STRUCTURAL BASIS FOR THE BROAD-SPECTRUM INHIBITION

OF METALLO-B-LACTAMASES BY THIOLS

Benoit M. R. Liénard, Gianpiero Garau, Louise Horsfall, Andreas I. Karsisiotis, Christian Damblon, Patricia Lassaux, Cyril Papamicael, Gordon C. K. Roberts, Moreno Galleni, Otto Dideberg, Jean-Marie Frère and Christopher J. Schofield

SUPPORTING INFORMATION

I. X-ray crystallography	2
II. NMR	3

I. Crystallographic data

Metallo-β-Lactamase Inhibitor	CphA 2	L1 5a
Data collection		
Wavelength (Å)	0.93100	1.54179
Resolution (Å) ^a	39.5 - 1.66	26.55 - 2.00
	(1.70 - 1.66)	(2.11 - 2.00)
Total Observations	220003	292187
Unique Observations	30263	21311
Space group	$C222_1$	P6 ₄ 22
Unit cell		
(Å)	43.0 101.0 116.8	105.3 105.3 98.0
(°)	90.0 90.0 90.0	90.0 90.0 120.0
Completeness (%) ^a	99.1 (99.1)	96.5 (94.2)
Multiplicity ^a	5.7 (3.2)	13.7 (11.0)
R merge $(\%)^{a, b}$	8.1 (22.2)	8.4 (40.4)
$\langle I / \delta(I) \rangle^{a}$	17.1(4.4)	28.1 (5.5)
Refinement statistics		
R factor / R free $(\%)^{c, d}$	14.8 / 17.0	17.0/19.2
R. m. s. deviations		
Bond lengths (Å)	0.010	0.013
Bond angles (°)	1.28	1.40
Number of atoms (non-H)		
Zn	1	2
Inhibitor ^e	1×14	1 × 11
Sulfate ^e	4×5	2×5
Glycerol ^e	2×6	_
Water	202	235
Average B-factor (Å ²)	12.0	30.5

Table S1. Data collection and refinement statistics

^a Number in parentheses refer to the highest resolution shell. ^b $R_{merge} = \sum_{khl} \sum_{i} |I_i - \langle I \rangle |/ \sum_{khl} \sum_{i} I_i.$ ^c $R_{fact} = \sum_{khl} |F_o(hkl) - F_c(hkl)| / \sum_{khl} |F_o(hkl)|.$ ^d R_{free} was calculated based on 5% of the total data omitted during structure refinement

^e Number of molecules × number of atoms

III. NMR

III.1 Effect of the titration of **5a/5b** to BcII followed by 1H-NMR

Figure S1. Selected region of the ¹H NMR spectra of the BcII MBL from *Bacillus cereus* showing the observed changes in the imidazole NH resonance signals of the metal binding histidine residues (His86, His88 and His210) during the titration of **5a** (left panel) and **5b** (right panel).

Figure S2. ¹H-¹⁵N HMQC spectrum optimized for the detection of long-range ¹H-¹⁵N couplings in the imidazole ring depicting the imidazole resonances. Cross peaks corresponding to the imidazole spin systems for BcII:Zn₂ are in black (connected by black lines), BcII:Zn₂:**5a** in red and BcII:Zn₂:**5b** in blue. Assigned spin systems are labelled by the individual cross peaks for the BcII:Zn₂ peaks only.

III.3 ¹H-¹⁵N HSQC spectra

Figure S3. Superposition of ${}^{1}\text{H}{-}{}^{15}\text{N}$ HSQC spectra of BcII:Zn₂ in the absence of inhibitors (black), in the presence of **5a** (red) and in the presence of **5b** (blue). The resonance assignments for the most affected backbone, side chain amide and tryptophan indole NH resonances during inhibitor binding are shown.