Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2008

SUPPLEMENTARY MATERIAL

Formal Radical Closure onto Aromatic Rings — a General Route to Carbocycles

Derrick L. J. Clive,* Rajesh Sunasee, and Zhenhua Chen

Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

E-mail: derrick.clive@ualberta.ca

6-Butyl-6-hydroxy-1,2,3,6-tetrahydroindene-3a-carboxylic Acid *tert*-Butyl Ester (10k).

n-BuMgCl (2 M in THF, 0.15 mL, 0.3 mmol) was added at a fast dropwise rate to a

stirred and cooled (-78 °C) solution of **10e** (57.9 mg, 0.25 mmol) in Et_2O (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to 0 °C, quenched

by dropwise addition of water, and extracted with Et_2O . The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**10k**) was used directly in the next step.

5-Butylindan (10l).

General procedure B for rearomatization was followed, using BiCl₃.H₂O (82.5 mg, 0.25 mmol), **10k** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and a reaction time of 8 h. Flash chromatography of the crude product over silica gel, using hexane, gave **10l** (35.3 mg, 82% over two steps) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 0.93 (t, *J* = 7.6 Hz, 3 H), 1.32-1.42 (m, 2 H), 1.56-1.63 (m, 2 H), 2.07 (apparent quintet, *J* = 7.6 Hz, 2 H), 2.58 (t, *J* = 8 Hz, 2 H), 2.86-2.91 (m, 4 H), 6.95-7.15 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.2 (q), 22.7 (t), 25.5 (t), 32.7 (t), 33.1 (t), 34.3 (t), 35.8 (t), 124.3 (d), 124.7 (d), 126.5 (d), 141.1 (s), 141.6 (s), 144.5 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3007, 2956, 2855, 1491, 1458, 1440;

exact mass m/z calcd for C₁₃H₁₈ 174.14085, found 174.14076.

6-Hydroxy-6-isopropyl-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl Ester

(10m).

10e 10m

i-PrMgBr (2 M in Et₂O, 0.12 mL, 0.24 mmol) was added at a fast dropwise rate to a stirred and cooled (-78 °C) solution of **10e** (45.7 mg, 0.20 mmol) in Et₂O (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to 0 °C, quenched by dropwise addition of water, and extracted with Et₂O. The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**10m**) was used directly in the next step.

5-Isopropylindan (10n).²¹

10m

10n

General procedure B for rearomatization was followed, using BiCl₃.H₂O (65 mg, 0.2

mmol), **10m** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and a reaction time of 2 h. Flash chromatography of the crude product over silica gel (1.5 x 12 cm), using hexane, gave **10n** (23.4 mg, 75%) as an oil: ¹H NMR (CDCl₃, 500 MHz) δ 1.25 (d, *J* = 7.0 Hz, 6 H), 2.07 (apparent quintet, *J* = 7.5 Hz, 2 H), 2.85-2.92 (m, 5 H), 7.02-7.16 (m, 3 H); ¹³C NMR (CDCl₃, 125 MHz) δ 24.3 (q), 25.5 (t), 32.5 (t), 32.9 (t), 34.0 (d), 122.3 (d), 124.1 (d), 124.3 (d), 141.6 (s), 144.3 (s), 147.0 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3008, 2958, 2867, 1493, 1460; exact mass *m/z* calcd for C₁₂H₁₆ 160.12520, found 160.12504.

6-Allyl-6-hydroxy-1,2,3,6-tetrahydroindene-3a-carboxylic Acid *tert*-Butyl Ester (10q).

Allylmagnesium bromide (1 M in Et₂O, 0.33 mL, 0.33 mmol) was added at a fast dropwise rate to a stirred and cooled (-78 °C) solution of **10e** (51 mg, 0.22 mmol) in Et₂O (5 mL). The cold bath was removed and stirring was continued for 1 h. The mixture was cooled to

0 °C, quenched by dropwise addition of water, and extracted with Et_2O . The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**10q**) was used directly in the next step.

5-Allylindan (10r).²²

General procedure B for rearomatization was followed, using BiCl₃.H₂O (74 mg, 0.33 mmol), **10q** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave **10r** (20 mg, 75%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 2.07 (apparent quintet, J = 7.4 Hz, 2 H), 2.88 (t, J = 7.4 Hz, 2 H), 2.89 (t, J = 7.4 Hz, 2 H), 3.36 (d, J = 6.8 Hz, 2 H), 5.05 (ddd, J = 10.0, 2.0, 1.2 Hz, 1 H), 5.10 (ddd J = 16.8, 1.6. 1.6 Hz, 1 H), 5.98 (ddd, J = 16.8, 10.0. 6.8 Hz, 1 H), 6.97 (d, J = 6.8 Hz, 1 H), 7.08 (s, 1 H), 7.16 (d, J = 7.6 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.4 (t), 32.4 (t), 32.7 (t), 40.0 (t), 115.2 (t), 124.1 (d), 124.4 (d), 126.2 (d), 137.7 (s), 137.8 (d), 141.8 (s), 144.4 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3076, 3007, 2951, 2844, 1639, 1489, 1437; exact mass *m*/*z* calcd for C₁₂H₁₄ 158.10956, found 158.10989.

6-Hydroxy-6-prop-2-ynyl-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl

Ester (10s).

A mixture of propargyl bromide $(80\%''_w$ in PhMe, 0.117 mL, 1.05 mmol), Mg (25 mg, 1.05 mmol) and HgCl₂ (1 mg, 0.004 mmol) was heated to reflux. The Mg dissolved, at which point the heat source was removed, and stirring was continued for 45 min. The resulting propargylmagnesium bromide was added at a fast dropwise rate to a stirred and cooled (-78 °C) solution of **10e** (84 mg, 0.358 mmol) in Et₂O (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to 0 °C, quenched by dropwise addition of saturated aqueous NH₄Cl, and extracted with Et₂O. The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**10s**) was used directly in the next step.

General procedure B for rearomatization was followed, using BiCl₃.H₂O (120 mg, 0.358

mmol), **10s** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave **10t** (41 mg, 73%) as an oil: ¹H NMR (CDCl₃, 300 MHz) δ 2.10 (apparent quintet, J = 7.6 Hz, 2 H), 2.19 (t, J = 2.8 Hz, 1 H), 2.92 (apparent q, J = 7.2 Hz, 4 H), 3.60 (d, J = 2.8 Hz, 2 H), 7.12-7.27 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 24.5 (t), 25.5 (t), 32.4 (t), 32.7 (t), 70.0 (d), 82.5 (s), 123.8 (d), 124.3 (d), 125.6 (d), 133.8 (s), 142.6 (s), 144.7 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3298, 3011, 2950, 2867, 2843, 2120, 1490; exact mass *m*/*z* calcd for C₁₂H₁₂ 156.09390, found 156.09399.

6-Hydroxy-6-(trimethylsilanylethynyl)-1,2,3,6-tetrahydroindene-3a-carboxylic Acid *tert*-Butyl Ester (10u).

Trimethylsilylacetylene (0.16 mL, 1.1 mmol) was added at a slow dropwise rate to a stirred and cooled (-78 °C) solution of *i*-PrMgBr (2 M in Et₂O, 0.55 mL, 1.1 mmol). The cooling bath was removed and stirring was continued for 2 h. The resulting Grignard reagent was taken up into a syringe and added at a fast dropwise rate to a stirred and cooled (-78 °C) solution of **10e**

(52 mg, 0.222 mmol) in Et_2O (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to 0 °C, quenched by dropwise addition of saturated aqueous

 NH_4Cl , and extracted with Et_2O . The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**10u**) was used directly in the next step.

5-Ethynylindan (10v).²³

General procedure B for rearomatization was followed, using BiCl₃.H₂O (74 mg, 0.222 mmol), **10u** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave **10v** (18 mg, 57%) as an oil: ¹H NMR (CDCl₃, 300 MHz) δ 2.08 (apparent quintet J = 7.6 Hz, 2 H), 2.90 (two overlapping apparent q, J = 7.2 Hz, 4 H), 3.01 (s, 1 H), 7.16-7.36 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.3 (t), 32.6 (t), 32.9 (t), 75.9 (d), 84.4 (s), 119.5 (s), 124.3 (d), 128.0 (d), 130.2 (d), 144.3 (s), 145.4 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3292, 2952, 2868, 2843, 2104, 1485; exact mass m/z calcd for C₁₁H₁₀ 142.07825, found 142.07818.

6-Hydroxy-6-phenylethynyl-1,2,3,6-tetrahydroindene-3a-carboxylic Acid *tert*-Butyl Ester (10w).

i-PrMgBr (2 M in Et₂O, 0.164 mL, 0.328 mmol) was added at a slow dropwise rate to a stirred and cooled (-78 °C) solution of phenylacetylene (0.036 mL, 0.327 mmol) in dry THF (3 mL). The cooling bath was removed and stirring was continued for 1 h. The resulting acetylenic Grignard reagent was added a fast dropwise rate to a stirred and cooled (-78 °C) solution of **10e** (50 mg, 0.214 mmol) in Et₂O (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to 0 °C, quenched by dropwise addition of saturated aqueous NH₄Cl, and extracted with Et₂O. The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**10w**) was used directly in the next step.

5-Phenylethynylindan (10x).²⁴

General procedure B for rearomatization was followed, using BiCl₃.H₂O (73 mg, 0.218 mmol), **10w** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave **10x** (29 mg, 62%) as an oil: ¹H NMR (CDCl₃, 300 MHz) δ 2.16 (apparent quintet, J = 7.5 Hz, 2 H), 2.93 (two overlapping apparent t, J = 7.5 Hz, 4 H), 7.19-7.56 (m, 8 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.3 (t), 32.7 (t), 32.9 (t), 88.2 (s), 90.1 (s), 120.7 (s), 123.6 (s), 124.3 (d), 127.5 (d), 127.9 (d), 128.3 (d), 129.6 (d), 131.5 (d), 144.4 (s), 144.8 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3061, 3032, 2953, 2843, 2207, 1597, 1494; exact mass *m*/*z* calcd for C₁₇H₁₄ 218.10956, found 218.10942.

1-(3-Bromopropyl)-2-methoxycyclohexa-2,5-dienecarboxylic Acid *tert*-Butyl Ester (15a).

The general procedure for reductive alkylation was followed, using 15 (427.1 mg, 2.05

mmol) in dry THF (15 mL), *t*-BuOH (0.22 mL, 2.26 mmol), liquid NH₃ (50 mL), Li (30.2 mg, 4.31 mmol), and 1,3-dibromopropane (0.52 mL, 5.13 mmol) in THF (15 mL). Flash chromatography of the crude product over silica gel (3 x 21 cm), using first hexane and then 1:9 EtOAc-hexane, gave **15a** (583.9 mg, 86%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 1.42 (s, 9 H), 1.70-1.78 (m, 3 H), 2.07-2.13 (m, 1 H), 2.80-2.86 (m, 2 H), 3.35-3.39 (m, 2 H), 3.55 (s, 3 H),

4.82-4.84 (m, 1 H), 5.37-5.41 (m, 1 H), 5.86-5.90 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 26.5 (t), 27.9 (q), 28.5 (t), 32.9 (t), 34.0 (t), 52.2 (s), 54.2 (q), 80.6 (s), 93.6 (d), 126.8 (d), 127.2 (d), 152.9 (s), 172.4 (s); v_{max} (CDCl₃ cast; cm⁻¹) 2926, 2935, 1730, 1687, 1649, 1456, 1209; exact mass *m*/*z* calcd for C₁₅H₂₃⁷⁹BrNaO₃ (M + Na) 353.07228, found 353.07245.

1-(3-Bromopropyl)-2-methoxy-4-oxocyclohexa-2,5-diene-carboxylic Acid *tert*-Butyl Ester (15b).

General procedure A for oxidation was followed, using CrO_3 (1.51 g, 15.1 mmol), Ac_2O (2.6 mL), AcOH (5.2 mL), PhH (15 mL), **15a** (1.00 g, 3.02 mmol) in PhH (20 mL), and a reaction time of 5 h. Flash chromatography of the crude product over silica gel (2 x 18 cm), using first hexane and then EtOAc-hexane mixtures up to 3:7 EtOAc-hexane, gave **15b** (0.646 g, 62%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 1.39 (s, 9 H), 1.42-1.59 (m, 1 H), 1.60-1.68 (m, 1

H), 2.05-2.12 (m, 1 H), 2.29-2.37 (m, 1 H), 3.33 (t, J = 6.6 Hz, 2 H), 3.76 (s, 3 H), 5.68 (d, J = 1.3 Hz, 1 H), 6.31 (dd, J = 9.9, 1.4 Hz, 1 H), 6.47 (d, J = 9.9 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 27.0 (t), 27.6 (q), 32.6 (t), 32.7 (t), 55.7 (s), 55.8 (q), 82.8 (s), 104.2 (d), 130.3 (d), 143.0 (d), 167.5 (s), 173.2 (s), 187.6 (s); v_{max} (CDCl₃ cast; cm⁻¹) 2977, 2940, 1737, 1660, 1599, 1249; exact mass m/z calcd for C₁₅H₂₁⁷⁹BrNaO₄ (M + Na) 367.05154, found 367.05131.

The oxidation was also done using PDC-*t*-BuOOH:¹² Celite (8 g) was added to a stirred solution of **15a** (1.0 g, 3.02 mmol) in PhH (40 mL), followed by PDC (4.546 g, 12.08 mmol) and then *t*-BuOOH (70%, 1.55 mL, 12.08 mmol) was added dropwise. Stirring was continued for 4 h after the end of the addition, and the mixture was then filtered through a pad of Celite (4 x 6 cm). Evaporation of the filtrate and flash chromatography of the residue over silica gel (2 x 17 cm), using EtOAc-hexane mixtures from 1:9 to 3:7, gave **15b** (771 mg, 74 %) as an oil identical with material made using CrO₃.

1-(3-Iodopropyl)-2-methoxy-4-oxocyclohexa-2,5-diene-carboxylic Acid *tert*-Butyl Ester (15c).

The general procedure for Finkelstein displacement was followed, using acetone (10 mL), **15b** (180.7 mg, 0.52 mmol), anhydrous NaI (274.9 mg, 1.83 mmol), and a reaction time of

16 h. Flash chromatography of the crude product over silica gel (1.5 x 15 cm), using 10% EtOAc-hexane, gave **15c** (184.8 mg, 90%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 1.34 (s, 9 H), 1.40-1.60 (m, 2 H), 1.97-2.04 (m, 1 H), 2.22-2.29 (m, 1 H), 3.07 (t, *J* = 6.8 Hz, 2 H), 3.72 (s, 3 H), 5.64 (d, *J* = 1.3 Hz, 1 H), 6.23 (dd, *J* = 9.9, 1.5 Hz, 1 H), 6.44 (d, *J* = 9.9 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 5.3 (t), 27.6 (q), 27.7 (t), 34.8 (t), 55.6 (s), 55.9 (q), 82.8 (s), 104.1

(d), 130.2 (d), 143.0 (d), 167.4 (s), 173.3 (s), 187.6 (s); v_{max} (CH₂Cl₂ cast; cm⁻¹) 2976, 2937, 1736, 1660, 1598, 1222; exact mass m/z calcd for C₁₅H₂₁INaO₄ (M + Na) 415.03768, found 415.03778.

4-Methoxy-6-oxo-1,2,3,6,7,7a-hexahydroindene-3a-carboxylic Acid *tert*-Butyl Ester (15d).

The general procedure for radical cyclization was followed, using Bu₃SnH (0.20 mL, 0.61 mmol) and AIBN (10.1 mg, 0.061 mmol) in PhH (5 mL), and **15c** (241 mg, 0.61 mmol) in PhH (10 mL). Heating was continued for 18 h after the addition. Flash chromatography of the crude product over KF-flash chromatography silica gel ($10\%^{w}/_{w}$ KF) (2 x 22 cm), using 1:9 to 3:7 EtOAc-hexane mixtures, gave **15d** (153.8 mg, 94%) as an oil: ¹H NMR (CDCl₃, 300 MHz) δ 1.41 (s, 9 H), 1.60-1.75 (m, 3 H), 1.86-1.90 (m, 1 H), 2.06-2.19 (m, 1 H), 2.34-2.41 (m, 2 H),

2.59-2.67 (m, 2 H), 3.69 (s, 3 H), 5.41 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.3 (t), 27.9 (q), 31.2 (t), 34.1 (t), 38.2 (t), 43.0 (d), 56.1 (q), 57.8 (s), 81.5 (s), 103.0 (d), 171.8 (s), 175.8 (s), 198.3 (s); v_{max} (CH₂Cl₂ cast; cm⁻¹) 2974, 1732, 1662, 1218; exact mass *m/z* calcd for C₁₄H₂₂NaO₄ (M + Na) 289.14103, found 289.14112.

4-Methoxy-6-oxo-7-phenylselanyl-1,2,3,6,7,7a-hexahydro-indene-3a-carboxylic Acid *tert*-Butyl Ester (pre-15e).

BuLi (2.5M in hexane, 0.26 mL, 0.64 mmol) was added dropwise to a stirred and cooled solution (-78 °C) of *i*-Pr₂NH (0.094 mL, 0.69 mmol) in THF (5 mL). Stirring was continued at (-78 °C) for 30 min and a solution of **15d** (148.9 mg) in THF (3 mL plus 1 mL as a rinse) was added dropwise. Stirring was continued at (-78 °C) for 1 h. PhSeCl (128.6 mg, 0.67 mmol) in THF (3 mL) was added rapidly and stirring was continued at -78 °C for 1 h. The mixture was quenched with saturated aqueous NH₄Cl and then with water, and extracted with Et₂O (3 times). The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using 30% EtOAc-hexane, gave **pre-15e** as a mixture of isomers [isomer with PhSe and adjacent ring fusion hydrogen cis, 164.9 mg (70%), isomer with PhSe and adjacent ring fusion hydrogen trans, 28.3 mg (12%)]. The

stereochemistry was assigned on the basis that only the cis isomer gave an olefin on oxidation and both isomers had very similar NMR spectra. The cis isomer had: ¹H NMR (CDCl₃, 300 MHz) δ 1.28-1.42 (m, 2 H), 1.51 (s, 9 H), 1.55-1.81 (m, 2 H), 1.99-2.16 (m, 2 H), 2.26-2.42 (m, 1 H), 3.04-3.11 (m, 1 H), 3.71-3.78 (m, 4 H), 5.46 (s, 1 H), 7.24-7.31 (m, 3 H), 7.62-7.68 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) (two signals are coincident; spectrum shows some impurity

signals) δ 22.6 (t), 27.8 (q), 28.7 (t), 35.3 (t), 47.2 (d), 51.5 (d), 56.5 (d), 59.3 (s), 81.9 (s), 102.7 (d), 127.8 (d), 128.2 (s), 129.1 (d), 134.8 (d), 174.9 (s), 195.0 (s); v_{max} (CH₂Cl₂ cast; cm⁻¹) 2926, 1731, 1654, 1265; exact mass *m*/*z* calcd for C₂₁H₂₇NaO₄Se (M + Na) 423.10691, found 423.10720.

The trans isomer was not fully characterized; the integration of the ¹H NMR spectrum was poor; the ¹³C NMR spectrum was very similar to that of the cis isomer: ¹³C NMR (CDCl₃, 100 MHz) δ 22.5 (t), 27.7 (q), 28.6 (t), 35.2 (t), 47.1 (d), 51.4 (d), 56.4 (d), 62.0 (s), 81.8 (s), 102.7 (d), 127.7 (d), 128.1 (s), 129.1 (d), 134.7 (d), 170.7 (s), 174.8 (s), 194.6 (s).

4-Methoxy-6-oxo-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl Ester (15e).

30% H₂O₂ (0.21 mL) was added dropwise over 5 min to a stirred and cooled (0 °C)

solution of **pre-15e** (presumed to have the PhSe group and adjacent H cis) (83.7 mg, 0.20 mmol) in THF (7 mL) and water (0.7 mL). After 10 min the ice bath was removed and stirring was continued for 2 h. The mixture was cooled to 0 °C and quenched with saturated aqueous $Na_2S_2O_3$ (2 mL). The ice bath was removed and stirring was continued for 10 min. The mixture was diluted with brine (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic

extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.5 x 15 cm), using 35% EtOAc-hexane, gave **15e** as an oil (42.0 mg, 80%): ¹H NMR (CDCl₃, 400 MHz) δ 1.36 (s, 9 H), 1.57-1.65 (m, 1 H), 1.87-1.94 (m, 1 H), 2.03-2.09 (m, 1 H), 2.44-2.52 (m, 1 H), 2.56-2.62 (m, 1 H), 2.67-2.72 (m, 1 H), 3.71 (s, 3 H), 5.49 (d, J = 1.0 Hz, 1 H), 6.04 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) (one signal not observed) δ 21.2 (t), 27.4 (q), 28.7 (t), 31.1 (t), 55.9 (q), 82.4 (s), 101.7 (d), 122.8 (d), 161.1 (s), 167.4 (s), 174.0 (s), 189.3 (s); v_{max} (CH₂Cl₂ cast; cm⁻¹) 2926, 2851, 1734, 1670, 1265; exact mass *m*/*z* calcd for C₁₅H₂₀NaO₄ (M + Na) 287.12538, found 287.12541.

7-Methoxyindan-5-ol (15f).

General procedure A for rearomatization was followed, using BiCl₃.H₂O (20.2 mg, 0.06

mmol), **15e** (40.0 mg, 0.15 mmol) in MeCN (5 mL) and water (0.1 mL), and a reaction time of 10 h after addition of the second portion of BiCl₃.H₂O. Flash chromatography of the crude product over silica gel (1 x 10 cm), using 30% EtOAc-hexane, gave **15f** (22.8 mg, 92%) as a white solid: mp 95-97 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.02-2.10 (m, 2 H), 2.77-2.87 (m, 4 H), 3.79 (s, 3 H), 4.81 (s, 1 H), 6.23 (s, 1 H), 6.33 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.0 (t), 28.6 (t), 33.2 (t), 55.1 (q), 96.4 (d), 103.3 (d), 123.7 (s), 146.9 (s), 155.6 (s), 156.4 (s); v_{max}

(CHCl₃ cast; cm⁻¹) 3303, 2949, 2849, 1613, 1596, 1468; exact mass m/z calcd for C₁₀H₁₂O₂ 164.08372, found 164.08362.

5-Hydroxy-5-methyl-1,2,3,5-tetrahydrocyclopenta[*a*]naphthalene-9b-carboxylic Acid *tert*-Butyl Ester (16g).

MeMgBr (3 M in THF, 0.17 mL, 0.502 mmol) was added at a fast dropwise rate to a stirred and cooled (-78 °C) solution of **16e** (95 mg, 0.335 mmol) in Et₂O (10 mL). The cold bath was removed and stirring was continued for 40 min. The mixture was cooled to 0 °C, quenched slowly with water, and extracted with Et₂O. The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**16g**) was used directly in the next

16g

16h

General procedure B for rearomatization was followed, using BiCl₃.H₂O (88.4 mg, 0.265 mmol), **16g** (79.6 mg, 0.265 mmol) in MeCN (5 mL) and water (0.1 mL), and a reaction time of 4 h. Flash chromatography of the crude product over silica gel (1 x 12 cm), using hexane, gave **16h** (33.6 mg, 70%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 2.21-2.28 (m, 2 H), 2.70 (s, 3 H), 3.09 (t, *J* = 7.4 Hz, 2 H), 3.25 (t, *J* = 7.4 Hz, 2 H), 7.28 (s, 1 H), 7.45-7.53 (m, 2 H), 7.81-7.83 (m, 1 H), 7.99-8.02 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.5 (q), 24.4 (t), 31.0 (t), 33.8 (t), 124.0 (d), 124.4 (d), 124.6 (d), 124.8 (d), 125.4 (d), 130.5 (s), 131.4 (s), 132.6 (s), 137.4(s), 140.5 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3008, 2947, 2845, 1592, 1439; exact mass *m*/*z* calcd for C₁₄H₁₄ 182.10956, found 182.11250.

5-Hydroxy-5-(trimethylsilanylethynyl)-1,2,3,5-tetrahydrocyclopenta[*a*]naphthalene-9b-carboxylic Acid *tert*-Butyl Ester (16m).

Trimethylsilylacetylene (0.12 mL, 0.8 mmol) was added dropwise to a stirred and cooled

(-78 °C) solution of *i*-PrMgBr (2 M in Et₂O, 0.4 mL, 0.8 mmol). The cooling bath was removed and the stirring was continued for 2 h. The resulting Grignard reagent was taken up into a syringe and added at fast dropwise rate to a stirred and cooled (-78 °C) solution of **16e** (152 mg, 0.535 mmol) in Et₂O (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to 0 °C, quenched by dropwise addition of saturated aqueous NH₄Cl, and extracted with Et₂O. The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**16m**) was used directly in the next step.

5-(1-Chlorovinyl)-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalene (16n).

General procedure B for rearomatization was followed, using BiCl₃.H₂O (178 mg, 0.535 mmol), **16m** (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave **16n** (49 mg, 40%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 2.29 (apparent quintet, J = 7.6 Hz, 2 H), 3.14 (t, J = 7.6 Hz, 2 H), 3.30 (t, J = 7.6 Hz, 2 H), 5.57 (d, J = 1.2 Hz, 1 H), 5.85 (d, J = 1.2 Hz, 1 H), 7.49-8.23 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz) δ 24.4 (t), 31.3 (t), 33.6 (t), 117.3 (t), 124.1 (d), 124.6 (d), 125.2 (d), 125.9 (d), 126.1 (d), 129.3 (s), 130.4 (s), 135.4

(s), 139.1 (s), 140.1 (s), 141.2 (s); v_{max} (microscope, CDCl₃ cast; cm⁻¹) 3063, 2952, 2844, 1628, 1512; exact mass *m*/*z* calcd for C₁₅H₁₃³⁵Cl 228.07057, found 228.07063.

9-Hydroxy-1,3,4,9-tetrahydro-2*H*-phenanthrene-4a-carboxylic Acid *tert*-Butyl Ester (17f).

CeCl₃.7H₂O (119.5 mg, 0.32 mmol) and then NaBH₄ (6.67 mg, 0.12 mmol) were added to a stirred and cooled (-78 °C) solution of **17d** (47.8 mg, 0.16 mmol) in dry MeOH (5 mL). After the addition, the cold bath was removed and stirring was continued for 40 min. The mixture was quenched slowly with water and extracted with Et_2O . The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. The crude product (**17f**) was used directly in the next step.

1,2,3,4-Tetrahydrophenanthrene (17g).²⁵

General procedure B for rearomatization was followed, using BiCl₃.H₂O (56.7 mg, 0.17 mmol), **17f** (51 mg, 0.17 mmol) in MeCN (5 mL) and water (0.1 mL), and a reaction time of 6 h. Flash chromatography of the crude product over silica gel (1 x 12 cm), using hexane, gave **17g** (22.2 mg, 76%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 1.88-1.93 (m, 2 H), 1.95-2.01 (m, 2 H), 2.93 (t, *J* = 6.2 Hz, 2 H), 3.14 (t, *J* = 6.3 Hz, 2 H), 7.21-7.23 (m, 1 H), 7.43-7.53 (m, 2 H), 7.62 (d, *J* = 8.4 Hz, 1 H), 7.80 (d, *J* = 8.6 Hz, 1 H), 7.98 (d, *J* = 8.4 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 22.9 (t), 23.2 (t), 25.6 (t), 30.4 (t), 122.7 (d), 124.6 (d), 125.5 (d), 125.7 (d), 128.2 (d), 128.3 (d), 131.4 (s), 132.0 (s), 132.5(s), 134.2 (s); v_{max} (CDCl₃ cast; cm⁻¹) 3047, 2927, 2856, 1510, 1457; exact mass *m*/*z* calcd for C₁₄H₁₄ 182.10956, found 182.10936.

References

(21) W. M. Kutz, J. E. Nickels, J. J. McGovern and B. B. Corson, J. Am. Chem. Soc., 1948,

70, 4026-4031.

- (22) J. R. Young, S. X. Huang, I. Chen, T. F. Walsh, R. J. DeVita, M. J. Wyvratt, Jr., M. T. Goulet, N. Ren, J. Lo, Y. T. Yang, J. B. Yudkowitz, K. Cheng and R. G. Smith, *Bioorg. Med. Chem. Lett.*, 2000, **10**, 1723-1728.
- (23) A. Walser, T. Flynn, C. Mason, H. Crowley, C. Maresca and M. O'Donnell, J. Med. Chem., 1991, 34, 1440-1446.
- (24) K. Ghosh and A. J. Bhattacharya, *Indian J. Chem. Sect. B*, 1978, **16B**, 152-153.
- (25) A. H. Jackson, P. V. R. Shannon and P. W. Taylor, J. Chem. Soc., Perkin Trans. 2, 1981, 286-297.