Synthesis of 3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes by Cyclization of 1,3-Bis(Silyl Enol Ethers) with Quinazolines

Vahuni Karapetyan,^a Satenik Mkrtchyan,^a Andreas Schmidt,^a Jörg-Peter Gütlein,^a Alexander Villinger,^a Helmut Reinke,^a Haijun Jiao,^b Christine Fischer,^b and Peter Langer^{*a,b}

Supporting Information

10 Contents:

Page 1: Experimental details

Page 23: Electronic Supplementary Materials

15

Experimental Section

Computational details: All structures were optimized at the B3LYP/6-31G(d)¹⁶ level of density ²⁰ functional theory. All optimized structures were characterized by frequency calculation as energy minimums without imaginary frequencies (NImag = 0) or transition states with only one imaginary frequency (NImag = 1) at the same level of theory.¹⁷ The thermal corrections to Gibbs free energies at 298 K at B3LYP/6–31G* from the frequency calculations have been added to the total electronic energies for analyzing the selectivity, which has been estimated on the basis of the relationship of $\Delta\Delta G$ ²⁵ = $-RT\ln K$, in which $\Delta\Delta G$ is the difference of the Gibbs free energy, and *K* presents the considered equilibrium constant of the two competing reactions. All calculations have been carried out by using the Gaussian 03 program package.¹⁸

General. Chemical shifts of the ¹H and ¹³C NMR are reported in parts per million using the solvent internal standard (chloroform, 7.26 and 77.0 ppm, respectively). Infrared spectra were recorded on a ³⁰ FTIR spectrometer. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV),

chemical ionization (CI, isobutane) or electrospray ionization (ESI). Melting points are uncorrected. Analytical thin layer chromatography was performed on 0.20 mm 60 A silica gel plates. Column chromatography was performed using 60 A silica gel (60 – 200 mesh). All cyclization reactions were carried out in Schlenk tubes under an argon atmosphere. The bis(silyl enol ethers) were prepared as described in the literature. Crystallographic data were collected on a Bruker X8Apex with Mo_{Kα} radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods using SHELXS-97 and refined against F^2 on all data by fullmatrix least-squares with SHELXL-97. All non-hydrogen atoms were refined anisotropically, all hydrogen atoms were refined in the model at geometrically calculated positions and refined using a riding model.

¹⁰ **General procedure for the synthesis of substituted quinazolines 3.** To a solution of aniline **1** (10.0 mmol) in THF (100 mL) were added triethylamine (20.0 mmol) and ethyl chloroformate (20.0 mmol). The solution was stirred for 1 h at 20 °C, filtered and concentrated in vacuo. To the residue was added ethyl acetate (100 mL) and the solution was washed with water (2 x 100 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. To the residue was added TFA (70 mL). Hexamethylenetetramine (HMTA) (9.800 g, 70.0 mmol) was added and the solution was heated under reflux for 1 h. To the solution was added hydrochloric acid (4 M, 400 mL) and the solution was filtered and concentrated in vacuo. To the residue was added a 1:1-mixture of water and ethanol (600 mL). To the solution was added KOH (66.60 g) and K₃Fe(CN)₆ (25.00 g) and the solution was heated under reflux for 4 h. Water (600 mL) was added and the solution was extracted ²⁰ with toluene (5 x 100 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was added and the solution was heated under reflux for 4 h. Water (600 mL) was added and the solution was extracted ²⁰ with toluene (5 x 100 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane \rightarrow heptane-EtOAc = 2:1).

6-Ethylquinazoline (3d). Starting with 4-ethylaniline (1.212 g, 10.0 mmol), triethylamine (2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF (100 mL) and with ²⁵ hexamethylenetetramine (9.800 g, 70.0 mmol) in TFA (70 mL), **3d** was obtained as a slightly brownish oil (0.255 g, 21%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.30$ (t, ³*J* = 7.5 Hz, 3H, CH₃), 2.82 (q, ³*J* = 7.5 Hz, 2H, CH₂), 7.64 (d, ⁴*J* = 1.0 Hz, 1H, Hetar), 7.73 (dd, ³*J* = 8.8 Hz, ⁴*J* = 1.9 Hz, 1H, Hetar), 7.92 (d, ³*J* = 8.8 Hz, 1H, Hetar), 9.22 (s, 1H, NCH), 9.28 (s, 1H, NCH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 15.0$ (CH₃), 28.8 (CH₂), 124.3, 128.0, 135.4 (CH_{Hetar}), 125.1, 144.2, 148.7 (C_{Hetar}), 154.5, 159.5 ³⁰ (NCH_{Hetar}). IR (neat, cm⁻¹): $\tilde{\nu} = 3430$ (br, w), 2967 (m), 2932 (m), 2873 (w), 1662 (w), 1626 (w), 1573 (s), 1495 (m), 1457 (m), 1410 (w), 1380 (m), 1309 (w), 1148 (m), 1075 (w), 842 (m), 644 (m). MS

(EI, 70 eV): m/z (%) = 158 (M⁺, 68), 143 (100), 130 (6), 116 (11), 103 (8), 89 (12), 77 (6), 63 (7). HRMS (EI): Calcd for C₁₀H₁₀N₂ (M⁺) 158.08385, found 158.084054.

6-Isopropylquinazoline (3e). Starting with 4-isopropylaniline (1.352 g, 10.0 mmol), triethylamine (2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF (100 mL) and with ⁵ hexamethylenetetramine (9.800 g, 70.0 mmol) in TFA (70 mL), **3e** was obtained as brownish oil (0.380 g, 35%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.33$ (d, ³*J* = 6.9 Hz, 6H, CH(C*H*₃)₂), 3.11 (sept, ³*J* = 6.9 Hz, 1H, C*H*(CH₃)₂), 7.69 (d, ⁴*J* = 1.9 Hz, 1H, Hetar), 7.82 (dd, ³*J* = 8.8 Hz, ⁴*J* = 2.1 Hz, 1H, Hetar), 7.96 (d, ³*J* = 8.8 Hz, 1H, Hetar), 9.25 (s, 1H, NCH), 9.33 (s, 1H, NCH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 23.6$ (CH(CH₃)₂), 34.1 (CH(CH₃)₂), 123.0, 128.2, 134.2 (CH_{Hetar}), 125.2, 148.8, 148.9 (C_{Hetar}), 154.7, 159.7 (NCH_{Hetar}). IR (neat, cm⁻¹): $\tilde{v} = 3439$ (br, w), 3039 (w), 3017 (w), 2962 (s), 2929 (m), 2871 (m), 1683 (w), 1663 (w), 1626 (m), 1575 (s), 1495 (s), 1460 (m), 1411 (w), 1379 (s), 1318 (w), 1311 (w), 1184 (m), 1150 (m), 1070 (m), 1043 (w), 930 (m), 842 (s), 644 (m), 560 (m). MS (EI, 70 eV): *m/z* (%) = 172 (M⁺, 46), 157 (100), 130 (33), 103 (17), 77 (11). HRMS (EI): Calcd for C₁₁H₁₂N₂ (M⁺) 172.09950, found 172.099493.

6-*tert***-Butylquinazoline (3f).** Starting with 4-*tert*-butylaniline (1.500 g, 10.0 mmol), triethylamine (2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF (100 mL) and with hexamethylenetetramine (9.800 g, 70.0 mmol) in TFA (70 mL), **3f** was obtained as a red oil (0.540 g, 30%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.41$ (s, 9H, C(CH₃)₃), 7.81 (d, ³*J* = 2.1 Hz, 1H, Hetar), 7.98 ²⁰ (s, 1H, Hetar), 8.00 (d, ³*J* = 2.1 Hz, 1H, Hetar), 9.26 (s, 1H, NCH), 9.34 (s, 1H, NCH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 31.0$ (C(*C*H₃)₃), 35.1 (*C*(CH₃)₃), 121.9, 127.9, 133.2 (CH_{Hetar}), 124.9, 148.6, 151.1 (C_{Hetar}), (154.8, 160.0 NCH_{Hetar}). IR (neat, cm⁻¹): $\tilde{v} = 3432$ (br, w), 3040 (w), 2964 (s), 2910 (m), 2871 (m), 1663 (w), 1625 (m), 1576 (s), 1496 (s), 1465 (m), 1396 (m), 1378 (s), 1370 (s), 1314 (m), 1256 (w), 1213 (m), 1183 (m), 1154 (m), 1074 (m), 931 (m), 891 (m), 843 (s), 644 (m), 561 (s). MS ²⁵ (EI, 70 eV): *m/z* (%) = 186 (M⁺, 31), 171 (100), 143 (27), 131 (8), 115 (11). HRMS (EI): Calcd for C₁₂H₁₄N₂ (M⁺) 186.11515, found 186.115190.

6-Hexylquinazoline (3g). Starting with 4-hexylaniline (1.773 g, 10.0 mmol), triethylamine (2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF (100 mL) and with hexamethylenetetramine (9.800 g, 70.00 mmol) in TFA (70 mL) **3g** was obtained as red oil (0.718 g, 30 30%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.85$ (t, $^{3}J = 7.0$ Hz, 3H, CH₃), 1.27 - 1.34 (m, 6H, (CH₂)₃CH₃), 1.68 (m, 2H, CCH₂CH₂), 2.79 (t, $^{3}J = 7.6$ Hz, 2H, CCH₂), 7.65 (d, $^{4}J = 1.0$ Hz, 1H,

Hetar), 7.74 (dd, ${}^{3}J = 8.7$ Hz, ${}^{4}J = 1.8$ Hz, 1H, Hetar), 7.94 (d, ${}^{3}J = 8.7$ Hz, 1H, Hetar), 9.25 (s, 1H, NCH), 9.31 (s, 1H, NCH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 14.0$ (CH₃), 22.5, 28.8, 31.0, 31.6, 35.9 (CH₂), 125.1, 128.1, 135.8 (CH_{Hetar}), 135.8, 143.1, 148.8 (C_{Hetar}), 154.6, 159.6 (NCH_{Hetar}). IR (neat, cm⁻¹): $\tilde{\nu} = 3038$ (w), 3016 (w), 2956 (s), 2928 (s), 2857 (s), 1668 (w), 1625 (m), 1573 (s), 1495 (s), 1465 (m), 1379 (s), 1312 (m), 1147 (m), 1075 (m), 929 (m), 839 (s), 644 (m), 565 (m). MS (EI, 70 eV): m/z (%) = 214 (M⁺, 32), 144 (100), 116 (11), 89 (11). HRMS (EI): Calcd for C₁₄H₁₈N₂ (M⁺) 214.14645, found 214.146250.

7,8-Dihydro-6*H***-cyclopenta[***g***]quinazoline (3h). Starting with 5-aminoindane (1.330 g, 10.0 mmol), triethylamine (2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF (100 mL) and with hexamethylenetetramine (9.800 g, 70.0 mmol) in TFA (70 mL), 3h** was obtained as a slightly yellow solid (0.910 g, 54%); mp 97 – 98 °C. ¹H NMR (250 MHz, CDCl₃): δ = 2.15 (m, 2H, CH₂CH₂CH₂), 3.08 (m, 4H, CH₂CH₂CH₂), 7.65, 7.79 (2s, 2H, Hetar), 9.18 (s, 1H, NCH), 9.23 (s, 1H, NCH). ¹³C NMR (250 MHz, CDCl₃): δ = 25.9 (CH₂CH₂CH₂), 32.4, 33.2 (CH₂CH₂CH₂), 121.0, 122.5 (CH_{Hetar}) 124.4, 145.7, 153.0, 149.8 (C_{Hetar}), 154.4, 159.1 (NCH_{Hetar}). IR (KBr, cm⁻¹): $\tilde{\nu}$ = 3018 (w), 12976 (w), 2954 (m), 2910 (m), 2873 (w), 1653 (w), 1626 (m), 1570 (m), 1467 (m), 1421 (m), 1374 (m), 1357 (m), 1314 (w), 1281 (w), 1203 (w), 1155 (w), 1087 (w), 1064 (w), 1039 (w), 937 (m), 871 (m). MS (EI, 70 eV): *m/z* (%) = 170 (M⁺, 100), 142 (17), 115 (46), 89 (8). HRMS (EI): Calcd for C₁₁H₁₀N₂ (M⁺) 170.08385, found 170.083376.

6,7-Dimethylquinazoline (3i). Starting with 3,4-dimethylaniline (1.210 g, 10.0 mmol), triethylamine (2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF (100 mL) and with hexamethylenetetramine (9.800 g, 70.0 mmol) in TFA (70 mL) **3i** was obtained as a red oil (0.550 g, 35%). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.45$ (s, 3H, CH₃), 2.48 (s, 3H, CH₃), 7.62, 7.77 (2s, 2H, Hetar), 9.20 (s, 1H, NCH), 9.23 (s, 1H, NCH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.1$, 20.9 (CH₃), 123.9, 126.1(d) (CH_{Hetar}), 127.5, 138.2, 145.4, 149.2 (C_{Hetar}), 154.6, 158.8 (NCH_{Hetar}). IR (neat, cm⁻¹): $\tilde{v} = 3253$ (w), 3015 (w), 2974 (m), 2944 (m), 2923 (m), 2872 (w), 1671 (s), 1627 (m), 1576 (s), 1489 (s), 1455 (m), 1406 (w), 1370 (m), 1352 (w), 1320 (w), 1261 (w), 1215 (w), 1178 (w), 1112 (w), 1077 (w), 1025 (m), 1003 (w). MS (EI, 70 eV): *m/z* (%) = 158 (M⁺, 100), 143 (25), 131 (14), 104 (31). HRMS (EI): Calcd for C₁₀H₁₀N₂ (M⁺) 158.08385, found 158.083300.

General procedure for the reaction of 1,3-bis(silyl enol ethers) with quinazolines. To a solution of ³⁰ quinazoline **20** (4.0 mmol) in CH₂Cl₂ (40 mL) were added at 0 °C the 1,3-bis(silyl enol ether) (5.6 mmol) and the chloroformate (16.0 mmol). The solution was stirred for 2 h at 0 °C and for 12 h at 20 °C. The solvent was removed in vacuo. The residue was purified by column chromatography (silica gel, heptane \rightarrow heptane-EtOAc = 2:1).

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]**trideca-2**(7),**3**,**5**,10-tetraene-8,10,13-tricarboxylic acid ⁵ trimethyl ester (5a). Starting with quinazoline **3a** (0.521 g, 4.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene **4a** (1.460 g, 5.6 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 mL), **5a** was obtained as a colourless solid (0.750 g, 52%); mp. 133 – 135 °C. ¹H NMR (250 MHz, CDCl₃): δ = 2.41 (dd, ²*J* = 17.5 Hz, ³*J* = 1.5 Hz, 1H, CH₂), 2.99 (br dd, 1H, CH₂), 3.76, 3.80 (2s, 6H, OCH₃), 3.87 (s, 3H, OCH₃), 5.40 (br, 1H, NCHCH₂), 7.03 – 7.13 (m, ¹⁰ 2H, Ar), 7.20 – 7.26 (m, 1H, Ar), 7.38 (br, 1H, NCHN), 7.75 (br, 1H, Ar), 12.26 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 38.0 (CH₂), 48.7 (br, NCHCH₂), 52.0, 53.2, 53.3 (OCH₃), 58.9 (NCH), 98.0 (CCO₂CH₃), 124.2, 124.4, 126.8, 127.6 (CH_{Ar}), 126.3, 134.4 (br) (C_{Ar}), 153.4, 154.0 (NCOO), 170.6 (COO), 173.2 (br, COH). IR (Nujol, cm⁻¹): \tilde{v} = 3080 (w), 1707 (s), 1652 (m), 1613 (m), 1494 (m), 1335 (m), 1287 (s), 1263 (m), 1230 (s), 1196 (m), 1142 (m), 1111 (m), 1064 (m), 1039 (m), 1008 (m), 778 (m). MS (EI, 70 eV): *m/z* (%) = 362 (M⁺, 10), 303 (100), 271 (36), 212 (23), 180 (21), 239 (13). Anal. Calcd for C₁₇H₁₈N₂O₇ (362.33): C, 56.35; H, 5.01; N, 7.73. Found: C, 56.35; H, 5.13; N, 7.46.

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-tricarboxylic acid-10-ethyl ester-8,13-dimethyl ester (5b). Starting with quinazoline 3a (0.521 g, 4.0 mmol), 1-ethoxy-²⁰ 1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4b (1.540 g, 5.6 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 mL), 5b was obtained as a colourless solid (0.698 g, 46%); mp. 122 – 123 °C. ¹H NMR (250 MHz, CDCl₃): δ = 1.33 (t, ³*J* = 7.2 Hz, 3H, CH₂C*H*₃), 2.40 (dd, ²*J* = 17.7 Hz, ³*J* = 1.5 Hz, 1H, NCHC*H*₂), 2.97 (br d, 1H, NCHC*H*₂), 3.75, 3.86 (2s, 6H, OCH₃), 4.23 (m, 2H, C*H*₂CH₃), 5.39 (br, 1H, NC*H*CH₂), 7.06 – 7.12 (m, 2H, Ar), 7.19 – 7.26 (m, 1H, Ar), 7.37 (br, 1H, NCHN), 7.78 (br, 1H, Ar), 12.34 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.0 (CH₂CH₃), 38.2 (NCHCH₂), 48.9 (br, NCHCH₂), 53.2, 53.2 (OCH₃), 58.8 (NCHN), 61.0 (OCH₂), 98.2 (CCOO), 124.2, 124.3, 126.3, 127.7 (CH_{Ar}), 126.8, 134.6 (C_{Ar}), 153.5, 154.0 (NCOO), 170.2 (COO), 172.7 (COH). IR (cm⁻¹, Nujol): $\tilde{\nu}$ = 3077 (w), 1719 (s), 1708 (s), 1646 (m), 1615 (m), 1495 (m), 1334 (s), 1285 (s), 1263 (s), 1230 (s), 1194 (m), 1140 (m), 1116 (m), 1064 (m), 1038 (m), 1008 (m), 775 (m), 767 (m), ³⁰ 750 (m). MS (CI pos.): *m/z* (%) = 377 ([M+H]⁺). HRMS (CI neg., Isobutane): Calcd for C₁₈H₂₀N₂O₇ ([M–H]⁻) 375.1198, found 375.1181.

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]**trideca-2**(7),3,5,10-tetraene-8,10,13-tricarboxylic acid-**10-(2-methoxyethyl)ester-8,13-dimethyl** ester (5c). Starting with quinazoline **3a** (0.521 g, 4.0 mmol), 1-(2-methoxyethoxy)-1,3-bis(trimethylsilyloxy)-buta-1,3-diene **4c** (1.705 g, 5.6 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 mL), **5c** was obtained as a colourless solid (0.859 g, 53%); mp. 116 – 118 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.40$ (dd, ²*J* = 17.7 Hz, ³*J* = 1.3 Hz, 1H, NCHC*H*₂), 2.97 (br d, ²*J* = 17.7 Hz, 1H, NCHC*H*₂), 3.38 (s, 3H, CH₂OC*H*₃), 3.62 (m, 2H, C*H*₂OCH₃), 3.74, 3.86 (2s, 6H, OCH₃), 4.23 – 4.42 (m, 2H, OCH₂), 5.39 (br, 1H, NCHCH₂), 7.03 – 7.08 (m, 2H, Ar), 7.10 – 7.24 (m, 1H, Ar), 7.39 (br, 1H, NCHN), 7.74 (br, 1H, Ar), 12.21 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 38.1$ (br, NCHCH₂), 48.9 (br, NCHCH₂), 53.1, 53.1 (COOCH₃), 58.9 (CH₂OCH₃), 63.7 (CH₂OCH₃), 70.0 (OCH₂), 98.0 (CCOO), 124.2 (br), 124.4, 126.3 (br), 127.6 (CH_{Ar}), 126.7, 134.5 (br) (C_{Ar}), 153.4, 153.9 (br) (NCOO), 170.0 (CCOO), 173.4 (br, COH). IR (Nujol, cm⁻¹): $\tilde{\nu} = 3079$ (w), 1723 (s), 1708 (s), 1656 (m), 1618 (m), 1337 (m), 1289 (s), 1223 (s), 1180 (w), 1132 (m), 1067 (m), 1037 (w), 1010 (m), 767 (m). MS (EI, 70 eV): *m/z* (%) = 406 (M⁺, 8), 347 (100), 299 (7), 271 (30), 256 (15), 180 (13), 128 (9). Anal. Calcd for C₁₉H₂₂N₂O₈ (406.39): C, 56.15; H, 5.46; N, 6.89. Found: C, 56.48; H, 5.57; N, 6.50.

10-Acetyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]**trideca-2,4,6,10-tetraene-8,13-dicarboxylic acid dimethyl ester (5d).** Starting with quinazoline **3a** (0.521 g, 4.0 mmol), 2,4-bis(trimethylsilyloxy)penta-1,3-diene **4d** (1.464 g, 6.0 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 mL), **5d** was obtained as a yellow solid (0.867 g, 63%); mp. 49 – 50 °C. ¹H NMR (250 MHz, ²⁰ CDCl₃): δ = 2.35 (s, 3H, COCH₃), 2.50 (dd, ²*J* = 17.8 Hz, ³*J* = 1.5 Hz, 1H, CH₂), 3.01 (dd, ²*J* = 17.8 Hz, ³*J* = 5.4 Hz, 1H, CH₂), 3.78 (s, 3H, CO₂CH₃), 3.88 (s, 3H, CO₂CH₃), 5.42 (br s, 1H, NC*H*CH₂), 7.06–7.27 (m, 3H, Ar), 7.42 (s, 1H, NCHN), 7.49–7.53 (m, 1H, Ar), 15.28 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 24.4 (COCH₃), 40.6 (CH₂), 48.6 (NCHCH₂), 53.3, 53.6 (CO₂CH₃), 60.3 (NCHN), 107.2 (CCOCH₃), 125.0, 125.5, 126.4, 127.6 (CH_{Ar}), 127.2, 133.8 (C_{Ar}), 153.4, 154.5 ²⁵ (NCOO), 181.6 (COH), 196.5 (COCH₃). IR (Nujol, cm⁻¹): $\tilde{\nu}$ = 1717 (s), 1608 (m), 1583 (m), 1492 (m) 1338 (m), 1283 (s), 1268 (s), 1233 (m), 1193 (m), 1132 (m), 1102 (m), 1017 (m), 968 (m), 765 (m), 735 (m). MS (EI, 70 eV): *m/z* (%) = 346 (M⁺, 14), 287 (100), 255 (41), 237 (55), 207 (50). HRMS (CI pos., Isobutane): Calcd for C₁₇H₁₈N₂O₆ (M⁺): 346.11594, found 346.11550.

10-Acetyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]**trideca-2(7),3,5,10-tetraene-8,13-dicarboxylic** ³⁰ **acid dibenzyl ester (5d').** Starting with quinazoline **3a** (0.521 g, 4.00 mmol), 2,4bis(trimethylsilyloxy)penta-1,3-diene **4d** (1.174 g, 4.80 mmol) and benzyl chloroformate (2.050 g, 12.00 mmol) in CH₂Cl₂ (40 ml), **5d'** was obtained as yellowish, highly viscous oil (0.755 g, 38%). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.23$ (s, 3H, COCH₃), 2.49, 2.50 (d, ²*J* = 17.7 Hz, 1H, NCHC*H*₂, rotamers), 2.99 (br d, ²*J* = 17.7 Hz, 1H, NCHC*H*₂), 5.10 – 5.29 (m, 4H, OCH₂), 5.45 (br, 1H, NCHCH₂), 7.05 – 7.24 (m, 4H, Ar), 7.35 (m, 9H, Ar, NCHN), 7.53 (t, ³*J* = 8.4 Hz, 2H, Ar). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 24.5$ (COCH₃), 40.7 (NCHCH₂), 48.6 (br), 48.8 (br) (NCHCH₂, rotamers), 60.4 (br, NCHN), 67.9, 68.5 (OCH₂), 107.2 (NCHCCO), 125.1, 125.5, 126.4, 127.7, 128.2 (br), 128.2 (br), 128.4, 128.6 (CH_{Ar}), 127.2, 133.8 (br), 135.5, 135.8 (C_{Ar}), 152.8, 153.6 (NCOO), 184.7 (br, COH), 196.4 (br, COCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 3064$ (w), 3032 (w), 2952 (w), 2899 (w), 1700 (s), 1606 (m), 1583 (m), 1490 (m), 1454 (m), 1417 (m), 1382 (m), 1363 (m), 1327 (m), 1301 (m), 1262 (s), 1214 (s), 1176 (m), 1129 (m), 1098 (m), 1050 (m), 1017 (m), 1001 (m), 733 (s). MS (EI, 70 eV): *m/z* (%) = 498 (M⁺, 3), 390 (3), 363 (36), 319 (15), 228 (4), 91 (100), 57 (17). HRMS (EI): Calcd for C₂₉H₂₆N₂O₈ (M⁺) 498.17854, found 498.179402.

10-(2,2-Dimethyl-propionyl)-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-

- tetraene-8,13-dicarboxylic acid dimethyl ester (5e). Starting with quinazoline 3a (0.261 g, ¹⁵ 2.0 mmol), 5,5-dimethyl-2,4-bis(trimethylsilyloxy)-hexa-1,3-diene 4e (0.802 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol) in CH₂Cl₂ (20 mL), 5e was obtained after HPLC (heptane/EtOAc = 2:1) as a colourless solid (0.092 g, 12%); mp. $126 - 127 \degree C$. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.21$ (s, 9H, C₄H₉), 2.54 (m, ²J = 14.3 Hz, 1H, CH₂, rotamers), 3.27 (br d, ²J = 14.3 Hz, 1H, CH₂, rotamers), 3.78, 3.81 (s, 3H, COOCH₃, rotamers), 3.86 (s, 3H, COOCH₃), 4.18, 4.21 (br, 1H, ²⁰ COCHCO, rotamers), 5.59, 5.69 (br, 1H, NCHCH₂, rotamers), 6.81, 6.92 (br, 1H, Ar, rotamers), 7.04 – 7.24 (m. 3H, Ar), 7.91, 8.04 (br. 1H, NCHN, rotamers), ¹³C NMR (75.5 MHz, CDCl₃); $\delta = 25.6$ (C(CH₃)₃), 27.0, 27.1 (COCHCO, rotamers), 46.6 (C(CH₃)₃), 47.8, 48.0 (CH₂, rotamers), 51.1, 51.5 (NCHCH₂, rotamers), 53.5 (OCH₃), 62.1 (OCH₃), 64.1, 64.5 (NCHN, rotamers), 122.0, 124.3, 124.6, 126.3, 126.6, 128.4, 128.5 (CH_{Ar}, rotamers), 125.2, 125.5, 132.8, 133.2 (C_{Ar}, rotamers), 153.1, 153.4, $_{25}$ 153.7, 154.0 (NCOO, rotamers), 201.7, 206.9. 207.3 (CO, rotamers). IR (KBr, cm⁻¹): $\tilde{v} = 2968$ (m), 2933 (w), 1719 (s), 1693 (s), 1488 (m), 1453 (s), 1422 (m), 1377 (m), 1345 (m), 1309 (s), 1277 (m), 1251 (m), 1231 (m), 1215 (m), 1195 (m), 1130 (m), 1060 (m), 1040 (m), 1026 (m), 766 (m), MS (EI, 70 eV): m/z (%) = 388 (M⁺, 5), 331 (100), 299 (29), 245 (9), 213 (10), 189 (32), 145 (16), 128 (17). Anal. Calcd for C₂₀H₂₄N₂O₆ (388.41): C, 61.84; H, 6.23; N, 7.21. Found: C, 62.04; H, 6.48; N, 6.98.
- ³⁰ **5-Bromo-11-hydroxy-8,13-diaza-tricyclo**[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13tricarboxylic acid-10-(2-methoxy-ethyl)ester-8,13-dimethyl ester (5g). Starting with 7-

bromoquinazoline **3b** (0.418 g, 2.0 mmol), 1-(2-methoxy-ethoxy)-1,3-bis(trimethylsilyloxy)-buta-1,3diene **4c** (0.853 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol) in CH₂Cl₂ (20 mL), **5g** was obtained as a colourless solid (0.220 g, 23%); mp. 114 – 117 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 2.40$ (dd, ²*J* = 17.7 Hz, ³*J* = 1.5 Hz, 1H NCHC*H*₂), 2.98 (dd, ²*J* = 17.7 Hz, ³*J* = 5.0 Hz, 1H, NCHC*H*₂), 3.38 (s, 3H, CH₂OC*H*₃), 3.62 (m, 2H, C*H*₂OCH₃), 3.75, 3.87 (2s, 6H, COOCH₃), 4.33 (m, 2H, COOCH₂), 5.36 (br, 1H, NC*H*CH₂), 7.20 (d, ³*J* = 2.1 Hz, 1H, Ar), 7.30 – 7.37 (m, 2H, Ar), 7.67 (br, 1H, NCHN), 12.23 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 38.0$ (NCHC*H*₂), 48.6 (br, NCHCH₂), 53.3 (2 COOCH₃), 58.8 (br, NCHN), 58.9 CH₂OCH₃), 63.8 (CH₂OCH₃), 70.1 (COOCH₂), 97.9 (CCOO), 117.0 (C_ArBr), 126.1, 129.0, 130.8 (CH_Ar), 128.7, 133.9 (C_Ar), 153.4, 153.7 (NCOO), 169.9 (CCOO), 173.1 (br, COH). IR (KBr, cm⁻¹): $\tilde{\nu} = 2997$ (w), 2954 (w), 2909 (w), 1725 (s), 1705 (s), 1652 (m), 1610 (m), 1484 (m), 1456 (s), 1418 (m), 1378 (m), 1328 (m), 1287 (s), 1230 (m), 1178 (m), 1119 (m), 1067 (m), 1014 (m), 845 (m), 830 (m), 769 (m). MS (EI, 70 eV): *m/z* (%) = 486 (M⁺, ⁸¹Br, 4), 484 (M⁺, ⁷⁹Br, 4), 427 (⁸¹Br, 40), 425 (⁷⁹Br, 41), 351 (⁸¹Br, 15), 349 (⁷⁹Br, 15), 256 (18), 180 (19), 149 (24). HRMS (EI): Calcd for C₁₉H₂₁BrN₂O₈ (M⁺, ⁷⁹Br) 484.04758, found 484.047931.

15 10-Acetyl-5-bromo-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2,4,6,10-tetraene-8,13-

dicarboxylic acid dimethyl ester (5h). Starting with 7-bromo-quinazoline 3b (0.418 g, 2.0 mmol), 2,4-bis(trimethylsilyloxy)penta-1,3-diene 4d (0.685 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol) in CH₂Cl₂ (20 mL), 5h was obtained as a colourless solid (0.314 g, 37%); mp. 168 – 171 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 2.35$ (s, 3H, COCH₃), 2.50 (dd, ²*J* = 17.8 Hz, ³*J* = 1.4 Hz, ²⁰ 1H, CH₂), 3.01 (dd, ²*J* = 17.8 Hz, ³*J* = 5.3 Hz, 1H, CH₂), 3.78 (s, 3H, CO₂CH₃), 3.88 (s, 3H, CO₂CH₃), 5.39 (br s, 1H, NCHCH₂), 7.22 (d, ³*J* = 2.1 Hz, 1H, Ar), 7.39 (br s, 1H, NCHN), 7.29–7.47 (m, 2H, Ar), 15.28 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 24.5$ (COCH₃), 40.4 (CH₂), 48.4 (NCHCH₂), 53.4, 53.8 (CO₂CH₃), 60.4 (NCHN), 107.0 (CCOCH₃), 118.0 (CBr), 127.1, 129.1, 130.8 (CH_{Ar}), 129.2, 133.1 (C_{Ar}), 153.3, 154.1 (NCOO), 184.2 (COH), 196.5 (COCH₃). IR (KBr, cm⁻¹): $\tilde{\nu} = 2954$ (w), 1723 (s), 1701 (s), 1616 (m), 1490 (m), 1455 (s), 1418 (m), 1370 (s), 1280 (s), 1230 (m), 1193 (w), 1139 (m), 1109 (m), 1044 (m), 1005 (m), 769 (m). MS (EI, 70 eV): *m/z* (%) = 426 (M⁺, ⁸¹Br, 17), 424 (M⁺, ⁷⁹Br, 17), 367 (99), 365 (100), 335 (20), 333 (20), 196 (54). Anal. Calcd for C₁₇H₁₇BrN₂O₇ (425.23): C, 48.02; H, 4.03; N, 6.59. Found: C, 47.67; H, 4.11; N, 6.24.

11-Hydroxy-4-methyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

³⁰ tricarboxylic acid trimethyl ester (5i). Starting with 6-methylquinazoline 3c (0.462 g, 3.2 mmol), 1methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4a (1.170 g, 4.5 mmol) and methyl chloroformate (1.210 g, 12.8 mmol) in CH₂Cl₂ (32 mL), **5i** was obtained as a yellow solid (0.522 g, 43%); mp. 155 – 156 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.28$ (s, 3H, CCH₃), 2.40 (dd, ²*J* = 17.6 Hz, ³*J* = 1.3 Hz, 1H, CH₂), 2.96 (dd, ²*J* = 17.6 Hz, ³*J* = 4.6 Hz, 1H, CH₂), 3.75 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 5.34 (br, 1H, NC*H*CH₂), 6.85 (s, 1H, Ar), 7.03 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.4 Hz, 1H, Ar), 7.35 (br, 1H, NCHN), 7.61 (br, 1H, Ar), 12.26 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.7$ (CCH₃), 38.1 (CH₂), 48.6, 48.9 (NCHCH₂, rotamers), 52.0, 53.1, 53.2 (OCH₃), 58.8 (NCHN), 98.0 (NCHCCO), 124.3, 126.6 (br), 128.5 (CH_{Ar}), 126.6 (br), 131.8, 133.9 (C_{Ar}), 153.5, 154.1 (NCOO), 170.6 (COOCH₃), 173.2 (br, COH). IR (KBr, cm⁻¹): $\tilde{v} = 3068$ (w), 3000 (w), 2954 (w), 2918 (w), 2860 (w), 1702 (s), 1650 (s), 1613 (m), 1505 (m), 1456 (s), 1441 (s), 1408 (m), 1376 (s), 1362 (m), 1331 (s), 1284 (s), 1243 (s), 1224 (m), 1193 (m), 1137 (m), 1108 (m), 1070 (m), 1045 (m), 1012 (w), 775 (m). MS (EI, 70 eV): *m/z* (%) = 376 (M⁺, 13), 317 (100), 285 (63), 253 (22), 212 (37), 180 (31), 84 (59), 49 (54). HRMS (EI): Calcd for C₁₈H₂₀N₂O₇ (M⁺) 376.12650, found 376.125661.

10-Acetyl-11-hydroxy-4-methyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,13-

dicarboxylic acid dimethyl ester (5j). Starting with 6-methylquinazoline 3c (0.160 g, 1.1 mmol), 2,4-¹⁵ bis(trimethylsilyloxy)penta-1,3-diene 4d (0.377 g, 1.5 mmol) and methyl chloroformate (0.416 g, 4.4 mmol) in CH₂Cl₂ (11 mL), 5j was obtained as a colourless solid (0.121 g, 31%); mp. 136 – 138 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.29$, 2.33 (CCH₃, COCH₃), 2.49 (dd, ²*J* = 17.7 Hz, ³*J* = 1.3 Hz, 1H, CH₂), 2.98 (br dd, ²*J* = 17.7 Hz, ³*J* = 5.1 Hz, 1H, CH₂), 3.76 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 5.35 (br, 1H, NC*H*CH₂), 6.86 (s, 1H, Ar), 7.02 (d, ³*J* = 8.6 Hz, 1H, Ar), 7.38 (br, 2H, Ar, NCHN), 16.34 (s, ²⁰ 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.8$, 24.4 (C_{Ar}CH₃, COCH₃), 40.7 (CH₂), 48.6 (br, NCHCH₂), 53.3, 53.5 (OCH₃), 60.4 (br, NCHN), 107.3 (CCO), 125.2, 126.7, 126.7, 128.5 (CH_{Ar}, rotamers), 127.0, 131.2, 134.8 (C_{Ar}), 153.5, 154.5 (NCOO), 184.7 (br, COH), 196.4 (CCO). IR (KBr, cm⁻¹): $\tilde{\nu} = 3059$ (w), 3000 (w), 2955 (w), 2918 (w), 2858 (w), 1726 (s), 1703 (s), 1617 (m), 1505 (m), 1455 (s), 1411 (s), 1371 (s), 1323 (m), 1301 (m), 1279 (s), 1232 (m), 1192 (m), 1158 (w), 1138 (m), ²³ 1110 (m), 1047 (m), 1008 (w), 824 (m), 771 (m), 735 (m). MS (EI, 70 eV): *m/z* (%) = 360 (M⁺, 12), 328 (5), 313 (5), 301 (100), 283 (6), 269 (37), 251 (6), 196 (26), 130 (9). HRMS (EI): Calcd for C₁₈H₂₀N₂O₆ (M⁺) 360.13159, found 360.130603.

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid trimethyl ester (5k). Starting with 6-ethylquinazoline 3d (0.316 g, 2.0 mmol), 1-³⁰ methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4a (0.728 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol), 5k was obtained as a slightly yellow solid (0.330 g, 43%); mp. 137 – 139 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.20$ (t ³*J* = 7.6 Hz, 3H, CH₂CH₃), 2.40 (dd, ²*J* = 17.6 Hz, ³*J* = 1.7 Hz, 1H NCHCH₂), 2.58 (q, ³*J* = 7.6 Hz, 2H, CH₂CH₃), 2.97 (dd, ²*J* = 17.6 Hz, ³*J* = 4.7 Hz, 1H, NCHCH₂), 3.75, 3.79, 3.86 (3s, 9H, OCH₃), 5.36 (br, 1H, NCHCH₂), 6.87 (s, 1H, Ar), 7.06 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.7 Hz, 1H, Ar), 7.36 (br, 1H, NCHN), 7.64 (br, 1H, Ar), 12.27 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 15.4$ (CH₂CH₃), 28.1 (CH₂CH₃), 38.1 (br, NCHCH₂), 48.8 (br, NCHCH₂), 52.0, 53.1, 53.2 (3 OCH₃), 58.9 (br, NCHN), 98.0 (NCHCCO), 124.3, 125.5, 126.6 (CH_{Ar}), 127.3, 132.0 (br), 140.2 (C_{Ar}), 153.5, 154.1 (NCOO), 170.6 (CCOO), 173.3 (br, COH). IR (KBr, cm⁻¹): $\tilde{\nu} = 3073$ (w), 2962 (m), 2930 (w), 2873 (w), 2856 (w), 1721 (s), 1700 (s), 1659 (s), 1619 (m), 1500 (m), 1460 (s), 1446 (s), 1412 (s), 1379 (s), 1328 (m), 1286 (s), 1236 (s), 1196 (m), 1164 (m), 1136 (m), 1069 (m), 1047 (m), 1009 (m), 842 (m), 769 (m), 753 (m). MS (EI, 70eV): *m/z* (%) = 391 (M⁺, 100), 371 (63), 341 (20), 177 (25), 113 (17). Anal. Calcd for C₁₉H₂₂N₂O₇ (390.39): C, 58.46; H, 5.68; N, 7.18. Found: C, 58.71; H, 5.87; N, 6.64.

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

- tricarboxylic acid 10-ethyl ester 8,13-dimethyl ester (51). Starting with 6-ethyl-quinazoline 3d 15 (0.400 g, 2.5 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4b (0.971 g, 3.5 mmol) and methyl chloroformate (0.945 g, 10.0 mmol), **51** was obtained as a yellowish solid (0.379 g, 37%); mp. $127 - 130 \,^{\circ}\text{C}$. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.20$ (t, ³J = 7.6 Hz, 3H, CH₂CH₃), $\delta = 1.33$ (t, ${}^{3}J = 7.2$ Hz, 3H, CH₂CH₃), 2.40 (dd, ${}^{2}J = 17.6$ Hz, ${}^{3}J = 1.4$ Hz, 1H, NCHCH₂), 2.58 (q, ${}^{3}J = 7.6$ Hz, 2H, CH₃CH₂), 2.97 (dd, ${}^{2}J$ = 17.6 Hz, ${}^{3}J$ = 4.9 Hz, 1H, NCHCH₂), 3.75, 3.85 (2s, 6H, OCH₃), 4.23 (q, $_{20}{}^{3}J = 7.2$ Hz, 2H, CH₃CH₂O), 5.36 (br, 1H, NCHCH₂), 6.87 (br s, 1H, Ar), 7.06 (dd, $^{3}J = 8.5$ Hz, ^{2}J = 1.7 Hz, 1H, Ar), 7.36 (br, 1H, NCHN), 7.68 (br, 1H, Ar), 12.34 (s, 1H, OH). ^{13}C NMR $(75.5 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 14.03$, $15.38 (\text{CH}_2\text{CH}_3)$, $28.1 (\text{CH}_3\text{CH}_2\text{Ar})$, $38.2 (\text{br}, \text{NCHCH}_2)$, $49.0 (\text{br}, \text{NCHCH}_2)$ NCHCH₂), 53.0, 53.1 (OCH₃), 58.9 (br, NCHN), 61.0 (CH₃CH₂O), 98.2 (NCHCCO), 124.2, 125.4, 126.6 (CH_{Ar}), 127.3, 132.1 (br), 140.1 (C_{Ar}), 153.6, 154.1 (NCOO), 170.3 (CCOO), 173.0 (COH). IR $_{25}$ (KBr, cm⁻¹): $\tilde{v} = 3069$ (w), 2993 (w), 2962 (m), 2930 (w), 2874 (w), 1708 (s), 1655 (s), 1618 (m), 1503 (m), 1455 (s), 1413 (m), 1381 (s), 1327 (m), 1286 (s), 1262 (m), 1236 (s), 1220 (m), 1193 (m), 1171 (m), 1151 (m), 1136 (m), 1105 (m), 1068 (m), 1044 (m), 1006 (m), 837 (m), 773 (m), MS (EI, 70 eV): m/z (%) = 404 (M⁺, 11), 345 (100), 299 (45), 267 (15), 226 (41), 180 (27). HRMS (EI): Calcd for C₂₀H₂₄N₂O₇ (M⁺) 404.15780, found 404.157772.
- ³⁰ 10-Acetyl-4-ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,13dicarboxylic acid dimethyl ester (5m). Starting with 6-ethylquinazoline 3d (0.255 g, 1.6 mmol), 2,4-

bis(trimethylsilyloxy)penta-1,3-diene **4d** (0.549 g, 2.2 mmol) and methyl chloroformate (0.605 g, 6.4 mmol) in CH₂Cl₂ (16 mL), **5m** was obtained as a yellow, highly viscous oil (0.154 g, 26%). NMR (300 MHz, CDCl₃): $\delta = 1.20$ (t, ${}^{3}J = 7.6$ Hz, 3H, CH₂CH₃), 2.33 (s, 3H, COCH₃), 2.50 (dd, ${}^{2}J = 17.7$ Hz, ${}^{3}J = 1.2$ Hz, 1H, NCHCH₂), 2.59 (q, ${}^{3}J = 7.6$ Hz, 2H, CH₂CH₃), 2.99 (dd, ${}^{2}J = 17.7$ Hz, ${}^{3}J = 5.1$ Hz, 1H, CH₂CH₃), 3.76 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 6.88 (s, 1H, Ar), 7.06 (dd, ${}^{3}J = 8.4$ Hz, ${}^{4}J = 1.7$ Hz, 1H, Ar), 7.40 (br, 2H, NCHN, Ar), 16.36 (s, 1H, OH). 13 C NMR (300 MHz, CDCl₃): $\delta = 15.3$ (CH₂CH₃), 24.4 (COCH₃), 28.1 (CH₂CH₃), 40.7 (NCHCH₂), 48.7 (br, NCHCH₂), 53.3, 53.5 (OCH₃), 60.4 (br, NCHN), 107.3 (NCHCCO), 125.3, 125.5, 127.3 (CH_{Ar}), 127.0, 131.4 (C_{Ar}), 141.1 (C_{Ar}CH₂), 153.5, 154.5 (NCOO), 184.7 (br, COH), 196.4 (COCH₃). IR (KBr, cm⁻¹): $\tilde{\nu} \tilde{\nu} = 3005$ (w), 2962 (m), 2932 (w), 2872 (w), 1723 (s), 1702 (s), 1602 (m), 1504 (m), 1452 (s), 1411 (m), 1371 (m), 1340 (m), 1307 (s), 1285 (s), 1234 (m), 1190 (m), 1137 (m), 1108 (m), 1048 (m), 994 (m), 969 (m), 829 (m), 776 (m), 734 (m). MS (CI pos., Isobutane): *m/z* (%) = 375 ([M+H]⁺). HRMS (CI pos., Isobutane): Calcd for C₁₉H₂₃N₂O₆ ([M+1]⁺) 375.15506, found 375.155416.

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

- tricarboxylic acid trimethyl ester (5n). Starting with 6-isopropyl-quinazoline 3e (0.626 g, 3.5 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4a (1.275 g, 4.9 mmol) and methyl chloroformate (1.323 g, 14.0 mmol), 5n was obtained as light yellow solid (0.620 g, 44%); mp. 151 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.20 (d, ³*J* = 7.0 Hz, 3H, CHC*H*₃), 1.21 (d, ³*J* = 6.9 Hz, 3H, CHC*H*₃), 2.40 (dd, ²*J* = 17.7 Hz, ³*J* = 1.1 Hz, 1H, NCHC*H*₂), 2.84 (m, 1H, C*H*(CH₃)₂), 2.97 (dd, ²*J* = 17.7 Hz, ³*J* = 4.4 Hz, ²⁰ 1H, NCHC*H*₂), 3.74, 3.79, 3.85 (3s, 9H, OC*H*₃), 5.37 (br, 1H, NCHCH₂), 6.88 (s, 1H, Ar), 7.09 (dd, ³*J* = 8.6 Hz, ⁴*J* = 1.8 Hz, 1H, Ar), 7.36 (br, 1H, NC*H*N), 7.65 (br, 1H, Ar), 12.27 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 21.8, 22.0 (CH(CH₃)₂), 31.4 (CH(CH₃)₂), 36.2 (br, NCHCH₂), 46.9 (br, NCHCH₂), 50.0, 51.1, 51.2 (OCH₃), 56.9 (br, NCHN), 96.1 (NCHCCO), 122.0, 122.3, 123.9 (CH_{Ar}), 124.5, 130.1 (br), 142.8 (C_{Ar}), 151.5, 152.1 (NCOO), 168.6 (CCOO), 171.2 (COH). IR (KBr, cm⁻¹): \tilde{v} = 2958 (m), 2931 (w), 2870 (w), 1723 (s), 1658 (s), 1618 (m), 1502 (m), 1445 (s), 1412 (m), 1378 (s), 1330 (m), 1287 (s), 1264 (s), 1240 (s), 1225 (s), 1195 (m), 1170 (m), 1135 (m), 1114 (m), 1066 (m), 1044 (m), 1009 (m), 835 (m), 768 (m). MS (EI, 70 eV): *m/z* (%) = 404 (M⁺, 12), 345 (100), 313 (44), 281 (16), 212 (50), 180 (25). HRMS (EI): Calcd for C₂₀H₂₄N₂O₇ (M⁺) 404.15780, found 404.158017.
- ³⁰ 11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13tricarboxylic acid 10-ethyl ester 8,13-dimethyl ester (50). Starting with 6-isopropylquinazoline 3e

(0.344 g, 2.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene **4b** (0.768 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol), **50** was obtained as a slightly yellow solid (0.368 g, 44%); mp. 134–136 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.20$ (d, ³*J* = 1.4 Hz, 3H, CH(C*H*₃)₂), 1.22 (d, ³*J* = 1.4 Hz, 3H, CH(C*H*₃)₂), 1.33 (t, ³*J* = 7.1 Hz, 3H, CH₃CH₂), 2.40 (dd, ²*J* = 17.6 Hz, ³*J* = 1.3 Hz, ⁵ H, NCHC*H*₂), 2.84 (m, 1H, C*H*(CH₃)₂), 2.97 (br dd, ²*J* = 17.6 Hz, ³*J* = 4.8 Hz, 1H, NCHC*H*₂), 3.74, 3.85 (2s, 6H, OCH₃), 4.22 (q, ³*J* = 7.1 Hz, 2H, OC*H*₂CH₃), 5.37 (br, 1H, NC*H*CH₂), 6.88 (br s, 1H, Ar), 7.01 (dd, ³*J* = 8.6 Hz, ²*J* = 1.8 Hz, 1H, Ar), 7.35 (br, 1H, NCHN), 7.69 (br, 1H, Ar), 12.35 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 14.0$ (CH₃CH₂), 23.8, 24.0 (CH(CH₃)₂), 33.4 (CH(CH₃)₂), 38.2 (br, NCHCH₂), 49.0 (br, NCHCH₂), 53.0, 53.1 (OCH₃), 58.9 (br, NCHN), 61.0 (OCH₂CH₃), 98.2 ¹⁰ (NCHCCO), 124.1, 125.8 (CH_{Ar}), 126.5, 132.1, 144.8, (C_{Ar}), 153.6, 154.1 (NCOO), 170.3 (CCOO), 173.0 (br, COH). IR (KBr, cm⁻¹): $\tilde{\nu} = 3048$ (w), 2957 (m), 2912 (w), 2871 (w), 1706 (s), 1658 (s), 1618 (m), 1502 (m), 1453 (s), 1402 (s), 1377 (s), 1328 (s), 1296 (s), 1260 (s), 1236 (m), 1217 (s), 1192 (m), 1181 (m), 1139 (m), 1120 (m), 1080 (m), 1062 (m), 1044 (m), 1003 (m), 834 (m), 771 (m). MS (EI, 70 eV): *m/z* (%) = 418 (M⁺, 9), 359 (100), 313 (30), 281 (10), 226 (29), 180 (17). HRMS (EI): ¹⁵ Calcd for C₂₁₁₄₂₆N₂O₇ (M⁺) 418.17345, found 418.173096.

10-Acetyl-11-hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,13dicarboxylic acid dimethyl ester (5p). Starting with 6-isopropylquinazoline 3e (0.314 g, 1.8 mmol), 2,4-bis(trimethylsilyloxy)-penta-1,3-diene 4d (0.624 g, 2.6 mmol) and methyl chloroformate (0.688 g, 7.3 mmol) in CH₂Cl₂ (18 mL), **5p** was obtained as a vellow solid (0.269 g, 38%); mp. 115 – 118 °C. $_{20}$ ¹H NMR (300 MHz, CDCl₃): $\delta = 1.21$ (d, $^{3}J = 6.9$ Hz, 3H, CH(CH₃)₂), 1.21 (d, $^{3}J = 6.9$ Hz, 3H, CH(CH₃)₂), 2.33 (s, 3H, COCH₃), 2.50 (dd, ${}^{2}J = 17.7$ Hz, ${}^{3}J = 1.3$ Hz, 1H, CH₂), 2.84 (sept, ${}^{3}J = 6.9$ Hz, 1H, CH(CH₃)₂), 2.99 (dd, ${}^{2}J = 17.7$ Hz, ${}^{3}J = 5.3$ Hz, 1H, CH₂), 3.76 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 5.38 (br, 1H, NCHCH₂), 6.89 (d, ${}^{4}J$ = 1.5 Hz, 1H, Ar), 7.09 (dd, ${}^{3}J$ = 8.6 Hz, ${}^{4}J$ = 1.9 Hz, 1H, Ar), 7.40 (br, 2H, NCHN, Ar), 16.37 (s, 1H, OH). ${}^{13}C$ NMR (75.5 MHz, CDCl₃): $_{25}\delta = 23.7, 23.9$ (CH(CH₃)₂), 24.3 (CH(CH₃)₂), 33.5 (COCH₃), 40.7 (br, CH₂), 48.7 (br, NCHCH₂), 53.2, 53.5 (OCH₃), 60.4 (br, NCHN), 107.3 (CCO), 124.0, 125.2, 125.9 (CH_{Ar}), 127.0, 131.4 (C_{Ar}), 145.7 $(C_{AT}CH(CH_3)_2)$, 153.5, 154.5 (NCOO), 184.8 (br, COH), 196.4 (CCO). IR (KBr, cm⁻¹): $\tilde{v} = 2958$ (m), 2929 (m), 2872 (w), 1727 (s), 1701 (s), 1601 (m), 1503 (m), 1451 (s), 1405 (s), 1373 (s), 1281 (s), 1227 (m), 1193 (m), 1167 (m), 1135 (m), 1110 (m), 1057 (m), 1042 (m), 1004 (m), 968 (m), 832 (m), $_{30}$ 775 (m), 731 (m). MS (EI, 70 eV): m/z (%) = 388 (M⁺, 13), 340 (11), 329 (100), 297 (28), 196 (29), 177 (26), 97 (19), 71 (25), 57 (40). HRMS (EI): Calcd for $C_{20}H_{24}N_2O_6$ (M⁺) 388.16289, found 388.162516.

4-tert-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid trimethyl ester (5q). Starting with 6-*tert*-butylquinazoline 3f (0.372 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4a (0.728 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol), 5q was obtained as a slightly yellow solid (0.422 g, 50%); mp. 150 – 151 °C. ¹H ⁵ NMR (300 MHz, CDCl₃): $\delta = 1.28$ (s, 9H, C(*CH*₃)₃), 2.41 (dd, ²*J* = 17.6 Hz, ³*J* = 1.1 Hz, 1H, NCHC*H*₂) 3.0 (dd, ²*J* = 17.6 Hz, ³*J* = 4.7 Hz, 1H, NCHC*H*₂), 3.75, 3.79, 3.86 (3s, 9H, OCH₃), 5.39 (br, 1H, NCHCH₂), 7.03 (br, 1H, Ar), 7.25 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.0 Hz, 1H, Ar), 7.37 (br, 1H, NC*H*N), 7.67 (br, 1H, Ar), 12.28 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 31.2$ (C(*CH*₃)₃), 34.3 (*C*(CH₃)₃), 38.2 (br, NCHCH₂), 49.0 (br, NCHCH₂), 52.0, 53.1, 53.2 (OCH₃), 58.9 (br, NCHN), 98.1 ¹⁰ (NCHCCO), 122.9 (br), 124.0, 125.0 (CH_{Ar}), 126.2, 131.8 (br), 147.2 (C_{Ar}), 153.5, 154.1 (NCOO), 170.7 (CCOO), 173.2 (COH). IR (KBr, cm⁻¹): $\tilde{\nu} = 2957$ (m), 2907 (w), 2869 (w), 1716 (s), 1659 (s), 1620 (m), 1502 (m), 1444 (s), 1380 (m), 1333 (s), 1295 (s), 1267 (s), 1232 (s), 1195 (m), 1146 (m), 1117 (m), 1067 (m), 1049 (m), 1010 (m), 835 (m), 767 (m), 747 (m). MS (EI, 70 eV): *m/z* (%) = 418 (M⁺, 10), 359 (100), 327 (38), 295 (13), 212 (43), 180 (21). HRMS (EI): Calcd for C₂₁H₂₆N₂O₇ ([M]⁺) ¹⁵ 418.17345, found 418.173725.

4-*tert*-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid-10-(2-methoxy-ethyl)ester-8,13-dimethyl ester (5r). Starting with 6-tertbutylquinazoline **3f** (0.372 g, 2.0 mmol), 1-(2-methoxy-ethoxy)-1,3-bis(trimethylsilyloxy)-buta-1,3diene 4c (0.856 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol) in CH₂Cl₂ (20 mL), 5r ²⁰ was obtained as a yellow solid (0.349 g, 38%); mp. 91 – 95 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.27$ (s, 9H, C(CH₃)₃), 2.40 (d, ${}^{2}J = 17.6$ Hz, 1H, NCHCH₂), 2.98 (br dd, ${}^{2}J = 17.6$ Hz, ${}^{3}J = 4.8$ Hz, NCHCH₂) 3.39 (s, 3H, CH₂OCH₃), 3.63 (t, ${}^{3}J$ = 5.0 Hz, 2H, CH₂OCH₃), 3.74 (s, 3H, COOCH₃), 3.85 (s, 3H, COOCH₃), 4.33 (m, 2H, COOCH₂), 5.38 (br, 1H, NCHCH₂), 7.02 (s, 1H, Ar), 7.25 (dd, ${}^{3}J = 8.8 \text{ Hz}, {}^{4}J = 2.1 \text{ Hz}, 1\text{H}, \text{Ar}), 7.38 (br, 1\text{H}, \text{NCHN}), 7.66 (br, 1\text{H}, \text{Ar}), 12.24 (s, 1\text{H}, \text{OH}).$ $_{25}$ NMR (75.5 MHz, CDCl₃): $\delta = 31.2$ (C(CH₃)₃), 34.2 (C(CH₃)₃), 38.2 (NCHCH₂), 48.9 (br, NCHCH₂), 53.1 (2 COOCH₃), 58.9 (CH₂OCH₃, NCHN), 63.7 (CH₂OCH₃), 70.1 (COOCH₂), 98.1 (NCHCCO), 122.8, 123.8, 124.9 (CH_{Ar}), 126.1, 131.8 (C_{Ar}), 147.1 (C_{Ar}C(CH₃)₃), 153.5, 154.0 (NCOO), 170.1 (CCOO), 173.2 (br, COH). IR (KBr, cm⁻¹): $\tilde{v} = 2958$ (m), 2905 (m), 2874 (m), 1717 (s), 1654 (s), 1620 (m), 1503 (m), 1454 (s), 1416 (s), 1380 (s), 1332 (s), 1294 (s), 1264 (s), 1231 (s), 1182 (m), 1118 $_{30}$ (m), 1067 (m), 1049 (m), 1012 (m), 833 (m), 770 (m). MS (EI, 70 eV): m/z (%) = 462 (M⁺, 9), 403 (100), 386 (12), 327 (27), 302 (20), 256 (20), 180 (10). HRMS (EI): Calcd for $C_{23}H_{30}N_2O_8$ (M⁺) C₂₃H₃₀N₂O₈ 462.19967, found 462.198773.

4-*tert*-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 10-isobutyl ester 8,13-dimethyl ester (5s). Starting with 6-*tert*-butylquinazoline **3f** (0.372 g, 2.0 mmol), 1-isobutyl-1,3-bis(trimethylsilyloxy)-buta-1,3-diene **4g** (0.847 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol), **5s** was obtained as a slightly yellow solid (0.500 g, 54%); ^s mp. 104-106 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.96$ (t, ${}^{3}J = 6.5$ Hz, 6H, CH(*CH*₃)₂), 1.28 (s, 9H, C(CH₃)₃), 2.00 (m, 1H, C*H*(CH₃)₂), 2.40 (dd, ${}^{2}J = 17.6$ Hz, ${}^{3}J = 1.3$ Hz, 1H, NCHC*H*₂), 2.97 (br dd, ${}^{2}J = 17.6$ Hz, ${}^{3}J = 4.8$ Hz, 1H, NCHC*H*₂), 3.75, 3.83 (2s, 6H, OCH₃), 3.89 (m, 1H, OCH₂), 4.05 (m, 1H, OCH₂), 5.38 (br, 1H, NCHC*H*₂), 7.03 (m, 1H, Ar), 7.25 (m, 1H, Ar), 7.37 (br, 1H, NCHN), 7.62 (br, 1H, Ar), 12.44 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 18.9$, 18.9 (CH(*C*H₃)₂), 27.6 (CH(CH₃)₂), 31.2 (C(*C*H₃)₃), 34.3 (*C*(CH₃)₃), 38.3 (br, NCH*C*H₂), 49.0 (br, N*C*HCH₂), 53.1 (2 OCH₃), 58.9 (br, NCHN), 71.1 (OCH₂), 98.2 (NCHCCO), 122.8 (br), 124.1, 124.9 (CH_Ar), 126.3, 131.9, 147.2 (C_{Ar}), 153.5, 154.2 (NCOO), 170.5 (CCOO), 173.0 (COH). IR (KBr, cm⁻¹): $\tilde{v} = 2960$ (m), 2907 (w), 2874 (w), 1709 (s), 1653 (s), 1622 (m), 1503 (m), 1455 (s), 1414 (s), 1380 (m), 1330 (s), 1287(s), 1263(s), 1231 (s), 1182 (m), 1144 (m), 1118 (m), 1064 (m), 1048 (m), 1012 (m), 834 (m). MS (EI): ¹⁵m/z (%) = 460 (M⁺, 9), 401 (100), 327 (37), 302 (15), 254 (23), 198 (23). HRMS (EI): Calcd for C₂₄H₃N₂O₇ (M⁺) 460.22040, found 460.220738.

10-Acety1-4*-tert*-**buty1-11-hydroxy-8,13-diaza-tricyclo**[7.3.1.0^{2,7}]**trideca-2**(7),3,5,10-tetraene-8,13**dicarboxylic acid dimethyl ester (5t).** Starting with 6-*tert*-butylquinazoline **3f** (0.234 g, 1.3 mmol), 2,4-bis(trimethylsilyloxy)penta-1,3-diene **4d** (0.430 g, 1.8 mmol) and methyl chloroformate (0.476 g, ²⁰ 5.0 mmol) in CH₂Cl₂ (15 mL), **5t** was obtained as a yellowish solid (0.223 g, 44%); mp. 143 – 145 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.28 (s, 9H, C(CH₃)₃), 2.34 (s, 3H, COCH₃), 2.50 (d, ²*J* = 17.9 Hz, 1H, CH₂), 3.00 (br dd, ²*J* = 17.9 Hz, ³*J* = 5.1 Hz, 1H, CH₂), 3.76 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 5.40 (br, 1H, NCHCH₂), 7.04 (d, ⁴*J* = 2.0 Hz, 1H, Ar), 7.25 (dd, ³*J* = 8.7 Hz, ⁴*J* = 2.0 Hz, 1H, Ar), 7.41 (br, 2H, Ar, NCHN), 16.39 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 24.4 (COCH₃), 31.2 ²⁵ (C(CH₃)₃), 34.3 (C(CH₃)₃), 40.8 (CH₂), 48.9 (br, NCHCH₂), 53.3, 53.5 (OCH₃), 60.4 (br, NCHN), 107.3 (NCHCCO), 122.9, 124.9, 125.0 (CH_{Ar}), 126.6, 131.2 (C_{Ar}), 148.0 (C_{Ar}C(CH₃)₃), 153.5, 154.5 (NCOO), 184.8 (br, COH), 196.4 (COCH₃). IR (KBr, cm⁻¹): \tilde{v} = 3036 (w), 2959 (m), 2907 (w), 2870 (w), 1722 (s), 1702 (s), 1616 (m), 1505 (m), 1452 (s), 1409 (m), 1376 (m), 1339 (m), 1306 (s), 1286 (s), 1236 (m), 1186 (m), 1146 (m), 1109 (m), 1041 (m), 1001 (m), 973 (m), 774 (m). MS (EI, 70 eV): ³⁰ *m*/*z* (%) = 402 (M⁺, 13), 343 (100), 311 (17), 269 (4), 240 (9), 196 (24). HRMS (EI): Calcd for C₂₁H₂₆N₂O₆ (M⁺) 402.17854, found 402.177942.

4-Hexyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid trimethyl ester (**5**u). Starting with 6-hexylquinazoline **3**g (0.419 g, 2.0 mmol), 1methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene **4a** (0.714 g, 2.7 mmol) and methyl chloroformate (0.749 g, 7.8 mmol), **5u** was obtained as a yellowish solid (0.322 g, 37%); mp. 118-120 °C. ¹H NMR s (300 MHz, CDCl₃): $\delta = 0.87$ (m, 3H, CH₂CH₂CH₃), 1.28 (m, 6H, CH₃CH₂CH₂CH₂CH₂CH₂CH₂), 1.56 (m, 2H, CH₃CH₂CH₂CH₂CH₂CH₂), 2.40 (dd, ²J = 17.6 Hz, ³J = 1.4 Hz, 1H, NCHCH₂), 2.53 (t, ³J = 7.8 Hz, 2H, CH₃CH₂CH₂CH₂CH₂CH₂CH₂), 3.0, (dd, ²J = 17.6 Hz, ³J = 4.6 Hz, 1H, NCHCH₂), 3.75, 3.79, 3.85 (3s, 9H, OCH₃), 5.36 (br, 1H, NCHCH₂), 6.84 (br, 1H, Ar), 7.04 (dd, ³J = 8.5 Hz, ⁴J = 1.8 Hz, 1H, Ar), 7.36 (br, 1H, NCHN), 7.63 (br, 1H, Ar), 12.26 (s, 1H, OH). ¹³C NMR ¹⁰ (75.5 MHz, CDCl₃): $\delta = 14.0$ (CH₃CH₂CH₂), 22.5, 28.9, 31.3, 31.6, 35.2 (CH₃CH₂CH₂CH₂CH₂CH₂CH₂), 38.1 (br, NCHCH₂), 48.9 (br, NCHCH₂), 52.0, 53.1, 53.2 (OCH₃), 58.9 (br, NCHN), 98.0 (NCHCCO), 124.2, 126.0, 126.5 (CH_Ar), 127.8, 132.0 (br), 139.0 (C_Ar), 153.5, 154.1 (NCOO), 170.6 (CCOCH₃), 173.0 (COH). IR (KBr, cm⁻¹): $\tilde{\nu} = 2956$ (m), 2929 (m), 2856 (w), 1716 (s), 1656 (m), 1618 (m), 1501 (m), 1444 (m), 1412 (w), 1379 (m), 1332 (m), 1289 (m), 1264 (m), 1237 (m), 1194 (w), 1172 (w), 330 (28), 212 (44), 180 (20). HRMS (EI): Calcd for C₂₃H₃₀N₂O₇ ([M]⁺) 446.20475, found 446.205676.

10-Acetyl-4-hexyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,13-

dicarboxylic acid dimethyl ester (5v). Starting with 6-hexylquinazoline **3g** (0.647 g, 3.0 mmol), 2,4bis(trimethylsilyloxy)-penta-1,3-diene **4d** (1.026 g, 4.2 mmol) and methyl chloroformate (1.134 g, ²⁰ 12.0 mmol), **5v** was obtained as a yellowish, highly viscous oil (0.684 g, 53%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.86$ (br t, ³*J* = 6.6 Hz, 3H, CH₂CH₂CH₂CH₃), 1.27 (br m, 6H, CH₃CH₂CH₂CH₂CH₂CH₂), 1.56 (br m, 2H, CH₃CH₂CH₂CH₂CH₂CH₂), 2.33 (s, 3H, CCH₃O), 2.51 (m, 3H, (2H, C_{Ar}CH₂ and 1H, NCHCH₂)), 3.00 (dd, ²*J* = 22.9 Hz, ³*J* = 5.2 Hz, 1H, NCHCH₂), 3.76, 3.85 (2s, 6H, OCH₃), 5.37 (br, 1H, NCHCH₂), 6.86 (m, 1H, Ar), 7.03 (m, 1H, Ar), 7.39 (br, 2H, (1H, Ar and 1H, NCHN), 16.35 (s, ²⁵ 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 14.0$ (CH₃CH₂CH₂), 22.5, 28.9, 31.2, 31.6, 35.2 (5 CH₂), 24.3 (CH₃CO), 40.7 (br, NCHCH₂), 48.6 (br, NCHCH₂), 53.2, 53.5 (OCH₃), 60.3 (br, NCHN), 107.2 (NCHCCO), 125.2, 126.0, 127.8 (CH_{Ar}), 126.9, 131.3, 139.8 (C_{Ar}), 153.4, 154.5 (NCOO), 184.8 (br CCOCH₃), 196.3 (COH). IR (KBr, cm⁻¹): $\tilde{v} = 2956$ (m), 2927 (s), 2856 (m), 1715 (s), 1605 (m), 1501 (s), 1452 (s), 1410 (s), 1372 (s), 1337 (s), 1286 (s), 1193(m), 1136(m), 1110 (m), 1048 (m), 1016 (m), ³⁰ 970 (m), 941 (m), 830 (m), 774 (m), 733 (m). MS (EI, 70 eV): *m/z* (%) = 430 (M⁺, 19), 371 (100), 339 (38), 329 (16), 196 (57), 43 (23). HRMS (EI): Calcd for C₂₃H₃₀N₂O₆ ([M]⁺) 430.20984, found 430.210108.

11-Hydroxy-4,5(1',3')-propylene-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid trimethyl ester (5w). Starting with 7,8-dihydro-6Hcyclopenta[g]quinazoline **3h** (0.400 g, 2.3 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 4a (0.838 g, 3.22 mmol) and methyl chloroformate (0.870 g, 9.2 mmol), 5w was obtained as a slightly s yellow solid. (0.415 g, 51%); mp. 159 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.03$ (m, 2H, $CH_2CH_2CH_2$), 2.39 (dd, ${}^{2}J = 17.6 Hz$, ${}^{3}J = 1.2 Hz$, 1H, NCHCH₂), 2.88 (m, 5H, (4H, CH₂CH₂CH₂ and 1H, NCHCH₂), 3.74, 3.79, 3.86 (3s, 9H, OCH₃), 5.34 (br, 1H, NCHCH₂), 6.89 (s, 1H, Ar), 7.35 (br, 1H, NCHN), 7.57 (br, 1H, Ar), 12.26 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): δ = 25.6, 32.3, 32.9 (CH₂CH₂CH₂), 38.3 (br, NCHCH₂), 49.0 (br, NCHCH₂), 51.2, 53.1, 53.2 (OCH₃), 58.9 (br, NCHN), ¹⁰ 98.0 (NCHCCO), 120.3, 121.8 (CH_{Ar}), 124.6, 132.4 (br), 140.4, 144.0 (C_{Ar}), 153.5, 154.3 (NCOO), 170.6 (CCOO), 173.2 (COH). IR (KBr, cm⁻¹): $\tilde{v} = 3081$ (w), 2998 (w), 2956 (m), 2921 (w), 2848 (w), 1722 (s), 1707 (s), 1654 (s), 1613 (m), 1487 (m), 1455 (s), 1445 (s), 1412 (m), 1390 (m), 1360 (m), 1333 (s), 1295 (s), 1283 (s), 1264 (s), 1241 (s), 1221 (s), 1195 (m), 1177 (m), 1143 (m), 1119 (m), 1089 (m), 1065 (m), 1023 (m), 1011 (m), 787 (m), 774 (m). MS (EI, 70 eV): m/z (%) = 402 (M⁺, 20), $_{15}$ 343 (100), 311 (64), 279 (24), 212 (46), 180 (32), HRMS (EI): Calcd for C₂₀H₂₂N₂O₇ ([M]⁺) 402.14215, found 402.141755.

10-Acetyl-11-hydroxy-4,5(1',3')-propylene-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-

dimethyl tetraene-8,13-dicarboxylic acid ester (5x). Starting with 7.8-dihydro-6*H*cyclopenta[g]quinazoline **3h** (0.340 g, 2.0 mmol), 2,4-bis(trimethylsilyloxy)-penta-1,3-diene **4d** ²⁰ (0.684 g, 2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol), 5x was obtained as a slightly vellow solid (0.415 g, 53%); mp. 98–99 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.04$ (m, 2H, $CH_2CH_2CH_2$), 2.33 (s, 3H, CCH_3O), 2.48 (dd, ${}^2J = 17.7$ Hz, ${}^3J = 1.2$ Hz, 1H, $NCHCH_2$), 2.83 (m, 4H, $CH_2CH_2CH_2$), 2.97 (dd, ${}^2J = 17.7$ Hz, ${}^3J = 5.0$ Hz, 1H, NCHCH₂), 3.76, 3.86 (2s, 6H, OCH₃), 5.35 (br, 1H, NCHCH₂), 6.90 (s, 1H, Ar), 7.31 (br, 1H, NCHN), 7.37 (br, 1H, Ar), 16.34 (s, 1H, OH). ¹³C NMR $_{25}$ (75.5 MHz, CDCl₃): δ = 24.3 (COCH₃), 25.6, 32.3, 32.8 (CH₂CH₂CH₂), 40.9 (br, NCHCH₂), 48.8 (br, NCHCH₂), 53.2, 53.5 (OCH₃), 60.4 (br, NCHN), 107.3 (NCHCCO), 121.1, 121.2 (CH_{Ar}, rotamers), 121.8 (CH_{Ar}), 125.0, 131.7 (br), 141.4, 144.1 (C_{Ar}), 153.5, 154.7 (NCOO), 185.0 (CCOO), 196.2 (COH). IR (KBr, cm⁻¹): $\tilde{v} = 2955$ (m), 2845 (w), 1716 (s), 1605 (m), 1576 (m), 1489 (m), 1440 (s), 1410 (m), 1377 (m), 1339 (m), 1289 (s), 1252 (m), 1196 (m), 1154 (w), 1112 (m), 1089 (m), 1039 (w). $_{30}$ MS (EI, 70 eV): m/z (%) = 386 (M⁺, 12), 327 (100), 295 (27), 196 (21), 156 (5). HRMS (EI): Calcd for $C_{20}H_{22}N_2O_6$ (M⁺) 386.14724, found 386.147092.

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,13-

tricarboxylic acid trimethyl ester (5y). Starting with 6,7-dimethylquinazoline **3i** (0.237 g, 1.5 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene **4a** (0.546 g, 2.1 mmol) and methyl chloroformate (0.567 g, 6.0 mmol), **5y** was obtained as a yellowish solid (0.270 g, 46%); mp. 173–175 °C. ¹H NMR ³ (300 MHz, CDCl₃): $\delta = 2.19$, 2.21, 2.22 (3s, 6H, C_{Ar}CH₃, rotamers), 2.38 (dd, ²*J* = 17.6 Hz, ³*J* = 1.3 Hz, 1H, NCHC*H*₂), 2.95 (br dd, ²*J* = 17.6 Hz, ³*J* = 4.3 Hz, 1H, NCHC*H*₂), 3.74-3.86 (m, 9H, OCH₃), 5.32, 5.59 (br, 1H, NC*H*CH₂, rotamers), 6.80, 7.03, 7.05 (s, 1H, Ar), 7.35 (br, 1H, NCHN), 7.52 (br, 1H, Ar), 12.23, 12.26 (s, 1H, OH, rotamers). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 19.1$, 19.8, 20.1 (2 CH₃), 35.9, 38.2 (br, NCHCH₂, rotamers), 47.0, 48.5 (br, NCHCH₂, rotamers), 51.9, 52.0, 53.1, ¹⁰ 53.2 (3 OCH₃, rotamers), 58.3, 58.9 (br, NCHN, rotamers), 97.7, 98.0 (br, NCHCCO, rotamers), 122.4, 124.1, 125.0, 127.1 (2 CH_{Ar}, rotamers), 128.7, 132.0 (br), 132.8, 136.2, (C_{Ar}), 153.5, 154.2 (NCOO), 170.6 (CCOO), 173.3 (COH). IR (KBr, cm⁻¹): $\tilde{v} = 2998$ (w), 2955 (m), 2923 (w), 2859 (s), 1716 (s), 1658 (s), 1618 (m), 1506 (m), 1445 (s), 1414 (m), 1380 (m), 1332 (s), 1296 (s), 1252 (s), 1223 (m), 1197 (m), 1172 (m), 1119 (m), 1068 (m), 1017 (m), 786 (m), 773 (m). MS (EI, 70 eV): *m/z* ¹⁵ (%) = 390 (M⁺, 18), 331 (100), 299 (56), 267 (19), 212 (62), 180 (33). HRMS (EI): Calcd for C₁₉H₂₂N₂O₇ (M⁺) 390.14215, found 390.141802.

10-Acetyl-11-hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-

8,13-dicarboxylic acid dimethyl ester (5z). Starting with 6,7-dimethylquinazoline **3i** (0.237 g, 1.5 mmol), 2,4-bis(trimethylsilyloxy)penta-1,3-diene **4d** (0.513 g, 2.1 mmol) and methyl chloroformate ²⁰ (0.567 g, 6.0 mmol), **5z** was obtained as a yellowish solid (0.268 g, 48 mp. 87–89 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.18-2.23 (m, 6H, 2 CH₃), 2.33, 2.35 (2s, 3H, COCH₃, rotamers), 2.47 (dd, ²*J* = 17.8 Hz, ³*J* = 1.5 Hz, 1H, NCHC*H*₂), 2.97 (br dd, ²*J* = 17.8 Hz, ³*J* = 4.9 Hz, 1H, NCH*CH*₂), 3.76, 3.77, 3.83, 3.86 (4s, 6H, OCH₃, rotamers), 5.33, 5.58 (br, 1H, NCHCH₂, rotamers), 6.81, 7.03, 7.05, 7.36 (br, 3H, 2H, Ar and 1H, NCHN) 16.28, 16.35 (2s, 1H, OH, rotamers). ¹³C NMR (75.5 MHz, ²⁵ CDCl₃): δ = 19.2, 19.8, 20.1 (2C, CH₃, rotamers), 24.3, 24.4 (COCH₃, rotamers), 38.4, 40.75 (br, NCHCH₂, rotamers), 46.9, 48.4 (br, NCHCH₂, rotamers), 53.2, 53.3, 53.5 (2 OCH₃, rotamers), 59.9, 60.4 (br, NCHN, rotamers), 106.9, 107.3 (NCHCCO, rotamers), 124.6, 131.3 (br), 133.7, 136.2 (C_{Ar}), 126.1 (d), 127.1 (CH_{Ar}), 153.5, 154.6, 154.8 (2 NCOO, rotamers), 184.9 (CCOO), 196.3 (COH). IR (KBr, cm⁻¹): $\tilde{\nu}$ = 2956 (m), 2922 (w), 2858 (w), 1716 (s), 1605 (m), 1505 (m), 1450 (s), 1412 (m), ³⁰ 1376 (m), 1337 (m), 1297 (s), 1195 (m), 1115 (m), 1019 (m). MS (EI, 70 eV): *m/z* (%) = 374 (M⁺, 22), 315 (100), 340 (11), 283 (35), 196 (42), 177 (19). HRMS (EI): Calcd for C₁₉H₂₂N₂O₆ (M⁺) 374.14724, found 374.146557.

12-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid trimethyl ester (5aa). Starting with quinazoline 3a (0.521 g, 4.0 mmol), 1methoxy-1,3-bis(trimethylsilyloxy)-hexa-1,3-diene 4h (1.613 g, 5.6 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 mL), **5aa** was obtained as a colourless, highly viscous oil (0.665 g, 43%); dr = 7:3. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.16 - 1.27 \text{ (m, 3H, CH₂CH₃)}, 1.33 - 1.62 \text{$ (m, 1H, CH₂), 1.73 –1.89 (m, 1H, CH₂), 1.99 – 2.09 (m, 1H, NCHCH, diastereomers), 2.31 (ddd, ${}^{3}J = 10.1 \text{ Hz}, {}^{3}J = 4.2 \text{ Hz}, {}^{3}J = 1.4 \text{ Hz}, 1\text{H}, \text{ NCHCH}, \text{ diastereomers}), 3.74, 3.75 (s, 3\text{H}, \text{ OCH}_{3}), 3.74, 3.75 (s, 3\text{H}, \text{ OCH}_{3})$ diastereomers), 3.79 (s, 3H, OCH₃), 3.85, 3.87, 3.87 (s, 3H, OCH₃, diastereomers, rotamers), 5.21, 5.31 (br, 1H, NCHCH, diastereomers), 7.03 – 7.11 (m, 2H, Ar), 7.17 – 7.24 (m, 1H, Ar), 7.33 (br, 1H, ¹⁰ NCHN), 7.78 (br, 1H, Ar), 12.29, 12.68 (s, 1H, OH, diastereomers); dr = 7 : 3. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 12.3$, 12.6 (CH₂CH₃, diastereomers), 18.5, 23.1 (CH₂, diastereomers), 51.0, 51.5, 53.6, 53.7 (br, NCHCH, diastereomers, rotamers), 51.2 (NCHCH), 52.0, 53.1 (br) (OCH₃), 58.7, 58.8 (br, NCHN, diastereomers), 96.7, 96.7 (CCOO, diastereomers), 124.1, 124.2, 126.4, 126.4, 127.3, 127.5 (CH_{Ar}, diastereomers), 126.9, 134.6 (C_{Ar}), 154.0, 154.2 (NCOO), 170.7 (CCOO), 175.9, 176.6 (br, ¹⁵ COH, diastereomers). IR (KBr, cm⁻¹): $\tilde{v} = 2957$ (m), 1717 (s), 1654 (m), 1617 (m), 1491 (m), 1445 (s), 1382 (m), 1337 (m), 1300 (s), 1261 (s), 1226 (s), 1204 (m), 1137 (m), 1058 (m), 1039 (m), 767 (m). MS (CI pos., Isobutane): m/z = 391 ([M+H]⁺). HRMS (EI): Calcd for C₁₉H₂₂N₂O₇ (M⁺) 390.14215, found 390.141115.

12-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,10,13-

²⁰ tricarboxylic acid-10-ethyl ester-8,13-dimethyl ester (5ab). Starting with quinazoline 3a (0.521 g, 4.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-hexa-1,3-diene 4i (1.700 g, 5.6 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 mL), 5ab was obtained as a colourless, highly viscous oil (0.808 g, 50%); dr = 2:1. ¹H NMR (250 MHz, CDCl₃): δ = 1.16 – 1.28 (m, 3H, CHCH₂CH₃), 1.30 – 1.36 (m, 3H, OCH₂CH₃), 1.54 (m, 1H, CHCH₂, diastereomers), 1.80 (m, 1H, ²⁵ CHCH₂), 2.03 (m, 1H, CHCH₂, diastereomers), 2.31 (dd, ³J = 10.1 Hz, ³J = 2.8 Hz, 1H, CHCH₂, diastereomers), 2.80 (m, 1H, CHCH₂, diastereomers), 3.74, 3.75 (s, 3H, OMe, diastereomers), 3.84, 3.86 (s, 3H, OCH₃, diastereomers), 4.22 (q, ³J = 7.0 Hz, 2H, OCH₂), 5.21, 5.30 (br, 1H, NCHCH, diastereomers), 7.00 – 7.11 (m, 2H, Ar), 7.17 – 7.25 (m, 1H, Ar), 7.34 (br, 1H, NCHN), 7.80 (br, 1H, Ar), 12.38, 12.77 (s, 1H, OH, diastereomers). ¹³C NMR (62.9 MHz, CDCl₃): δ = 12.3, 12.5 ³⁰ (CHCH₂CH₃, diastereomers), 14.0 (OCH₂CH₃), 18.5, 23.1 (CHCH₂, diastereomers), 47.7 (br, NCHCH, diastereomers), 51.0, 51.5 (br, NCHCH, diastereomers, rotamers), 51.2 (NCHCH), 53.0, 53.1 (OCH₃), 58.8, 59.4 (br, NCHN, diastereomers), 60.9, 60.9 (OCH₂, diastereomers), 96.5, 96.9

(NCHCCO, diastereomers), 123.0, 123.0, 124.0, 124.1, 124.2, 126.4 (br), 127.4, 127.7 (CH_{Ar}, diastereomers), 127.0, 134.6, 134.9 (C_{Ar}, diastereomers), 153.4, 153.9, 154.2 (NCOO, diastereomers), 170.4, 170.7 (CCOO, diastereomers), 176.0, 176.2 (br, COH, diastereomers). IR (Nujol, cm⁻¹): $\tilde{v} = 1721$ (s), 1708 (s), 1646 (m), 1618 (m), 1300 (s), 1227 (m), 1139 (m), 1104 (m), 1064 (w), 1036 (m), 768 (m), 744 (m). MS (CI neg., Isobutane): m/z (%) = 404 (M⁻). Anal. Calcd for C₂₀H₂₄N₂O₇ (404.41): C, 59.40; H, 5.98; N, 6.93. Found: C, 59.37; H, 6.06; N, 6.72.

11-Hydroxy-12-methyl-10-propionyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-

8.13-dicarboxylic acid dimethyl ester (5ac). Starting with guinazoline 3a (0.521 g, 4.0 mmol), 3.5bis(trimethylsilyloxy)-hepta-2,4-diene 4j (1.526 g, 5.6 mmol) and methyl chloroformate (1.512 g, ¹⁰ 16.0 mmol) in CH₂Cl₂ (40 mL), **5ac** was obtained as a colourless, highly viscous oil (1.128 g, 75%); dr = 6:1. ¹H NMR (250 MHz, CDCl₃): δ = 0.95 (br m, 3H, CH₂CH₃, diastereomers, rotamers), 1.09 – 1.16 (m, 6H, CH₂CH₃, CHCH₃, diastereomers, rotamers), 1.22 (d, ${}^{3}J = 7.3$ Hz, 3H, CHCH₃, diastereomers, rotamers), 1.32 (d, ${}^{3}J = 7.0$ Hz, 3H, CHCH₃, diastereomers, rotamers), 2.22 (br m, 1H, CHCH₃), 2.81 (br m, 2H, CH₂CH₃), 3.71, 3.74, 3.75, 3.77 (s, 3H, OCH₃, diastereomers, rotamers), 15 3.81, 3.84, 3.86 (s, 3H, OCH₃, diastereomers, rotamers), 4.84 (m, 1H, NCHCH, diastereomers, rotamers), 5.27 (m, 1H, NCHCH, diastereomers, rotamers), 7.03 - 7.26 (m, 3H, Ar), 7.42 - 7.48 (m, 2H, Ar, NCHN), 14.79, 15.28 (s, 1H, OH, diastereomers). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 8.4$ (CH₂CH₃), 16.4 (CHCH₃), 30.3, 31.6 (br) (CH₂, diastereomers, rotamers), 45.7 (CHCH₃), 52.8, 52.9, 53.3, 53.6 (NCHCH, OCH₃, diastereomers, rotamers), 59.9 (br), 60.0 (br) (NCHN, diastereomers, ²⁰ rotamers), 105.3 (NCHCCO), 124.9, 125.3, 125.3, 126.5, 126.5, 127.5 (CH_{Ar}, diastereomers, rotamers), 127.6, 133.7, 133.7 (CAr, diastereomers, rotamers), 154.3, 154.4 (NCOO), 185.9 (br, COH), 201.6 (br, CCO). IR ((KBr, cm⁻¹): $\tilde{v} = 2988$ (w), 2957 (w), 2879 (w), 1717 (s), 1608 (m), 1493 (m), 1448 (s), 1374 (m), 1266 (s), 1219 (m), 1134 (w), 1104 (w), 1056 (w), 766 (m). MS (EI, 70 eV): m/z $(\%) = 374 (M^+, 14), 359 (13), 342 (32), 315 (100), 313 (52), 283 (53), 224 (53), 159 (20), 130 (20), 84$ $_{25}$ (47). HRMS (EI): Calcd for C₁₉H₂₂N₂O₆ (M⁺) 374.14724, found 374.147003.

Preparation of 10-acetyl-11-trifluormethanesulfonyloxy-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraen-8,13-dicarboxylic acid dimethyl ester (6). To a CH_2Cl_2 solution (21 mL) of 5f (0.723 g, 2.1 mmol) and pyridine (0.331 g, 4.2 mmol) was dropwise added trifluoromethanesulfonic acid anhydride (0.708 g, 2.5 mmol) at -78 °C. The solution was allowed to warm up to 20 °C within ³⁰ 4 h and was then concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, heptane \rightarrow heptane-ethyl acetate = 2:1) to give 6 as a yellowish oil (0.570 g, 57%). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.36$ (s, 3H, COCH₃), 2.36 (s, 3H, COCH₃), 2.53 (dd, ²*J* = 17.7 Hz, ³*J* = 1.53 Hz, 1H, CH₂), 3.21 (br dd, ²*J* = 17.7 Hz, ³*J* = 5.2 Hz, 1H, CH₂), 3.78 (s, 3H, COOCH₃), 3.87 (s, 3H, COOCH₃), 5.46 (br, 1H, NC*H*CH₂), 7.08–7.19 (m, 2H, Ar), 7.28 (m, 1H, Ar), 7.52 (br, 1H, NCHN), 7.70 (br m, 1H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 30.7$ (COCH₃), 37.5 (CH₂), 49.4 (br, ⁵ NCHCH₂), 53.6, 53.9 (COOCH₃), 60.4 (NCHN), 118.1 (q, ¹*J* = 320.4 Hz, CF₃), 124.2, 125.0, 126.4, 128.5 (CH_{Ar}), 125.6, 128.8, 134.0 (C_{Ar}, CCO), 150.8 (br, COS), 153.3, 153.8 (NCOO), 194.8 (CCOCH₃). ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -117.6$ (CF₃). MS (EI, 70 eV): *m/z* (%) = 478 (M⁺, 34), 345 (22), 269 (100), 251 (17), 211 (8), 117 (5), 63 (23). HRMS (EI): Calcd for C₁₈H₁₇F₃N₂O₈S (M⁺) 478.06522, found 478.064923.

¹⁰ **General procedure for the synthesis of 7a,b.** To a solution of triflate **6** (1.00 mmol) in 1,4-dioxane (2.5 ml) were added at 20 °C boronic acid (1.30 mmol), potassium phosphate (1.60 mmol) and tetrakis(triphenyl phosphine)palladium(0) (0.03 mmol). The solution was refluxed for 20 h. After cooling to 20 °C a saturated aqueous solution of ammonium chloride (3 ml) was added. The solution was diluted with CH₂Cl₂ (15 ml). The phases were separated and the aqueous phase was extracted with ¹⁵ CH₂Cl₂ (20 ml). The collected organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, heptane \rightarrow heptane-ethyl acetate = 2:1).

10-Acetyl-11-phenyl-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-8,13-dicarboxylic acid dimethyl ester (7a). Starting with 6 (0.546 g, 1.14 mmol), phenyl boronic acid (0.181 g, 1.48 mmol), potassium phosphate (0.387 g, 1.82 mmol and tetrakis(triphenyl phosphine)palladium(0) (0.040 g, 0.03 mmol) in 1,4-dioxane (3 ml), 7a was obtained as a yellow solid (0.303 g, 65%); mp. 130 – 131 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.51$ (s, 3H, COCH₃), 2.66 (dd, ²*J* = 18.3 Hz, ³*J* = 1.5 Hz, 1H, CH₂), 2.97 (dd, ²*J* = 18.3 Hz, ³*J* = 1.2 Hz, 1H, CH₂, rotamers), 2.99 (dd, ²*J* = 18.3 Hz, ³*J* = 1.2 Hz, 1H, CH₂, rotamers), 3.77 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 5.48 (br, 1H, NCHCH₂), 6.96 – 7.00 (m, 2 2H, Ar), 7.14 – 7.32 (m, 6H, Ar), 7.49 (br, 1H, Ar), 7.76 (br, 1H, NCHN). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 30.8$ (COCH₃), 40.4 (CH₂), 49.1 (NCHCH₂), 53.1, 53.5 (NCOOCH₃), 60.4 (NCHN), 123.7, 124.3, 124.3, 126.1, 127.3, 127.6, 127.8, 128.7, 129.1 (CH_{Ar}, rotamers), 134.9, 134.9, 135.1, 138.9 (C_{Ar}, NCHCCO), 143.5 (br, CH₂CC), 153.7, 154.0 (NCOO), 201.9 (CCO). IR (KBr, cm⁻¹): $\tilde{\nu} = 3027$ (w), 2955 (w), 2927 (w), 2853 (w), 1717 (s), 1491 (m), 1448 (s), 1413 (m), 1374 (m), 1332 (m), 1273 (s), 1222 (m), 1134 (m), 1059 (m), 1024 (m). MS (EI, 70 eV): *m/z* (%) = 406 (M⁺, 58), 347

(100), 315 (62), 256 (22), 212 (7), 180 (8), 128 (5). HRMS (EI): Calcd for $C_{23}H_{22}N_2O_5$ (M⁺) 406.15232, found 406.152301.

10-Acetyl-11-(3,5-dimethyl-phenyl)-8,13-diaza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5,10-tetraene-

8,13-dicarboxylic acid dimethyl ester (7b). Starting with **6** (0.577 g, 1.20 mmol), 3,5-(dimethyls phenyl)boronic acid (0.234 g, 1.56 mmol), potassium phosphate (0.408 g, 1.92 mmol and tetrakis(triphenyl phosphine)palladium(0) (0.042 g, 0.04 mmol) in 1,4-dioxane (3 ml), **7b** was obtained as a yellow, highly viscous oil (0.209 g, 40%). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.54$ (s, 3H, COCH₃), 2.23 (s, 6H, C_{Ar}CH₃), 2.64 (dd, ²*J* = 18.2 Hz, ³*J* = 1.3 Hz, 1H, CH₂), 2.94, 2.94 (dd, ²*J* = 18.2 Hz, ³*J* = 4.9 Hz, 1H, CH₂, rotamers), 3.77 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 5.47 (br, 1H, NCHC*H*₂), ¹⁰ 6.58 (s, 2H, Ar), 6.94 (s, 1H, Ar), 7.15–7.29 (m, 3H, Ar), 7.50 (m, 1H, Ar), 7.72 (br, 1H, NCHN). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 21.1$ (C_{Ar}CH₃), 30.8 (COCH₃), 40.5 (CH₂), 49.2 (br, NCHCH₂), 53.1, 53.5 (OCH₃), 60.5 (br, NCHN), 123.4, 123.8, 124.3, 125.6, 126.2, 127.6, 130.8 (CH_{Ar}), 127.5, 134.7, 135.0, 138.4, 138.9 (C_{Ar}), 153.8, 154.1 (NCOO), 201.8 (CH₃CO). IR (ATR, cm⁻¹): $\tilde{\nu} = 3034$ (w), 2954 (w), 2919 (w), 2893 (w), 2855 (w), 1709 (s), 1681 (m), 1599 (w), 1490 (w), 1435 (m), 1368 (m), 1329 ¹⁵ (m), 1283 (s), 1266 (m), 1240 (s), 1217 (s), 1191 (m), 1132 (m), 1098 (m), 1055 (m), 1031 (m). MS (EI, 70 eV): *m/z* (%) = 434 (M⁺, 75), 419 (7), 375 (100), 343 (61), 284 (27), 240 (7), 208 (7), 97 (12), 71 (18), 57 (29), 44 (37). HRMS (EI): Calcd for C₂₅H₂₆N₂O₅ (M⁺) 434.18362, found 434.183655.

1-[3-(2-Methoxyethoxycarbonyl)-2-oxo-propyl]-1*H*-phthalazine-2-carboxylic acid methyl ester (9a). Starting with phthalazine (0.521 g, 4.0 mmol), 4c (1.705 g, 5.6 mmol) and methyl chloroformate ²⁰ (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 ml), 9a was isolated as a yellow, viscous oil (0.775 g, 56%). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.31$ (br m, 1H, NCHC*H*₂, enol), 2.59 (br m, 1H, NCHC*H*₂, enol), 2.82 (dd, ²*J* = 16.3 Hz, ³*J* = 4.4 Hz, 1H, NCHC*H*₂, keto), 3.03 (dd, ²*J* = 16.3 Hz, ³*J* = 8.7 Hz, 1H, NCHC*H*₂, keto), 3.32 (d, ²*J* = 15.7 Hz, 1H, COCH₂CO), 3.33 (s, 3H, CH₂OC*H*₃), 3.45 (d, ²*J* = 15.7 Hz, 1H, COCH₂CO), 3.55 (m, 2H, C*H*₂OCH₃), 3.89 (s, 3H, COOCH₃), 4.21 (m, 2H, COOCH₂), 4.83 (s, 1H, ²⁵ COC*H*COH, enol), 6.00 (dd, ²*J* = 8.4 Hz, ³*J* = 4.4 Hz, 1H, NC*H*CH₂), 7.14–7.46 (m, 4H, Ar), 7.70 (s, 1H, NCONCH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 39.7$ (NCHCH₂), 47.3 (COCH₂CO, rotamers), 49.2 (CH₂OCH₃), 49.5 (COCH₂CO, rotamers), 54.0 (NCHCH₂), 58.9, 59.0 (COOCH₃), 63.1 (CH₂OCH₃, enol), 64.3 (CH₂OCH₃, Keto), 70.1, 70.3 (COOCH₂, rotamers), 92.0 (COCHCOH, enol), 123.3, 123.4 (C_{Ar}, rotamers), 125.9, 126.0, 126.2, 126.9, 128.1, 128.7, 129.0, 131.8, 132.0, 132.3 (CH_{Ar}, keto, enol, ³⁰ rotamers), 132.7 (C_{Ar}), 143.2 (NCONCH), 154.3 (NCOO), 166.6 (COOCH₂), 172.0, 173.0 (COH, enol, rotamers), 199.0 CH₂COCH₂). IR (neat, cm⁻¹): $\tilde{\nu} = 2955$ (m), 2932 (m), 2894 (m), 2821 (w), 1742 (s), 1711 (s), 1655 (m), 1566 (m), 1445 (s), 1379 (s), 1321 (s), 1197 (s), 1157 (s), 1128 (s), 1099 (m), 1040 (m), 983 (w), 924 (m), 847 (w), 766 (m), 551 (m), 531 (m). MS (EI, 70 eV): m/z (%) = 348 (M⁺, 3), 289 (9), 203 (20), 189 (100), 145 (84), 130 (26), 117 (13), 76 (8). Anal. Calcd. for C₁₇H₂₀N₂O₆ (348.35): C, 58.61; H, 5.79; N, 8.04. Found: C, 58.42; H, 5.93; N, 7.84.

s 1-(2,4-Dioxopentyl)-1H-phthalazine-2-carboxylic acid methyl ester (9b). Starting with phthalazine (0.521 g, 4.0 mmol), 4f (1.366 g, 5.6 mmol) and methyl chloroformate (1.512 g, 16.0 mmol) in CH₂Cl₂ (40 ml), **9b** was isolated as a slightly vellow solid (0.653 g, 57%); mp. = 93-94 °C. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 1.98$ (s, 3H, COCH₃, enol), 2.13 (s, 3H, COCH₃, keto), 2.45 (br m, 1H, NCHCH₂, enol), 2.64 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 6.0$ Hz, 1H, NCHCH₂, enol), 2.76 (dd, ${}^{2}J = 16.1$ Hz, $_{10}{}^{3}J = 5.1$ Hz, 1H, NCHCH₂, keto), 2.94 (dd, ${}^{2}J = 16.1$ Hz, ${}^{3}J = 8.1$ Hz, 1H, NCHCH₂, keto), 3.87 (s, 3H, OCH₃), 5.32 (s, 1H, COCHCOH, enol), 5.90 (m, 1H, NCHCH₂), 7.16 (m, 1H, Ar), 7.26 – 7.43 (m, 3H, Ar), 7.71 (br, 1H, NCONCH), 15.22 (br, 1H, OH, enol). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 25.1$ (COCH₃), 42.6 (NCHCH₂, enol), 48.1 (NCHCH₂, keto), 49.3, 51.2 (br), 53.8, 53.9 (NCHCH₂, OCH₃, keto, enol), 58.1 (COCH₂CO, keto), 101.4 (COCHCOH, enol), 123.2, 123.3 (C_{Ar}, keto, enol), 125.9, ¹⁵ 126.2, 126.3, 128.6, 131.8, 131.9 (CH_{Ar}, keto, enol), 132.6, 132.7 (C_{Ar}, keto, enol), 143.1 (br), 143.2 (br) (NCONCH, keto, enol), 154.3 (NCOO), 187.6 (br, COH), 192.4 (br), 192.5 (br) (CHCO, keto, enol). IR (KBr, cm⁻¹): $\tilde{v} = 3046$ (w), 3023 (w), 2965 (w), 1705 (s), 1606 (m), 1562 (m), 1457 (s), 1390 (s), 1314 (m), 1253 (m), 1223 (m), 1159 (m), 1125 (m), 1013 (w), 974 (w), 949 (w), 929 (w), 911 (w), 819 (w), 777 (m), 757 (m), 637 (w), 549 (w), 530 (w), 455 (w). MS (CI pos., isobutane): m/z = 289 $_{20}$ ([M+H]⁺). Anal. Calcd. for C₁₅H₁₆N₂O₄ (288.30): C, 62.49; H, 5.59; N, 9.72. Found: C, 62.77; H, 5.84;

N, 9.44.

25

Electronic Supplementary Materials

5

Table S1. The B3LYP/6-31G* computed sum of electronic and thermal Free Energies (in au, at 298 K) and the number of imaginary frequencies (NImag)

,	E(sum)	NImag
Me3SiCl	-869.440860	0
Me3Si(+)	-408.904349	0
CICOOMe	-688.640021	0
(+)COOMe	-228.104004	0
3a	-417.876859	0
4a-trans	-1238.111010	0
4a-cis	-1238.113477	0
3a+R3	-646.070945	0
3a+R1	-646.061887	0
Allyl-cis-endo	-1884.222150	0
Allyo-cis-exo	-1884.220173	0
Allyl-trans-endo	-1884.227038	0
Allyl-trans-exo	-1884.224976	0
A-cis-endo	-1475.236189	0
A-cis-exo	-1475.233648	0
B-cis-endo	-1703.440801	0
B-cis-exo	-1703.439122	0
A-trans-endo	-1475.232661	0
A-trans-exo	-1475.227363	0
B-trans-endo	-1703.436523	0
B-trans-exo	-1703.434801	0
5a-endo-keton	-1294.461970	0
5a-pyran-trans	-1294.453209	0
5a-exo-keton	-1294.465091	0
5a-pyran-cis	-1294.448222	0
5a-enol	-1294.466623	0

The B3LYP/6-31G* Cartesian Coordinates

Me3SiCl

₅ CI	0.0000000	0.0000000	-1.7731823
Si	0.0000000	0.0000000	0.3377837
С	1.7968162	0.0000000	0.8958566
С	-0.8984081	1.5560885	0.8958566
С	-0.8984081	-1.5560885	0.8958566
10 H	-0.9297673	-1.6104043	1.9916226
Н	-1.9302361	-1.5720805	0.5283020
Н	-0.3963436	-2.4576738	0.5283020
Н	-0.3963436	2.4576738	0.5283020
Н	-1.9302361	1.5720805	0.5283020
15 H	-0.9297673	1.6104043	1.9916226
Н	1.8595347	0.0000000	1.9916226
Н	2.3265798	-0.8855933	0.5283020
Н	2.3265798	0.8855933	0.5283020

20 Me3Si(+)

Si	0.0000000	0.0000000	1.0000000
С	1.8435426	-0.0001050	1.0000000
С	-0.9216804	1.5966072	1.0000000
25 C	-0.9218622	-1.5965023	1.0000000
Н	2.2184238	0.5463060	0.1219399
Н	-1.5823268	1.6480584	0.1219399
Н	-0.6360970	-2.1943644	0.1219399
Н	2.2184238	0.5463060	1.8780601
30 H	-1.5823268	1.6480584	1.8780601
Н	-0.6360970	-2.1943644	1.8780601
Н	2.2691562	-1.0074604	1.0000000
Н	-0.2620918	2.4688771	1.0000000
Н	-2.0070644	-1.4614167	1.0000000

³⁵ CICOOMe

0	-0.0310376	0.0001630	-0.0000000
С	1.1640964	-0.0065447	-0.0000000
40 O	1.9889750	1.0361504	-0.0000000
CI	2.1349295	-1.4977984	-0.0000000
С	1.3250979	2.3230481	-0.0000000
Н	2.1318778	3.0546711	-0.0000000
Н	0.7049447	2.4263286	0.8931601
45 H	0.7049447	2.4263286	-0.8931602

(+)COOMe

0 C 0	0.2107325 0.8678174 1.6381870	-0.8474997 0.0850413 1.0154783	0.0000000 0.0000000 0.0000000
5 C	1.3391551	2.5547560	0.0000000
H H	2.3467236 0.7874101	2.9607247	0.0000000
Н	0.7874101	2.7376358	-0.9194768
10 3a			
C	0.7026469	0.0000000	-0.0044934
C	1.4055870	0.0000000	1.2276398
С	-1.4191692	0.0000000	1.2469192
15 N	1.3927557	0.0000000	-1.1831130
C	0.6741894	0.0000000	-2.2835068
N	-0.6852799	0.0000000	-2.3944907
C	-0.7126457	0.0000000	2.4288194
20 C	2.4906119	0.0000000	2.4150504
H	-2.5067918	0.0000000	1.2452567
Н	1.2173574	0.0000000	-3.2267369
H H	-1.2379158 1 2452917	0.0000000	3.3797786
H	-2.4433217	0.0000000	-1.3249847
4a-tı	ans		
30 C	2.4212125	-2.9162037	1.6244251
Н	3.2510534	-2.6708924	2.2766133
п С	2.3005350	-3.9516070 -1.9744962	1.2229223
С	0.3712195	-2.3093127	0.4186988
35 H	0.2148036	-3.3710228	0.2653344
0	-0.3496722	-0.1462620	-0.2460042
C	-1.5157559	0.6762488	-0.3307163
Н	-2.1753975	0.5160050	0.5305094
40 H	-2.0700372 -1 1453179	0.4935241 1 7026910	-1.2548557 -0.3162174
0	1.6734103	-0.6671376	1.6222525
Si	2.8387291	0.4399996	1.1117581
C H	2.1327654	2.1132290	1.6050759
45 H	2.8291899	2.9278502	1.3714288
Н	1.9260054	2.1482414	2.6810308
С	4.4739006	0.1449369	2.0100460

Н	5.2043665	0.9242032	1.7566610
Н	4.9146813	-0.8210711	1.7387552
Н	4.3375902	0.1577701	3.0979336
С	3.0901330	0.3031115	-0.7503787
₅ H	2.1467908	0.4744870	-1.2794204
Н	3.4521260	-0.6942772	-1.0256885
Н	3.8257441	1.0349064	-1.1068346
0	-1.6261330	-1.9133665	-0.8365707
Si	-2.6352212	-3.2634395	-0.5792669
10 C	-4.1534045	-2.8576907	-1.6097025
Н	-3.8923364	-2.7312668	-2.6665937
Н	-4.6290589	-1.9308957	-1.2695105
Н	-4.8990788	-3.6593276	-1.5438993
С	-3.0472466	-3.3937533	1.2521329
15 H	-2.1425221	-3.4677504	1.8645040
Н	-3.6610534	-4.2814983	1.4485167
Н	-3.6106102	-2.5177208	1.5940844
С	-1.8175224	-4.8336606	-1.2241938
Н	-1.4428405	-4.6904926	-2.2443348
$_{20}$ H	-2.5473576	-5.6528954	-1.2515949
Н	-0.9781951	-5.1639435	-0.6028118

4a-cis

25 C	-0.2849534	0.6262372	-1.5075775
Н	-0.3645362	0.7706551	-2.5783295
Н	-0.7138898	1.3804684	-0.8650531
С	0.3256808	-0.4537386	-0.9823077
С	0.5097281	-0.7861442	0.4295649
30 H	1.0385047	-1.7150888	0.5977385
С	0.1107348	-0.0929457	1.5218409
0	0.8923504	-1.4496094	-1.7556467
Si	1.0176294	-1.6459449	-3.4249958
С	1.9431849	-3.2748450	-3.6082021
35 H	1.3894544	-4.0987715	-3.1436722
Н	2.9290911	-3.2252633	-3.1319780
Н	2.0943457	-3.5271523	-4.6650969
С	-0.6892522	-1.7825682	-4.2194629
Н	-1.2902950	-0.8790687	-4.0744886
$_{40}$ H	-1.2488119	-2.6223638	-3.7907860
Н	-0.6011710	-1.9583508	-5.2991154
С	2.0199213	-0.2447979	-4.1965378
Н	1.5520557	0.7335779	-4.0467632
Н	2.1362336	-0.4003988	-5.2766017
$_{45}$ H	3.0235323	-0.2003497	-3.7573250
0	-0.5538229	1.0789009	1.4064327
0	0.3176871	-0.4665912	2.8027719
Si	1.0769968	-1.8311751	3.4911615

С	0.1652237	-3.3952103	2.9765891
Н	-0.8869817	-3.3506438	3.2808354
Н	0.6129455	-4.2739595	3.4575243
Н	0.1908272	-3.5569108	1.8942532
5 C	2.8924961	-1.8683236	2.9960389
Н	3.4040462	-2.7075891	3.4838127
Н	3.3991079	-0.9465329	3.3048039
Н	3.0295228	-1.9758577	1.9153262
С	0.8915562	-1.5221210	5.3350280
10 H	1.3822501	-0.5887053	5.6332258
Н	1.3426402	-2.3360085	5.9157476
Н	-0.1636774	-1.4531067	5.6225664
С	-0.9592593	1.7666047	2.5899210
Н	-1.6489156	1.1634312	3.1885258
15 H	-1.4671255	2.6647687	2.2343071
Н	-0.0993158	2.0464853	3.2061976

3a+R3

20 C	-0.0029792	0.5977644	-0.2771332
С	0.1099613	-0.7957612	0.0690704
С	1.1432731	1.4111621	-0.2409325
С	1.3687704	-1.3427998	0.4437035
Ν	-1.2086921	1.1365364	-0.6394041
25 C	-1.0556677	-1.5541651	0.0162651
С	-2.2544706	0.3781298	-0.6686355
Ν	-2.2171472	-0.9782346	-0.3459449
С	2.4709223	-0.5207859	0.4692274
С	2.3549467	0.8527650	0.1270723
30 H	1.0477896	2.4589843	-0.5033249
Н	1.4433009	-2.3946886	0.7029218
Н	-3.2234394	0.7697006	-0.9501606
Н	3.4400031	-0.9184581	0.7521786
Н	3.2427968	1.4773198	0.1563784
35 H	-1.1077481	-2.6122643	0.2520359
С	-3.4190646	-1.8449908	-0.3807056
0	-3.3342820	-3.0054363	-0.0946261
0	-4.4591614	-1.1377613	-0.7499193
С	-5.7288162	-1.8642781	-0.8311397
$_{40}$ H	-6.4525459	-1.1164323	-1.1466974
Н	-5.6366761	-2.6658300	-1.5648811
Н	-5.9741192	-2.2680935	0.1517657

3a+R1

0.2465435	0.7431984	0.0535040
0.0586937	-0.6771859	0.0129547
1.5370260	1.2781940	-0.0969417
	0.2465435 0.0586937 1.5370260	0.2465435 0.7431984 0.0586937 -0.6771859 1.5370260 1.2781940

С	1.1706635	-1.5320791	-0.1982553
Ν	-0.9107792	1.5025159	0.2817597
С	-1.2413339	-1.1823689	0.2008206
С	-2.1092731	0.8921473	0.4527541
5 N	-2.3055849	-0.4137566	0.4187841
С	2.4270594	-0.9939120	-0.3526516
С	2.5980828	0.4074181	-0.2952438
Н	1.7065991	2.3437154	-0.0767636
Н	1.0079487	-2.6052019	-0.2279993
$_{10}$ H	-2.9566167	1.5441206	0.6223825
Н	3.2864079	-1.6362971	-0.5132340
Н	3.5939056	0.8244486	-0.4107867
Н	-1.4178508	-2.2563540	0.1746889
С	-0.8761780	2.9883414	0.2734465
15 O	-0.0477969	3.5995526	-0.3380030
0	-1.8685782	3.4438553	1.0063140
С	-2.0096353	4.9007382	1.0518350
Н	-2.8688477	5.0718856	1.6962777
Н	-1.1025359	5.3348628	1.4734926
$_{20}$ H	-2.1835190	5.2791603	0.0437090

Allyl-cis-endo

-2.6996849	2.9314153	-2.6793631
-2.6269371	3.3685124	-1.6855917
-2.4409214	4.4955976	0.8670349
-2.1396037	2.6051687	-0.6248712
-3.0192099	4.6915966	-1.4744750
-2.9194172	5.2544090	-0.1984538
-2.0541083	3.1652689	0.6629292
-3.3992870	5.2813546	-2.3031156
-3.2230226	6.2840461	-0.0344909
-2.3748327	4.9042064	1.8703562
-1.6074585	1.2039253	-0.8218109
-2.1541769	0.6840229	-1.6077152
-1.7774998	0.4487474	0.4315034
-1.5913699	1.1340644	1.6412051
-1.4175789	0.4888032	2.4967279
-1.6487423	2.4048291	1.7786218
-1.9846068	-0.9263777	0.4803825
-1.9228552	-1.5881785	1.5000163
-2.2668098	-1.4254369	-0.7381176
-2.6284013	-2.8215072	-0.7544821
-3.4632722	-3.0048378	-0.0756115
-1.7783382	-3.4410654	-0.4579709
-2.9172476	-3.0299750	-1.7841892
-0.0876145	1.2970530	-1.2339520
	-2.6996849 -2.6269371 -2.4409214 -2.1396037 -3.0192099 -2.9194172 -2.0541083 -3.3992870 -3.2230226 -2.3748327 -1.6074585 -2.1541769 -1.7774998 -1.5913699 -1.4175789 -1.6487423 -1.9846068 -1.9228552 -2.2668098 -2.6284013 -3.4632722 -1.7783382 -2.9172476 -0.0876145	-2.6996849 2.9314153 -2.6269371 3.3685124 -2.4409214 4.4955976 -2.1396037 2.6051687 -3.0192099 4.6915966 -2.9194172 5.2544090 -2.0541083 3.1652689 -3.3992870 5.2813546 -3.2230226 6.2840461 -2.3748327 4.9042064 -1.6074585 1.2039253 -2.1541769 0.6840229 -1.7774998 0.4487474 -1.5913699 1.1340644 -1.4175789 0.4888032 -1.6487423 2.4048291 -1.9846068 -0.9263777 -1.9228552 -1.5881785 -2.2668098 -1.4254369 -2.6284013 -2.8215072 -3.4632722 -3.0048378 -1.7783382 -3.4410654 -2.9172476 -3.0299750 -0.0876145 1.2970530

Н	0.4432055	1.8522692	-0.4634116
Н	-0.0522466	1.8687214	-2.1651124
С	0.5655391	-0.0296518	-1.4948676
0	0.3761272	-0.4458839	-2.7259086
₅ Si	1.0622093	-1.6251217	-3.8237175
С	0.3079114	-1.1163512	-5.4547536
Н	0.5845664	-0.0903446	-5.7204950
Н	-0.7857490	-1.1746521	-5.4261841
Н	0.6540838	-1.7732152	-6.2616833
10 C	0.5086997	-3.3405211	-3.2979947
Н	0.7819026	-4.0616378	-4.0785534
Н	-0.5791780	-3.3894985	-3.1785660
Н	0.9726072	-3.6832265	-2.3672015
С	2.9255286	-1.4080889	-3.7778441
15 H	3.3915899	-2.0832099	-4.5061804
Н	3.3627418	-1.6322662	-2.7989735
Н	3.2136462	-0.3865971	-4.0502170
С	1.2539767	-0.8081267	-0.5712082
Н	1.5731257	-1.7944403	-0.8795958
20 C	1.6132183	-0.4651700	0.7562902
0	1.4325834	0.7594898	1.1899912
С	1.7890135	1.1183366	2.5540335
Н	1.3505776	0.4096203	3.2569613
Н	1.3630371	2.1100967	2.6910601
25 H	2.8758927	1.1337116	2.6518067
0	2.1774541	-1.2928263	1.5712558
Si	2.2033705	-3.0044140	2.0393830
С	2.0341999	-4.0825193	0.5141162
Н	2.1630860	-5.1303796	0.8141986
30 H	2.8012223	-3.8707014	-0.2394578
Н	1.0453069	-4.0020722	0.0503045
С	0.7637030	-3.1794525	3.2149493
Н	0.6563283	-4.2280627	3.5195922
Н	-0.1806335	-2.8652904	2.7554439
35 H	0.9152189	-2.5893104	4.1257711
С	3.8878353	-3.1472273	2.8316134
Н	4.0381937	-4.1625809	3.2180375
Н	3.9964117	-2.4551727	3.6735822
Н	4.6927913	-2.9431517	2,1169787

40

Allyl-cis-exo

Н	0.7307401	2.8572209	1.7917279
С	-0.1658650	3.3541249	1.4264645
45 C	-2.4560819	4.6404828	0.4752751
С	-0.8033044	2.8741502	0.2821244
С	-0.6693298	4.4693347	2.0975760

С	-1.8206327	5.1060187	1.6234681
С	-1.9476759	3.5280399	-0.2080498
Н	-0.1671443	4.8404739	2.9859912
Н	-2.2155799	5.9722699	2.1457849
5 H	-3.3368430	5.1316764	0.0743395
С	-0.3467505	1.6155000	-0.4230490
Н	0.7352152	1.5096182	-0.3618954
Ν	-0.7194388	1.7037255	-1.8423987
С	-1.9281916	2.3354855	-2.1742525
10 H	-2.2928910	2.1059040	-3.1705915
Ν	-2.5670979	3.1406123	-1.4112946
С	0.0054263	1.1008062	-2.8710748
0	-0.3512896	1.0810302	-4.0304054
0	1.1427290	0.5452502	-2.4062660
15 C	1.9729955	-0.0575027	-3.4215551
Н	2.2806264	0.6924721	-4.1528763
Н	1.4308824	-0.8578500	-3.9295705
Н	2.8373424	-0.4507032	-2.8868167
С	-1.0182905	0.3690820	0.2782909
$_{20}$ H	-2.0998140	0.4640829	0.1621385
Н	-0.7786041	0.4435401	1.3389658
С	-0.5809571	-0.9639607	-0.2540918
0	-1.2547254	-1.4973239	-1.2395482
Si	-2.8688023	-1.8051651	-1.8633171
25 C	-2.6299695	-1.6945767	-3.7125456
Н	-1.9796530	-2.4987861	-4.0745999
Н	-2.1859744	-0.7417899	-4.0201956
Н	-3.5952381	-1.7966335	-4.2232455
С	-4.1225692	-0.5852007	-1.1863202
30 H	-5.0989050	-0.8351876	-1.6224139
Н	-3.9150133	0.4582364	-1.4437919
Н	-4.2367028	-0.6586166	-0.0986372
С	-3.2368755	-3.5454833	-1.2696476
Н	-4.2082231	-3.8761702	-1.6578179
35 H	-3.2863174	-3.6048884	-0.1762680
Н	-2.4826649	-4.2591261	-1.6187480
С	0.5197988	-1.6993494	0.1837952
Н	0.6690745	-2.6527110	-0.3057193
С	1.4462067	-1.3716826	1.1882581
$_{40}$ O	1.4017731	-0.1913065	1.7760487
С	2.3323864	0.1019199	2.8526933
Н	2.2062814	-0.6153779	3.6650947
Н	2.0648397	1.1050344	3.1794556
Н	3.3566955	0.0756493	2.4780729
45 O	2.3828316	-2.1729346	1.5924293
Si	2.8573732	-3.8573449	1.2873352
С	3.4375359	-3.9465846	-0.4917877
Н	3.8592656	-4.9408622	-0.6851334

Н	4.2288756	-3.2149310	-0.6898762
Н	2.6350070	-3.7884433	-1.2200387
С	1.3653787	-4.9263197	1.6630553
Н	1.6548044	-5.9829923	1.6038832
₅ H	0.5364730	-4.7766037	0.9637904
Н	0.9918588	-4.7494205	2.6779334
С	4.2425505	-4.0703484	2.5198136
Н	4.6616142	-5.0813377	2.4501231
Н	3.8923909	-3.9297112	3.5482165
$_{10}$ H	5.0583458	-3.3624706	2.3369932

Allyl-trans-endo

Н	-3.7487289	2.8294833	1.3683395
15 C	-3.9940471	2.9555039	0.3155615
С	-4.6305498	3.2944963	-2.3842099
С	-3.0655094	2.5999138	-0.6629751
С	-5.2369797	3.4757777	-0.0496387
С	-5.5551374	3.6385719	-1.4011962
20 C	-3.3788340	2.7800493	-2.0230432
Н	-5.9539955	3.7519241	0.7175633
Н	-6.5223956	4.0413395	-1.6864307
Н	-4.8460173	3.4304923	-3.4391571
С	-1.7447862	1.9478645	-0.3160783
25 H	-1.3357439	2.3571381	0.6064105
Ν	-0.7721003	2.2354491	-1.3788168
С	-1.2272474	2.3281690	-2.7039967
Н	-0.4555376	2.2363725	-3.4611040
Ν	-2.4461639	2.5143308	-3.0443572
30 C	0.5649316	2.3610333	-1.0156668
0	0.9643462	2.2037299	0.1241209
0	1.3406080	2.6714665	-2.0667002
С	2.7334456	2.8914911	-1.7593071
Н	3.1765968	1.9913437	-1.3271517
35 H	2.8377919	3.7204824	-1.0565071
Н	3.1997314	3.1356821	-2.7130775
С	-1.9752017	0.4011883	-0.1256060
Н	-2.4951515	0.0337431	-1.0150601
Н	-2.6578974	0.2813398	0.7213584
40 C	-0.7392462	-0.4342690	0.0970102
0	-0.2494219	-0.5984278	1.2891705
Si	-0.5771492	-0.2464422	2.9716280
С	-2.1125242	-1.2248679	3.4284400
Н	-2.3041833	-1.1272488	4.5043401
$_{45}$ H	-1.9888726	-2.2921336	3.2136065
Н	-3.0121059	-0.8760285	2.9086569
С	-0.7758038	1.6015894	3.2133613
Н	-1.7632358	1.9688071	2.9129377

Н	-0.0121739	2.1562084	2.6579113
Н	-0.6552759	1.8388996	4.2778258
С	0.9693890	-0.9012416	3.7922219
Н	0.9064888	-0.7923848	4.8814225
5 H	1.8558439	-0.3538627	3.4534941
Н	1.1180778	-1.9638300	3.5713716
С	-0.1445759	-1.0355557	-1.0074755
Н	-0.6171875	-0.8746062	-1.9657800
С	1.0210573	-1.8314868	-1.0166592
10 O	1.6633585	-2.0619216	0.1015742
С	2.8577033	-2.8849142	0.0809801
Н	2.6169421	-3.8884628	-0.2742707
Н	3.1883348	-2.9100687	1.1175394
Н	3.6171720	-2.4304225	-0.5574181
15 O	1.5179745	-2.3632328	-2.0924413
Si	1.0409135	-2.5002236	-3.7955218
С	0.8143399	-0.7655028	-4.4733850
Н	0.8638432	-0.8020552	-5.5688294
Н	1.6071744	-0.0885340	-4.1351411
$_{20}$ H	-0.1509482	-0.3197000	-4.2115368
С	-0.5209376	-3.5323871	-3.8217510
Н	-0.8484351	-3.6806049	-4.8582445
Н	-1.3497246	-3.0599593	-3.2834493
Н	-0.3537192	-4.5236930	-3.3862651
25 C	2.5267156	-3.3694345	-4.5169591
Н	2.3779221	-3.5509082	-5.5881694
Н	2.6977567	-4.3400253	-4.0388741
Н	3.4376281	-2.7706013	-4.4077951

30 Allyl-trans-exo

Н	-0.6552623	-3.6981171	2.9292309
С	0.2858381	-4.0573284	2.5169903
С	2.6993967	-4.9905627	1.4604589
35 C	0.8375802	-3.4341726	1.3974771
С	0.9361365	-5.1410193	3.1099299
С	2.1462943	-5.6020663	2.5827999
С	2.0463541	-3.9084771	0.8568710
Н	0.5008291	-5.6225122	3.9803621
$_{40}$ H	2.6538337	-6.4436285	3.0446553
Н	3.6274138	-5.3421046	1.0211548
С	0.2168119	-2.2020376	0.7766451
Н	-0.8726069	-2.2482048	0.8184372
Ν	0.5866590	-2.1395053	-0.6457997
45 C	1.8616050	-2.5950876	-1.0254767
Н	2.2042728	-2.2492485	-1.9948116
Ν	2.5993346	-3.3651479	-0.3188890
С	-0.3435897	-1.6338587	-1.5499315

0	-1.4414200	-1.2201582	-1.2233132
0	0.1260144	-1.6594763	-2.8070122
С	-0.7892439	-1.1936211	-3.8213811
Н	-1.0431580	-0.1450124	-3.6511582
5 H	-1.6984622	-1.7978749	-3.8139289
Н	-0.2542651	-1.3139964	-4.7624686
С	0.6954503	-0.9294841	1.5655396
Н	1.7860336	-0.9001458	1.5459121
Н	0.3866511	-1.0759913	2.6055239
10 C	0.1336023	0.3783436	1.0642573
0	0.8483509	1.1277685	0.2753765
Si	2.4590199	1.5665546	-0.2357932
С	2.3438730	1.4818979	-2.1027850
Н	1.6183374	2.2066717	-2.4880665
15 H	2.0436573	0.4869486	-2.4496120
Н	3.3159490	1.7120837	-2.5550717
С	3.7722374	0.4260225	0.4677385
Н	4.7501353	0.7931733	0.1287554
Н	3.6860379	-0.6122388	0.1307141
20 H	3.7955181	0.4367220	1.5634459
С	2.6573105	3.3141238	0.4081856
Н	3.6101309	3.7387491	0.0692344
Н	2.6550138	3.3458602	1.5036215
Н	1.8538587	3.9657135	0.0489795
25 C	-1.1625613	0.7287447	1.4109805
Н	-1.7127157	0.0258321	2.0204620
С	-1.8771364	1.8696862	0.9914744
0	-1.2566167	2.8301357	0.3474231
С	-2.0102305	3.9909869	-0.0868914
30 H	-2.7984167	3.6906409	-0.7796325
Н	-1.2771963	4.6214694	-0.5867298
Н	-2.4399361	4.5047916	0.7745671
0	-3.1384832	2.0527871	1.2342078
Si	-4.5074997	1.0059810	1.6664214
35 C	-4.1733727	0.2652304	3.3583052
Н	-5.1107621	-0.1487702	3.7510953
Н	-3.8328325	1.0242497	4.0716915
Н	-3.4434865	-0.5510921	3.3506258
С	-4.6412360	-0.2478073	0.2842465
40 H	-5.3637984	-1.0278500	0.5542927
Н	-3.6872363	-0.7364751	0.0569277
Н	-4.9993533	0.2248180	-0.6372810
С	-5.9045122	2.2440784	1.7149870
Н	-6.0237171	2.7568927	0.7544122
$_{45}$ H	-5.7461134	3.0026409	2.4894485
Н	-6.8515407	1.7378805	1.9379073

A-cis-endo

Н	-1.3729977	3.4026120	-3.0386269
С	-1.7688512	3.7772684	-2.0968214
5 C	-2.7783030	4.7365867	0.3230164
С	-1.9678593	2.8951653	-1.0349648
С	-2.0676679	5.1337739	-1.9539862
С	-2.5687788	5.6120132	-0.7398839
С	-2.4859876	3.3734136	0.1831623
10 H	-1.9063991	5.8141547	-2.7854581
Н	-2.7998399	6.6675120	-0.6247312
Н	-3.1798053	5.0805605	1.2712905
С	-1.5689926	1.4376751	-1.1115801
Н	-1.7279359	1.0366274	-2.1135517
15 N	-2.4428561	0.6716291	-0.1996015
С	-2.7858544	1.2543411	1.0247800
Н	-3.0943140	0.5591322	1.7973597
Ν	-2.7677593	2.5136831	1.2629638
С	-2.8305714	-0.6090363	-0.5637855
20 O	-2.5583315	-1.1252377	-1.6318975
0	-3.5645937	-1.1983416	0.4023609
С	-3.9900475	-2.5395742	0.1096304
н	-3.1258871	-3,1985990	-0.0056845
Н	-4.5872553	-2.5612106	-0.8048971
25 H	-4.5896351	-2.8427273	0.9680817
С	-0.0664800	1.2744642	-0.7310931
H	0.0882928	1.6355566	0.2838544
Н	0.5003658	1.9129432	-1.4186492
С	0.4598685	-0.1281629	-0.8868360
30 O	0.6158122	-0.4325543	-2.1915789
Si	0.9923045	-1.8682850	-3.0437148
C	0.5612470	-1.4141176	-4.8141718
Ĥ	0.8122082	-2.2297948	-5.5032356
H	1.1076985	-0.5215974	-5.1393484
35 H	-0.5103466	-1.2082951	-4.9137601
С	-0.0535505	-3.3123746	-2.4440632
Ĥ	-0.0391625	-4.1144965	-3.1929490
H	-1 0907794	-2 9901553	-2 3055238
H	0.3016167	-3.7362555	-1.4988402
40 C	2 8368960	-2 2073492	-2 8617944
Η	3 1228838	-3 0918128	-3 4449271
н	3 1241637	-2 3917446	-1 8206721
н	3 4317495	-1.3622082	-3 2269902
C	0 7743958	-1 0016534	0 1040387
45 H	1 1892528	-1 9654548	-0 1685171
C	0.6825383	-0.8632986	1 5612048
õ	0 0691474	0 2704968	2 0041497
č	0 0001020	0 4152650	3 4304000
\mathbf{U}	0.0001020	0.7102000	0.4004000

Н	-0.5215132	-0.4340001	3.8795450
Н	-0.5519226	1.3407242	3.5980801
Н	1.0031502	0.4791278	3.8614156
0	1.1074559	-1.7086925	2.3297232

A-cis-exo

5

Н	0.5104978	2.9163230	1.7922590
С	-0.2593642	3.5105003	1.3052518
10 C	-2.2476379	5.0183084	0.0512671
С	-0.8372506	3.0439807	0.1248195
С	-0.6711547	4.7233241	1.8611227
С	-1.6699598	5.4738609	1.2338580
С	-1.8317194	3.8060318	-0.5151031
15 H	-0.2177070	5.0787038	2.7822602
Н	-1.9948923	6.4162106	1.6664243
Н	-3.0153990	5.5886037	-0.4625466
С	-0.4870548	1.6934628	-0.4638368
Н	0.5649430	1.4556659	-0.3019230
20 N	-0.6937140	1.7666225	-1.9256039
С	-1.7989790	2.4848722	-2.3961325
Н	-2.1384526	2.2159040	-3.3906037
Ν	-2.3978143	3.4108410	-1.7429711
С	0.1716095	1.0779573	-2.7605296
25 O	1.1302729	0.4381635	-2.3730340
0	-0.1718390	1.2254858	-4.0606970
С	0.7246960	0.6074953	-4.9991415
Н	0.7108927	-0.4796972	-4.8894835
Н	1.7437690	0.9717808	-4.8510378
30 H	0.3516645	0.8957591	-5.9822220
С	-1.3588222	0.5827597	0.1949302
Н	-2.4031291	0.7416401	-0.0956079
Н	-1.2754858	0.7141996	1.2727345
C	-0.9804295	-0.8278961	-0.1758216
35 O	-1.5767995	-1.2068205	-1.3287978
Si	-1.4962434	-2.6280424	-2.2/83162
C	-2.4303283	-2.1119958	-3.8259037
н	-1.9676096	-1.2341253	-4.2915518
н	-3.4680926	-1.8512668	-3.5891013
40 H	-2.4491298	-2.9186138	-4.568/3/5
C	-2.3880777	-4.0236528	-1.3827926
н	-2.3903171	-4.9327898	-1.99/2//6
н	-3.4315777	-3.7576252	-1.1/8814/
Н	-1.9136982	-4.2721076	-0.4272044
45 U	0.2929578	-3.0643154	-2.0/42906
H	0.3385465	-3.0584545	-3.5958430
H	0.7740881	-3.64//532	-1.8822415
Н	0.88/041/	-2.1552681	-2.8210319

С	-0.1739962	-1.6612397	0.5278106
Н	-0.0240305	-2.6722085	0.1672449
С	0.5739667	-1.4276310	1.7642751
0	0.5775042	-0.1365818	2.2141940
s C	1.3014141	0.0665960	3.4367732
Н	0.8885590	-0.5494398	4.2399638
Н	1.1877080	1.1260196	3.6719178
Н	2.3570155	-0.1863336	3.3068503
0	1.1716201	-2.3118601	2.3522362

10

B-cis-endo

Н	-2.6629920	-3.2261444	-0.0792934
С	-3.3368796	-2.3889168	-0.2389955
15 C	-5.0685971	-0.2231806	-0.6297386
С	-2.8556191	-1.0883722	-0.0883445
С	-4.6646037	-2.6136360	-0.5991790
С	-5.5226778	-1.5307396	-0.7932438
С	-3.7289263	-0.0108372	-0.2907066
20 H	-5.0278729	-3.6287857	-0.7227693
Н	-6.5599775	-1.6972333	-1.0651333
Н	-5.7470945	0.6054608	-0.7720865
С	-1.4052355	-0.8261477	0.2295583
Н	-0.9880507	-1.6145729	0.8557864
25 N	-1.3319343	0.4254274	1.0416763
С	-2.1175203	1.4486555	0.7541116
Н	-1.8820366	2.4231966	1.1543189
Ν	-3.2148830	1.3114062	0.0072249
С	-0.2913016	0.5346961	2.0415048
30 O	0.3351310	-0.4292402	2.3913377
0	-0.1977247	1.7800690	2.4822448
С	0.8224945	2.0145629	3.4955514
Н	1.8054351	1.7943769	3.0769345
Н	0.6280021	1.3839148	4.3641577
35 H	0.7300904	3.0696320	3.7449283
С	-0.5529641	-0.6695440	-1.0594441
Н	-0.9716442	0.1172431	-1.6848537
Н	-0.6296444	-1.6210246	-1.5959692
С	0.9071190	-0.4116431	-0.7692477
40 O	1.5171895	-1.5406089	-0.3937810
Si	3.1609607	-1.9643943	-0.0363834
С	3.0062009	-3.7740855	0.4189590
Н	3.9895646	-4.2007673	0.6497279
Н	2.5760428	-4.3588270	-0.4016371
$_{45}$ H	2.3711173	-3.9094549	1.3015630
С	3.7785628	-0.9429061	1.4182773
Н	4.7090368	-1.3804339	1.8010786

Н	3.0494559	-0.9465658	2.2360656
Н	3.9960765	0.0979421	1.1547847
С	4.1811762	-1.6973146	-1.5901931
Н	5.2210621	-1.9981697	-1.4128600
₅ H	4.1936245	-0.6504342	-1.9121823
Н	3.8018256	-2.3005673	-2.4226532
С	1.5335293	0.7941862	-0.8290301
Н	2.5892609	0.8350313	-0.5873624
С	1.0479476	2.1099781	-1.2569702
10 O	-0.2985955	2.1996195	-1.5323626
С	-0.6921921	3.4495492	-2.1349691
Н	-0.5999665	4.2713103	-1.4196447
Н	-1.7300441	3.3115681	-2.4440194
Н	-0.0676273	3.6697645	-3.0026522
15 O	1.7775611	3.0746157	-1.3625428
С	-3.8812600	2.5139456	-0.4773547
0	-4.6462714	2.4938275	-1.4007818
0	-3.5012654	3.5659925	0.2355845
С	-4.0826565	4.8398838	-0.1698584
$_{20}$ H	-3.6629720	5.5686067	0.5205743
Н	-3.7999329	5.0616184	-1.1999155
Н	-5.1684117	4.7894616	-0.0791897

B-cis-exo

25			
Н	0.5797308	3.0997892	1.8915546
С	-0.2294869	3.6699702	1.4444227
С	-2.3123144	5.1272648	0.2675532
С	-0.8302341	3.1931984	0.2794705
30 C	-0.6710868	4.8541517	2.0321148
С	-1.7086323	5.5758094	1.4411920
С	-1.8755755	3.9254129	-0.2986178
Н	-0.2044980	5.2139657	2.9435446
Н	-2.0518226	6.5038705	1.8868666
35 H	-3.1065359	5.7018790	-0.1855142
С	-0.4056002	1.8799130	-0.3304529
Н	0.6534103	1.6907889	-0.1579683
Ν	-0.5725896	1.9970608	-1.8118175
С	-1.6188592	2.6280113	-2.3138538
40 H	-1.8720150	2.4865380	-3.3541969
Ν	-2.3731696	3.4496544	-1.5767442
С	0.3698202	1.3070357	-2.6670271
0	1.3342289	0.7570558	-2.2112182
0	0.0160382	1.4255789	-3.9403705
45 C	0.9277329	0.8231334	-4.9038028
Н	0.9376413	-0.2594203	-4.7702220
Н	1.9297586	1.2307377	-4.7639533

Н	0.5237486	1.0943138	-5.8772088
С	-1.2362586	0.6955638	0.2275378
Н	-2.2939727	0.8499818	-0.0145778
Н	-1.1211559	0.7331467	1.3101559
5 C	-0.8227774	-0.6606172	-0.2900121
0	-1.4101980	-0.9170597	-1.4859233
Si	-1.5958833	-2.3869655	-2.3765070
С	-2.5734357	-1.8005698	-3.8701206
Н	-2.0335077	-1.0286016	-4.4315640
$_{10}$ H	-3.5439774	-1.3867553	-3.5737840
Н	-2.7664327	-2.6324031	-4.5577081
С	-2.5663346	-3.6091024	-1.3353522
Н	-2.7110377	-4.5449555	-1.8890884
Н	-3.5583234	-3.2188716	-1.0813757
15 H	-2.0537450	-3.8586964	-0.4002590
С	0.0901708	-3.0506804	-2.8916346
Н	-0.0144659	-3.6878718	-3.7785307
Н	0.5654288	-3.6570603	-2.1133937
Н	0.7857239	-2.2407836	-3.1419840
$_{20}$ C	0.0193259	-1.5206160	0.3235287
Н	0.2165181	-2.4817883	-0.1358629
С	0.7637911	-1.3725845	1.5848453
0	0.7463035	-0.1198081	2.1303419
С	1.4686781	-0.0049584	3.3742315
25 H	1.0648901	-0.6955540	4.1176298
Н	1.3325460	1.0279234	3.6973236
Н	2.5275564	-0.2251918	3.2211476
0	1.3719775	-2.2921388	2.0920608
С	-3.6639182	3.8787271	-2.1031985
30 O	-4.4822657	4.4312981	-1.4233147
0	-3.7663621	3.5505177	-3.3845896
С	-5.0313357	3.9027247	-4.0188711
Н	-4.9362059	3.5477710	-5.0429925
Н	-5.8515689	3.4040685	-3.5007294
35 H	-5.1657757	4.9846872	-3.9865676

A-trans-endo

Н	0.1230730	-4.1425854	-1.1160430
$_{40}$ C	1.2092225	-4.0749148	-1.1183692
С	3.9956006	-3.8984701	-1.1198274
С	1.8211624	-2.8271564	-0.9983993
С	1.9815908	-5.2323711	-1.2344858
С	3.3765323	-5.1412668	-1.2298682
45 C	3.2252855	-2.7329649	-1.0105167
Н	1.4965225	-6.2002732	-1.3246412
Н	3.9805624	-6.0403088	-1.3168394

Н	5.0767331	-3.7997331	-1.1288562
С	1.0289002	-1.5581381	-0.7731611
Н	0.0759986	-1.5843127	-1.3041102
Ν	1.7981367	-0.4249410	-1.3226702
5 N	3.8898558	-1.4923618	-0.9647986
С	3.1873394	-0.4389355	-1.1712640
Н	3.6715846	0.5285938	-1.2509433
С	1.1024799	0.6300601	-1.9089427
0	-0.0997056	0.6388680	-2.0726553
10 O	1.9379355	1.6213488	-2.2819446
С	1.2907064	2.7677937	-2.8601139
Н	0.6031674	3.2198945	-2.1412540
Н	0.7393624	2.4824510	-3.7591302
Н	2.0979627	3.4579511	-3.1057633
15 C	0.7572476	-1.3532037	0.7490443
Н	1.7156335	-1.2136776	1.2589345
Н	0.3200466	-2.2872181	1.1226162
С	-0.1805551	-0.2113732	1.0619845
С	0.2812990	0.9492602	1.5827232
20 O	-1.4589022	-0.4293243	0.7014273
Si	-2.7959503	-1.1138547	1.4895862
С	-2.8419636	-2.9537532	1.0677963
Н	-3.7350819	-3.4293056	1.4928116
Н	-1.9693690	-3.4888014	1.4615721
25 H	-2.8706064	-3.1094194	-0.0172562
С	-2.6323832	-0.8750796	3.3486752
Н	-3.5026146	-1.2928531	3.8699025
Н	-2.5585597	0.1873510	3.5995519
Н	-1.7407130	-1.3762040	3.7438011
30 C	-4.2944181	-0.2490241	0.7646623
Н	-5.2272473	-0.6721103	1.1568453
Н	-4.3107663	-0.3525799	-0.3262488
Н	-4.2765905	0.8203746	0.9968987
Н	1.3465265	1.0263893	1.7688272
35 C	-0.4288379	2.2005320	1.8783349
0	0.1501458	3.2380494	2.1498698
0	-1.7864850	2.1181830	1.8384695
С	-2.4656888	3.3552368	2.0987239
Н	-2.2135848	3.7357239	3.0922885
40 H	-3.5299568	3.1241179	2.0355087
Н	-2.1944812	4.1091291	1.3547087

A-trans-exo

$_{45}$ H	-1.1745085	-4.2644241	2.1873206
С	-0.2179926	-4.7438969	1.9898056
С	2.2433189	-5.9696608	1.4873572
С	0.6449010	-4.1971618	1.0411895

С	0.1451760	-5.8969881	2.6893154
С	1.3789803	-6.5048645	2.4397954
С	1.8800466	-4.8188985	0.7756860
Н	-0.5303297	-6.3153790	3.4301397
₅ H	1.6640721	-7.3998251	2.9859827
Н	3.1991171	-6.4332828	1.2634308
C	0.3621500	-2.8949468	0.3185852
Ĥ	-0.7090366	-2.7563729	0.1660316
N	0.9752836	-2.9855702	-1.0242154
10 C	2.2594881	-3.5427233	-1.1000346
H	2 8455993	-3 2546426	-1 9669667
N	2 7476983	-4 3519171	-0 2327687
C	0 2191967	-2 6730661	-2 1484855
õ	-0 9474357	-2 3360913	-2 1145214
u Õ	0.9455938	-2 8026307	-3 2771367
C.	0.2361036	-2 4859324	-4 4886946
н	-0 1116179	-1 4504263	-4 4691207
н	-0 6210333	-3 1517343	-4 6131346
н	0.0210000	-2 6360433	-5 2901365
C	0.9644732	-1 7298210	1 1381604
20 U	2 0420074	-1 0053070	1 2377632
Н	0 5705824	-1 8002011	2 1612082
C	0.7717215	-0 2904355	0 6944042
õ	1 6210209	0.5437981	1 3367176
" Si	3 1814784	1 0963268	0 9589044
2) 01 C	4 4411628	-0 1464425	1 6149590
H	5 4617838	0 2366225	1 4868715
н	4 3874032	-1 1084575	1 0912648
Н	4 2927475	-0.3390869	2 6838998
30 C	3 3405154	2 7302519	1 8688589
H	4 3387340	3 1646545	1 7357095
Н	3 1750684	2 5964994	2 9440528
Н	2 6009722	3 4504602	1 5042680
C	3.3726311	1.2756669	-0.9055612
35 H	4.3930499	1.5890070	-1.1588337
Н	2.6746340	2.0175599	-1.3042750
Н	3.1826784	0.3269206	-1.4216148
C	-0 2087793	0 1300300	-0 1334969
Ĥ	-0.8751307	-0.6062972	-0.5642209
40 C	-0.5706420	1.4970375	-0.5377688
0	0.2703072	2.4786940	-0.1072414
C	-0.1276029	3.8057319	-0.4798600
Ĥ	-0.1789469	3.9073250	-1.5674509
H	0.6370801	4.4668422	-0.0691670
45 H	-1.1075130	4.0480741	-0.0596197
0	-1.5558390	1.7435287	-1.2106286

B-trans-endo

Н	0.0782438	-4.1818963	-1.2774120
С	1.1644966	-4.1554875	-1.2859485
С	3.9619487	-4.0686410	-1.3280622
5 C	1.8171536	-2.9387098	-1.0848575
С	1.8944110	-5.3253833	-1.4876782
С	3.2883270	-5.2756493	-1.5073003
С	3.2184884	-2.9057610	-1.1025325
Н	1.3775184	-6.2681840	-1.6350827
10 H	3.8654127	-6.1794698	-1.6739169
Н	5.0409614	-4.0431084	-1.3580728
С	1.0309556	-1.6823302	-0.8060557
Н	0.0797256	-1.6872667	-1.3394086
Ν	1.8004808	-0.5218321	-1.3428008
15 N	3.8410609	-1.5974355	-1.0180101
С	3.1172512	-0.5021051	-1.2766197
Н	3.6347554	0.4315657	-1.4433987
С	1.0519055	0.6415149	-1.8170794
0	-0.1153959	0.5474905	-2.0750693
20 O	1.8531615	1.6856027	-1.9128092
С	1.2191006	2.9604797	-2.2526094
Н	0.7206227	3.3365096	-1.3578123
н	0.5169093	2.8119351	-3.0729513
Н	2.0423169	3.6085496	-2.5471547
25 C	0.7677546	-1.4683995	0.7142485
Н	1.7237782	-1.3379375	1.2325512
Н	0.3146366	-2.3939564	1.0852483
С	-0.1614312	-0.2996208	0.9766883
С	0.3390382	0.9101020	1.3136643
30 O	-1.4423772	-0.5399637	0.6683882
Si	-2.7827711	-1.1215857	1.5776753
С	-2.8658711	-2.9828830	1.2934062
Н	-3.7455994	-3.4076874	1.7925620
Н	-1.9879027	-3.5054537	1.6929661
35 H	-2.9507534	-3.2222785	0.2266908
С	-2.5134871	-0.7287768	3.3933120
Н	-3.3811746	-1.0531130	3.9807730
Н	-2.3797365	0.3457981	3.5494720
Н	-1.6350986	-1.2429004	3.8012915
40 C	-4.2710705	-0.2661347	0.8311893
Н	-5.1999059	-0.6225001	1.2924010
Н	-4.3388995	-0.4608846	-0.2451316
Н	-4.2164492	0.8178874	0.9725366
Н	1.4122979	1.0051952	1.4406210
45 C	-0.3607355	2.2100687	1.3262130
0	0.2009317	3.2431852	0.9977939
0	-1.6470069	2.1595817	1.7143845
С	-2.3460907	3.4227597	1.6978955

Н	-1.8460891	4.1415975	2.3505421
Н	-3.3488925	3.2030101	2.0627596
Н	-2.3843627	3.8233173	0.6821488
С	5.2545076	-1.4385654	-0.6924095
5 O	5.9103209	-2.3288489	-0.2286558
0	5.6493991	-0.2025691	-0.9666561
С	7.0411341	0.0951415	-0.6478406
Н	7.1690979	1.1413773	-0.9176719
Н	7.2142611	-0.0638730	0.4173496
10 H	7.6948957	-0.5482457	-1.2380543

B-trans-exo

Н	-2.4748881	-3.1558984	-2.5023630
15 C	-2.7147699	-2.1272252	-2.2464252
С	-3.3597804	0.5006794	-1.5544481
С	-1.9892218	-1.4892096	-1.2381419
С	-3.7372592	-1.4624893	-2.9202453
С	-4.0576811	-0.1509670	-2.5691306
20 C	-2.3172528	-0.1694000	-0.9059423
Н	-4.2879589	-1.9703200	-3.7054893
Н	-4.8622478	0.3715264	-3.0763212
Н	-3.6224147	1.5132734	-1.2845295
С	-0.8870875	-2.2433923	-0.5304667
25 H	-1.2237178	-3.2619605	-0.3320419
Ν	-0.6654469	-1.6248514	0.8077779
С	-0.9017004	-0.3440216	1.0320987
Н	-0.4977252	0.1013861	1.9292533
Ν	-1.6163659	0.4216434	0.2106361
30 C	0.0905847	-2.4168093	1.7632388
0	0.3321266	-3.5709820	1.5287177
0	0.4207659	-1.6935354	2.8165660
С	1.3744491	-2.3014486	3.7465193
Н	2.3718585	-2.2000411	3.3140269
35 H	1.1107908	-3.3457773	3.9108307
Н	1.2805205	-1.7192403	4.6611368
С	0.4733334	-2.3462227	-1.3198073
Н	0.2311340	-2.3052198	-2.3870847
Н	0.9140911	-3.3214756	-1.1073619
$_{40}$ C	1.4582107	-1.2559895	-0.9571092
0	1.1035657	-0.0131700	-1.3506880
Si	1.5256969	0.8525809	-2.7906261
С	1.5571260	2.6472211	-2.2506739
Н	1.8043468	3.3006116	-3.0958040
$_{45}$ H	2.3068882	2.8095649	-1.4693511
Н	0.5810069	2.9646811	-1.8660775
С	0.1585706	0.5548186	-4.0499252
Н	0.3343366	1.1649267	-4.9448627

Н	-0.8257588	0.8293639	-3.6543297
Н	0.1134149	-0.4904101	-4.3783185
С	3.1750892	0.2264333	-3.4271354
Н	3.4550004	0.7737692	-4.3356447
₅ H	3.1381173	-0.8374696	-3.6891845
Н	3.9687244	0.3644830	-2.6873832
С	2.4919444	-1.5351990	-0.1324889
Н	2.6096387	-2.5621669	0.1946116
С	3.4024693	-0.6124983	0.5742676
10 O	3.6642752	0.5447594	-0.0651205
С	4.5674250	1.4350248	0.6250621
Н	4.1459470	1.7389413	1.5863492
Н	4.6869920	2.2943473	-0.0342101
Н	5.5275180	0.9434426	0.7960863
15 O	3.8679464	-0.8905682	1.6668895
С	-1.5723020	1.8649206	0.4056326
0	-1.8207870	2.6387574	-0.4775636
0	-1.2202242	2.1460475	1.6519246
С	-1.0869385	3.5644112	1.9600892
$_{20}$ H	-0.8025609	3.5946138	3.0098944
Н	-0.3156262	4.0057474	1.3270940
Н	-2.0426064	4.0636244	1.7956116

5a-endo-keton

25			
Н	1.3119169	-4.0104518	1.7802359
С	0.5198097	-3.3883384	1.3685486
С	-1.4799023	-1.7749619	0.3062128
С	0.8749885	-2.2400503	0.6550262
30 C	-0.8116831	-3.7393081	1.5617777
С	-1.8054260	-2.9259354	1.0173582
С	-0.1346896	-1.4078013	0.1247975
Н	-1.0688767	-4.6314298	2.1251418
Н	-2.8532049	-3.1847812	1.1425501
35 H	-2.2595899	-1.1511916	-0.1013993
Ν	2.5281015	-0.5469951	0.0617371
Ν	0.2512229	-0.2308460	-0.5879541
С	3.1589411	0.3044642	0.9419010
0	3.7499834	-0.0563626	1.9425744
40 O	3.0757686	1.5938687	0.5321620
С	3.7447919	2.5364542	1.3845451
Н	3.3305127	2.5022400	2.3950055
Н	3.5671928	3.5114032	0.9295684
Н	4.8157117	2.3226161	1.4295551
45 C	-0.6341123	0.7939290	-0.8834902
0	-1.7904414	0.8750709	-0.5201593
0	-0.0369513	1.7502089	-1.6449919
С	-0.8971520	2.8393724	-2.0084755

Н	-1.7452736	2.4760199	-2.5935366
Н	-0.2756770	3.5077703	-2.6057522
Н	-1.2687389	3.3530957	-1.1184392
С	2.3479469	-1.9522713	0.4160616
5 H	2.9256851	-2.1353937	1.3228126
С	2.8953390	-2.8131002	-0.7451733
Н	2.7479685	-3.8808362	-0.5641339
Н	3.9727118	-2.6237111	-0.8529508
С	1.0823834	-0.7177074	-3.4738732
10 O	-0.1248463	-0.7762445	-3.4374595
0	1.7928570	-0.4735511	-4.5933318
С	1.0141343	-0.3501792	-5.7968178
Н	1.7363537	-0.1738136	-6.5941039
Н	0.3152196	0.4864826	-5.7164188
15 H	0.4526268	-1.2695628	-5.9796306
С	1.6569860	-0.1156550	-1.0121526
Н	1.8456810	0.9305827	-1.2108291
С	2.2058324	-2.4473581	-2.0504024
0	1.8770891	-3.2683188	-2.8792692
$_{20}$ C	2.0203500	-0.9344108	-2.2931328
Н	3.0165896	-0.5746741	-2.5823864

5a-pyran-trans

25 H	-0.5218450	-4.3817697	0.1727200
С	-1.0833924	-3.4517046	0.1208319
С	-2.4821491	-1.0497488	0.0141344
С	-0.3763902	-2.2503862	0.0459358
С	-2.4744375	-3.4738155	0.1357783
30 C	-3.1627752	-2.2634733	0.0851030
С	-1.0773326	-1.0266294	-0.0165106
Н	-3.0088831	-4.4172562	0.1950559
Н	-4.2491306	-2.2508423	0.1031691
Н	-3.0321425	-0.1233254	-0.0231978
35 N	1.6124781	-1.0147202	0.5763765
Ν	-0.3169684	0.1889723	-0.0921650
С	2.7207191	-0.9810122	1.3950528
0	3.2672298	-1.9722605	1.8389467
0	3.1010284	0.2899317	1.6647612
$_{40}$ C	4.2348354	0.4032317	2.5401779
Н	4.0170701	-0.0510389	3.5097859
Н	4.4079844	1.4742706	2.6479543
Н	5.1086899	-0.0858201	2.1027612
С	-0.8937735	1.4470761	-0.2396738
45 O	-2.0818839	1.7002942	-0.2504886
0	0.0592240	2.4050599	-0.3598106
С	-0.4483880	3.7404353	-0.5053731
Н	-1.0702537	3.8184353	-1.4002587

Н	0.4356384	4.3721384	-0.5955560
Н	-1.0393130	4.0255257	0.3685171
С	1.1365615	-2.2830940	0.0254624
Н	1.5106174	-3.0828160	0.6648150
5 C	1.1428502	0.0949566	-0.1839410
Н	1.5805098	1.0146527	0.1727771
С	1.7261139	-2.4350522	-1.3926082
Н	1.3257333	-3.3030383	-1.9161119
Н	2.8104575	-2.5886444	-1.2943882
10 C	1.3166897	-2.2999388	-4.4478184
0	1.4902071	-3.4719122	-4.1514461
0	1.0808643	-1.9013160	-5.7264331
С	1.0461227	-2.9552430	-6.6966099
Н	0.8578416	-2.4661373	-7.6532527
15 H	0.2482392	-3.6673787	-6.4673838
Н	1.9989078	-3.4917773	-6.7213420
С	1.3183421	-1.1367465	-3.5563911
Н	1.1764564	-0.1648393	-4.0152005
С	1.4911977	-1.1954539	-2.2190537
20 O	1.5448702	0.0105888	-1.5682946

5a-exo-keton

Н	-0.8526306	-4.1758946	0.1555005
25 C	-1.3398122	-3.2031910	0.1492726
С	-2.5460420	-0.6996957	0.1526551
С	-0.5444720	-2.0620998	0.0218879
С	-2.7223271	-3.1161773	0.2743225
С	-3.3145205	-1.8546837	0.2735949
30 C	-1.1478712	-0.7851387	0.0237761
Н	-3.3234789	-4.0147153	0.3768013
Н	-4.3921901	-1.7557400	0.3708331
Н	-3.0222819	0.2675533	0.1652858
Ν	1.5961823	-0.9970533	0.3058673
35 N	-0.3125510	0.3718096	-0.1180529
С	2.6990911	-1.0488434	1.1255760
0	3.1568279	-2.0760158	1.5891243
0	3.1987381	0.1874740	1.3684551
С	4.3731227	0.2018244	2.1940823
$_{40}$ H	4.1628024	-0.2397250	3.1712055
Н	4.6384825	1.2545441	2.2986007
Н	5.1833433	-0.3532798	1.7150198
С	-0.7919852	1.6704321	-0.0491267
0	-1.9167397	2.0209357	0.2510894
45 O	0.1848429	2.5591135	-0.3822581
С	-0.2116477	3.9375696	-0.3101531
Н	-1.0483437	4.1316938	-0.9852048
Н	0.6689705	4.5034383	-0.6154443

Н	-0.5051926	4.2014045	0.7089047
С	0.9533803	-2.2253715	-0.1402486
Н	1.3199936	-3.0326978	0.4944704
С	1.1343581	0.1758101	-0.3840633
5 H	1.6535719	1.0392312	0.0112458
С	1.3534336	-2.5058982	-1.6136008
Н	0.8455032	-3.3894556	-2.0085800
Н	2.4386765	-2.6662341	-1.6482932
С	1.4088261	0.0654976	-1.9243852
$_{10}$ H	0.8328826	0.8258290	-2.4525055
С	1.0230113	-1.3168527	-2.4945631
0	0.5062432	-1.4095140	-3.5875978
С	2.8914673	0.3025671	-2.1861397
0	3.7860882	-0.4401916	-1.8363619
15 O	3.0892429	1.4535179	-2.8529059
С	4.4633093	1.7628918	-3.1553774
Н	4.4337457	2.7053077	-3.7020090
Н	4.9045945	0.9735250	-3.7687186
Н	5.0427293	1.8670979	-2.2345548

20

5a-pyran-cis

н	-2 1324212	3 7687270	-0 0503224
C	-1 7597477	3 1241595	0.7428931
	-0 8644677	1 4244425	2 7589715
2.0 C	-1.3915075	1 8157797	0 4259474
C C	-1 6694562	3 6009504	2 0477185
Ċ	-1 2266173	2 7378651	3 0496261
C C	-0.9222611	0.9536329	1 4375741
H	-1 9559412	4 6222218	2 2806602
H	-1 1645628	3 0819600	4 0783851
Н	-0 5162865	0 7734341	3 5462504
\hat{C}	-1 5408526	1 2084323	-0 0863627
н	-2 3722860	1 7021080	-1 4804400
N	-0 5744840	-0 3801108	1 0005143
	-0.37 ++0+0		-0 2732164
С Ц	1 0365100	1 02/8373	0.2612508
N	1 9690191	-1.9240373	-0.2012590
	-1.0009101	-0.1203403	-0.0020900
	-0.2021213	1.4207007	1 065/000
40 П	0.0970200	2.4009027	-1.0004000
	-0.3347343	1.14/0330	-2.0012007
0	0.4119000	-0.7643229	-1.0390493
	0.8222891	0.4954920	-1.3037131
	2.1258063	0.8316743	-1.3093638
45 H	2.41/2/30	1.8141262	-1.6626753
C	0.3033101	-1.1540250	1.8719060
0	0.8721500	-0.7743765	2.8/3430/
0	0.4120757	-2.3982261	1.3664361

С	1.4749995	-3.1904091	1.9255452
Н	2.4359465	-2.7467925	1.6581273
Н	1.3672848	-4.1734712	1.4664246
Н	1.3737588	-3.2559311	3.0108478
5 C	-2.8094350	-0.6805550	-1.7267410
0	-3.5166940	-0.0309265	-2.4732464
0	-2.8660743	-2.0247805	-1.5938629
С	-3.8487125	-2.6702379	-2.4198992
Н	-4.8513063	-2.3132580	-2.1721354
10 H	-3.7542183	-3.7337030	-2.1993375
Н	-3.6492641	-2.4769606	-3.4767635
С	3.2082010	-0.0230610	-0.7944343
0	3.1146372	-1.1101226	-0.2556609
0	4.4042170	0.6009144	-0.9855219
15 C	5.5462095	-0.1096864	-0.4925663
Н	6.4057675	0.5221662	-0.7202438
Н	5.6428894	-1.0801500	-0.9879017
Н	5.4656479	-0.2719283	0.5861495

20 5a-endol

Н	-1.9450627	-3.9215472	0.3879120
С	-0.9435906	-3.5315378	0.5587538
С	1.6133124	-2.5224540	0.9770291
25 C	-0.6586495	-2.2185630	0.1706783
С	0.0251751	-4.3435793	1.1398561
С	1.3045361	-3.8275119	1.3490537
С	0.6416744	-1.7083295	0.3732164
Н	-0.2146557	-5.3639753	1.4243819
30 H	2.0736604	-4.4412773	1.8097892
Н	2.6078883	-2.1317364	1.1335916
С	-1.7765675	-1.3712569	-0.4255009
Н	-2.3134033	-1.9326663	-1.1914049
Ν	-1.2090153	-0.1892368	-1.0598806
35 C	-1.5327916	0.1490972	-2.3454156
0	-2.3049855	-0.4785871	-3.0497188
0	-0.8957289	1.2814836	-2.7378070
С	-1.1884507	1.6952224	-4.0797487
Н	-0.6044176	2.6032312	-4.2347348
40 H	-2.2554641	1.9012897	-4.1974993
Н	-0.8938833	0.9233455	-4.7952563
С	-2.7565513	-0.8831936	0.6599486
Н	-3.0891336	-1.7055742	1.3020483
Н	-3.6529444	-0.4533846	0.1921505
45 C	-2.1056614	0.1654988	1.5178787
С	-0.9508836	0.8055578	1.1427459
0	-2.7564623	0.4130792	2.6494840
С	-0.3857887	1.7940309	2.0469540

0	-0.8877470	2.1153381	3.1338036
0	0.7510363	2.3562043	1.6027683
С	1.3451386	3.3418545	2.4643086
Н	0.6591272	4.1779471	2.6212956
5 H	2.2436184	3.6733354	1.9437482
Н	1.5998128	2.9014362	3.4313641
Ν	0.9164246	-0.3613341	-0.0151405
С	2.1620695	0.0211636	-0.4840568
0	3.1714978	-0.6578935	-0.4556310
10 O	2.1397377	1.2825266	-0.9847574
С	3.4040281	1.7525033	-1.4690694
Н	3.2195840	2.7727793	-1.8078772
Н	3.7565713	1.1320507	-2.2970375
Н	4.1530441	1.7404052	-0.6731184
15 H	-2.2379927	1.1230116	3.1279503
С	-0.2783960	0.5036781	-0.1895381
Н	0.0502935	1.4175685	-0.6675175

- 20
- 25

30