis*.

 $^{a}$  Correlation values are obtained from NOE selective 1D spectra which have been normalized to the irradiated peak intensity, and are given in percentage (%).

trans





cis







## NOE experience carried out on carbonate 11a

| carbonate | irradiated H   | $H_a$ - $H_b^a$ | H-Ph <sup>a</sup> |
|-----------|----------------|-----------------|-------------------|
| trans     | $H_a$          | 1.8             | 1                 |
|           | $H_b$          | 1.2             | 1.4               |
| cis       | $H_{a}$        | 5.7             | 0.3               |
|           | H <sub>b</sub> | 5.8             | 1.7               |

NOE 1D selective: determination of the relative configuration *trans/cis*.

<sup>a</sup> Correlation values are obtained from NOE selective 1D spectra which have been normalized to the irradiated peak intensity, and are given in percentage (%).





### NMR of the sulfonium salt $8^2$



In a NMR tube, a heterogeneous mixture of allylic bromide 2a (62 mg, 0.32 mmol) and thiolane 7 (29 mg, 0.25 mmol) in D<sub>2</sub>O (50 µL) were stirred for 24 hours at room temperature. CD<sub>3</sub>CN (450 µL) was added to the resulting homogeneous solution (corresponding to the soluble sulfonium salt **8**) and the mixture was immediately analyzed by NMR. A virtually complete formation of the sulfonium salt with respect to the sulfide 7 was observed by <sup>1</sup>H NMR.

 $\delta_{\rm H}(400 \text{ MHz})$ : 6.03 (s, 1H, =CH<sub>2</sub>), 5.63 (s, 1H, =CH<sub>2</sub>), 4.25-4.16 (m, 1H, CH), 4.08-3.97 (m, 3H, CH and SCH<sub>2</sub>), 3.05 (s, 3H, NMe<sub>2</sub>), 2.90 (s, 3H, NMe<sub>2</sub>), 2.52-2.49 (m, 1H, CH<sub>2</sub>), 2.48-2.41 (m, 1H, CH<sub>2</sub>), 2.23-2.12 (m, 1H, CH<sub>2</sub>), 1.90-1.78 (m, 1H, CH<sub>2</sub>), 1.54 (d, *J* = 7.0 Hz, 3H, Me), 1.51 (d, *J* = 7.0 Hz, 3H, Me).

<sup>&</sup>lt;sup>2</sup> For the use and comments in ylide promoted epoxidation by a pre-formed sulfonium salt in water, see: V. Schulz, M. Davoust, M. Lemarié, J.-F. Lohier, J. Sopkova de Oliveira Santos, P. Metzner and J.-F. Brière, *Org. Lett.*, 2007, 9, 1745.