SUPPLEMENTARY MATERIAL

Formal Radical Closure onto Aromatic Rings - a General Route to Carbocycles

Derrick L. J. Clive,* Rajesh Sunasee, and Zhenhua Chen

Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

E-mail: derrick.clive@ualberta.ca

6-Butyl-6-hydroxy-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl Ester (10k).

$\mathrm{n}-\mathrm{BuMgCl}(2 \mathrm{M}$ in THF, $0.15 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added at a fast dropwise rate to a
stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 e}(57.9 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The cold bath was removed and stirring was continued overnight. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched
by dropwise addition of water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product ($\mathbf{(1 0 k}$) was used directly in the next step.

5-Butylindan (101).

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}(82.5 \mathrm{mg}, 0.25$ mmol), 10k (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and a reaction time of 8 h . Flash chromatography of the crude product over silica gel, using hexane, gave 101 ($35.3 \mathrm{mg}, 82 \%$ over two steps) as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.93(\mathrm{t}, J=7.6$ Hz, 3 H), 1.32-1.42 (m, 2 H), 1.56-1.63 (m, 2 H), 2.07 (apparent quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.58 $(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-2.91(\mathrm{~m}, 4 \mathrm{H}), 6.95-7.15(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.2$
 141.6 (s), 144.5 (s); $v_{\text {max }}$ (microscope, CDCl_{3} cast; cm^{-1}) 3007, 2956, 2855, 1491, 1458, 1440;

6-Hydroxy-6-isopropyl-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl Ester

(10m).

$i-\operatorname{PrMgBr}\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{~mL}, 0.24 \mathrm{mmol}\right)$ was added at a fast dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 e}(45.7 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The cold bath was removed and stirring was continued overnight. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched by dropwise addition of water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product (10m) was used directly in the next step.

5-Isopropylindan (10n). ${ }^{21}$

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(65 \mathrm{mg}, 0.2$
mmol), 10 m (total product from the previous step) in $\mathrm{MeCN}(5 \mathrm{~mL}$) and water (0.1 mL), and a reaction time of 2 h . Flash chromatography of the crude product over silica gel ($1.5 \times 12 \mathrm{~cm}$), using hexane, gave $\mathbf{1 0 n}(23.4 \mathrm{mg}, 75 \%)$ as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.25(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 6 \mathrm{H}$), 2.07 (apparent quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.85-2.92 (m, 5 H), 7.02-7.16 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 24.3$ (q), 25.5 (t), 32.5 (t), 32.9 (t), 34.0 (d), 122.3 (d), 124.1 (d), 124.3 (d), 141.6 (s), 144.3 (s), 147.0 (s); $v_{\text {max }}$ (microscope, CDCl $_{3}$ cast; cm^{-1}) 3008, 2958, 2867, 1493, 1460 ; exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} 160.12520$, found 160.12504 .

6-Allyl-6-hydroxy-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl Ester

(10q).

Allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O}, 0.33 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was added at a fast dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 e}(51 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5$ mL). The cold bath was removed and stirring was continued for 1 h . The mixture was cooled to
$0{ }^{\circ} \mathrm{C}$, quenched by dropwise addition of water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product $\mathbf{(1 0 q)}$ was used directly in the next step.

5-Allylindan (10r). ${ }^{22}$

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}$ (74 mg, 0.33 mmol), $\mathbf{1 0} \mathbf{q}$ (total product from the previous step) in $\mathrm{MeCN}(5 \mathrm{~mL})$ and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave 10r ($20 \mathrm{mg}, 75 \%$) as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.07$ (apparent quintet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.05 (ddd, $J=10.0,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (ddd $J=16.8,1.6 .1 .6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (ddd, $J=16.8$, 10.0. $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.4$ (t$), 32.4(\mathrm{t}), 32.7$ (t$), 40.0(\mathrm{t}), 115.2$ (t$), 124.1$ (d), 124.4 (d), 126.2 (d), 137.7 (s), 137.8 (d), 141.8 (s), 144.4 (s); $v_{\max }$ (microscope, CDCl $_{3}$ cast; cm^{-1}) 3076, 3007, 2951, 2844, 1639, 1489, 1437; exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} 158.10956$, found 158.10989.

Ester (10s).

A mixture of propargyl bromide ($80 \%{ }^{\mathrm{w}} / \mathrm{w}$ in $\mathrm{PhMe}, 0.117 \mathrm{~mL}, 1.05 \mathrm{mmol}$), Mg (25 mg , 1.05 mmol) and $\mathrm{HgCl}_{2}(1 \mathrm{mg}, 0.004 \mathrm{mmol})$ was heated to reflux. The Mg dissolved, at which point the heat source was removed, and stirring was continued for 45 min. The resulting propargylmagnesium bromide was added at a fast dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0} \mathbf{e}(84 \mathrm{mg}, 0.358 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The cold bath was removed and stirring was continued overnight. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched by dropwise addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product (10s) was used directly in the next step.

5-(Prop-2-ynyl)indane (10t).

10s
10t

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ ($120 \mathrm{mg}, 0.358$
mmol), 10s (total product from the previous step) in MeCN (5 mL) and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave 10t ($41 \mathrm{mg}, 73 \%$) as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.10$ (apparent quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (apparent q, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12-7.27(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.5(\mathrm{t}), 25.5(\mathrm{t}), 32.4(\mathrm{t}), 32.7(\mathrm{t}), 70.0$ (d), 82.5 (s), 123.8 (d), 124.3 (d), 125.6 (d), 133.8 (s), 142.6 (s), 144.7 (s); $v_{\max }$ (microscope, CDCl_{3} cast; cm^{-1}) 3298, 3011, 2950, 2867, 2843, 2120, 1490; exact mass m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12}$ 156.09390, found 156.09399.

6-Hydroxy-6-(trimethylsilanylethynyl)-1,2,3,6-tetrahydroindene-3a-carboxylic Acid

 tert-Butyl Ester (10u).

Trimethylsilylacetylene ($0.16 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added at a slow dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{PrMgBr}\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.55 \mathrm{~mL}, 1.1 \mathrm{mmol}\right)$. The cooling bath was removed and stirring was continued for 2 h . The resulting Grignard reagent was taken up into a syringe and added at a fast dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 e}$
($52 \mathrm{mg}, 0.222 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (5 mL). The cold bath was removed and stirring was continued overnight. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched by dropwise addition of saturated aqueous
$\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product (10u) was used directly in the next step.

5-Ethynylindan (10v). ${ }^{23}$

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}$ ($74 \mathrm{mg}, 0.222$ $\mathbf{m m o l}$), 10u (total product from the previous step) in $\mathrm{MeCN}(5 \mathrm{~mL})$ and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave $\mathbf{1 0 v}(18 \mathrm{mg}, 57 \%)$ as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.08$ (apparent quintet $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.90 (two overlapping apparent q, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), $3.01(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.36(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.3$ (t), 32.6 (t$), 32.9$ (t), 75.9 (d), 84.4 (s), 119.5 (s), 124.3 (d), 128.0 (d), 130.2 (d), 144.3 (s), 145.4 (s); $v_{\max }$ (microscope, CDCl_{3} cast; cm^{-1}) 3292, 2952, 2868, 2843, 2104, 1485; exact mass m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} 142.07825$, found 142.07818.

6-Hydroxy-6-phenylethynyl-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl

Ester (10w).

$i-\operatorname{PrMgBr}\left(2 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.164 \mathrm{~mL}, 0.328 \mathrm{mmol}$) was added at a slow dropwise rate to a stirred and cooled ($-78{ }^{\circ} \mathrm{C}$) solution of phenylacetylene ($0.036 \mathrm{~mL}, 0.327 \mathrm{mmol}$) in dry THF (3 mL). The cooling bath was removed and stirring was continued for 1 h . The resulting acetylenic Grignard reagent was added a fast dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 e}$ ($50 \mathrm{mg}, 0.214 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The cold bath was removed and stirring was continued overnight. The mixture was cooled to $0^{\circ} \mathrm{C}$, quenched by dropwise addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product ($\mathbf{1 0 w}$) was used directly in the next step.

5-Phenylethynylindan (10x). ${ }^{24}$

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(73 \mathrm{mg}, 0.218$ mmol), 10w (total product from the previous step) in $\mathrm{MeCN}(5 \mathrm{~mL})$ and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave 10x ($29 \mathrm{mg}, 62 \%$) as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.16$ (apparent quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.93 (two overlapping apparent $\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.19-7.56 (m, 8 H); ${ }^{13} \mathrm{C}$
 (d), 127.5 (d), 127.9 (d), 128.3 (d), 129.6 (d), 131.5 (d), 144.4 (s), 144.8 (s); $v_{\text {max }}$ (microscope, CDCl_{3} cast; cm^{-1}) 3061, 3032, 2953, 2843, 2207, 1597, 1494; exact mass m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14}$ 218.10956, found 218.10942.

1-(3-Bromopropyl)-2-methoxycyclohexa-2,5-dienecarboxylic Acid tert-Butyl Ester

(15a).

15

15a

The general procedure for reductive alkylation was followed, using 15 ($427.1 \mathrm{mg}, 2.05$
$\mathrm{mmol})$ in dry THF $(15 \mathrm{~mL}), t-\mathrm{BuOH}(0.22 \mathrm{~mL}, 2.26 \mathrm{mmol})$, liquid $\mathrm{NH}_{3}(50 \mathrm{~mL})$, $\mathrm{Li}(30.2$ $\mathrm{mg}, 4.31 \mathrm{mmol}$), and 1,3-dibromopropane ($0.52 \mathrm{~mL}, 5.13 \mathrm{mmol}$) in THF (15 mL). Flash chromatography of the crude product over silica gel ($3 \times 21 \mathrm{~cm}$), using first hexane and then 1:9 EtOAc-hexane, gave 15a (583.9 mg, 86\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.42(\mathrm{~s}, 9$ H), 1.70-1.78 (m, 3 H), 2.07-2.13 (m, 1 H), 2.80-2.86 (m, 2 H), 3.35-3.39 (m, 2 H), 3.55 (s, 3 H),
4.82-4.84 (m, 1 H), 5.37-5.41 (m, 1 H$), 5.86-5.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 26.5$ (t), 27.9 (q), 28.5 (t), 32.9 (t), 34.0 (t), 52.2 ($s), 54.2$ (q), 80.6 ($s), 93.6$ (d), 126.8 (d), 127.2 (d), 152.9 (s), 172.4 (s); $v_{\text {max }}\left(\mathrm{CDCl}_{3}\right.$ cast; $\left.\mathrm{cm}^{-1}\right) 2926,2935,1730,1687,1649,1456,1209$; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO}_{3}(\mathrm{M}+\mathrm{Na})$ 353.07228, found 353.07245.

1-(3-Bromopropyl)-2-methoxy-4-oxocyclohexa-2,5-diene-carboxylic Acid tert-Butyl

Ester (15b).

General procedure A for oxidation was followed, using $\mathrm{CrO}_{3}(1.51 \mathrm{~g}, 15.1 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}$ (2.6 mL), AcOH (5.2 mL), PhH (15 mL), 15a (1.00 g, 3.02 mmol) in $\mathrm{PhH}(20 \mathrm{~mL})$, and a reaction time of 5 h . Flash chromatography of the crude product over silica gel (2 x 18 cm), using first hexane and then EtOAc-hexane mixtures up to 3:7 EtOAc-hexane, gave 15b (0.646 g, 62%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68$ (m, 1
H), 2.05-2.12 (m, 1 H), 2.29-2.37 (m, 1 H), 3.33 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (s, 3 H), 5.68 (d, J $=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=9.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 27.0$ (t), 27.6 (q), 32.6 (t), 32.7 (t), 55.7 (s), 55.8 (q), 82.8 (s), 104.2 (d), 130.3 (d), 143.0 (d), 167.5 (s), 173.2 (s), 187.6 (s); $v_{\text {max }}\left(\mathrm{CDCl}_{3}\right.$ cast; $\left.\mathrm{cm}^{-1}\right) 2977,2940,1737,1660,1599,1249$; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21}{ }^{79} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})$ 367.05154, found 367.05131.

The oxidation was also done using PDC-t-BuOOH: ${ }^{12}$ Celite (8 g) was added to a stirred solution of 15a (1.0 g, 3.02 mmol$)$ in $\mathrm{PhH}(40 \mathrm{~mL})$, followed by PDC ($4.546 \mathrm{~g}, 12.08 \mathrm{mmol}$) and then t - $\mathrm{BuOOH}(70 \%, 1.55 \mathrm{~mL}, 12.08 \mathrm{mmol}$) was added dropwise. Stirring was continued for 4 h after the end of the addition, and the mixture was then filtered through a pad of Celite ($4 \times 6 \mathrm{~cm}$). Evaporation of the filtrate and flash chromatography of the residue over silica gel (2 x 17 cm), using EtOAc-hexane mixtures from 1:9 to 3:7, gave 15b (771 mg, 74 \%) as an oil identical with material made using CrO_{3}.

1-(3-Iodopropyl)-2-methoxy-4-oxocyclohexa-2,5-diene-carboxylic Acid tert-Butyl

Ester (15c).

The general procedure for Finkelstein displacement was followed, using acetone (10 mL), 15b ($180.7 \mathrm{mg}, 0.52 \mathrm{mmol}$), anhydrous NaI ($274.9 \mathrm{mg}, 1.83 \mathrm{mmol}$), and a reaction time of

16 h . Flash chromatography of the crude product over silica gel (1.5 x 15 cm), using 10% EtOAc-hexane, gave 15c (184.8 mg, 90\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.34(\mathrm{~s}, 9$ H), 1.40-1.60 (m, 2 H), 1.97-2.04 (m, 1 H), 2.22-2.29 (m, 1 H$), 3.07(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 5.64(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=9.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 5.3$ (t), 27.6 (q), 27.7 (t), 34.8 (t), 55.6 (s), 55.9 (q), 82.8 (s), 104.1
(d), 130.2 (d), 143.0 (d), 167.4 (s), 173.3 (s), 187.6 (s); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast; $\left.\mathrm{cm}^{-1}\right)$ 2976, 2937, 1736, 1660, 1598, 1222; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{INaO}_{4}(\mathrm{M}+\mathrm{Na}) 415.03768$, found 415.03778.

4-Methoxy-6-oxo-1,2,3,6,7,7a-hexahydroindene-3a-carboxylic Acid tert-Butyl Ester

(15d).

The general procedure for radical cyclization was followed, using $\mathrm{Bu}_{3} \mathrm{SnH}(0.20 \mathrm{~mL}$, 0.61 mmol) and AIBN (10.1 mg, 0.061 mmol) in PhH (5 mL), and 15c ($241 \mathrm{mg}, 0.61 \mathrm{mmol}$) in $\mathrm{PhH}(10 \mathrm{~mL})$. Heating was continued for 18 h after the addition. Flash chromatography of the crude product over KF-flash chromatography silica gel ($10 \%{ }^{\mathrm{w}} / \mathrm{w}$ KF) (2 x 22 cm), using 1:9 to 3:7 EtOAc-hexane mixtures, gave 15d (153.8 mg, 94\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.41(\mathrm{~m}, 2 \mathrm{H})$,
2.59-2.67 (m, 2 H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.3(\mathrm{t}), 27.9}$ (q), 31.2 (t), 34.1 (t), 38.2 (t), 43.0 (d), 56.1 (q), 57.8 (s), 81.5 (s), 103.0 (d), 171.8 (s), 175.8 (s), 198.3 (s); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast; $\left.\mathrm{cm}^{-1}\right) 2974,1732,1662,1218$; exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 289.14103, found 289.14112.

4-Methoxy-6-oxo-7-phenylselanyl-1,2,3,6,7,7a-hexahydro-indene-3a-carboxylic Acid tert-Butyl Ester (pre-15e).

BuLi (2.5M in hexane, $0.26 \mathrm{~mL}, 0.64 \mathrm{mmol}$) was added dropwise to a stirred and cooled solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of $i-\operatorname{Pr}_{2} \mathrm{NH}(0.094 \mathrm{~mL}, 0.69 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$. Stirring was continued at $(-$ $78{ }^{\circ} \mathrm{C}$) for 30 min and a solution of $\mathbf{1 5 d}(148.9 \mathrm{mg})$ in THF (3 mL plus 1 mL as a rinse) was added dropwise. Stirring was continued at ($-78^{\circ} \mathrm{C}$) for 1 h . $\mathrm{PhSeCl}(128.6 \mathrm{mg}, 0.67 \mathrm{mmol})$ in THF (3 mL) was added rapidly and stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and then with water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using 30\% EtOAc-hexane, gave pre-15e as a mixture of isomers [isomer with PhSe and adjacent ring fusion hydrogen cis, 164.9 mg (70\%), isomer with PhSe and adjacent ring fusion hydrogen trans, $28.3 \mathrm{mg}(12 \%)]$. The
stereochemistry was assigned on the basis that only the cis isomer gave an olefin on oxidation and both isomers had very similar NMR spectra. The cis isomer had: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.28-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.16(\mathrm{~m}, 2 \mathrm{H})$, 2.26-2.42 (m, 1 H), $3.04-3.11$ (m, 1 H), 3.71-3.78 (m, 4 H), 5.46 (s, 1 H), 7.24-7.31 (m, 3 H), 7.62-7.68 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ (two signals are coincident; spectrum shows some impurity
signals) $\delta 22.6$ (t), 27.8 (q), 28.7 (t), 35.3 (t), 47.2 (d), 51.5 (d), 56.5 (d), 59.3 (s), 81.9 (), 102.7 (d), 127.8 (d), 128.2 (s), 129.1 (d), 134.8 (d), 174.9 (s), 195.0 (s); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast; $\left.\mathrm{cm}^{-1}\right) 2926$, 1731, 1654, 1265; exact mass m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NaO}_{4} \mathrm{Se}(\mathrm{M}+\mathrm{Na}) 423.10691$, found 423.10720.

The trans isomer was not fully characterized; the integration of the ${ }^{1} \mathrm{H}$ NMR spectrum was poor; the ${ }^{13} \mathrm{C}$ NMR spectrum was very similar to that of the cis isomer: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 22.5(\mathrm{t}), 27.7(\mathrm{q}), 28.6(\mathrm{t}), 35.2$ (t), 47.1 (d), 51.4 (d), $56.4(\mathrm{~d}), 62.0(\mathrm{~s}), 81.8(\mathrm{~s})$, 102.7 (d), 127.7 (d), 128.1 (s), 129.1 (d), 134.7 (d), 170.7 (s), 174.8 (s), 194.6 (s).

4-Methoxy-6-oxo-1,2,3,6-tetrahydroindene-3a-carboxylic Acid tert-Butyl Ester (15e).

$30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.21 \mathrm{~mL})$ was added dropwise over 5 min to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$
solution of pre-15e (presumed to have the PhSe group and adjacent H cis) ($83.7 \mathrm{mg}, 0.20$ mmol) in THF (7 mL) and water (0.7 mL). After 10 min the ice bath was removed and stirring was continued for 2 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The ice bath was removed and stirring was continued for 10 min . The mixture was diluted with brine $(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic
extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 35% EtOAc-hexane, gave 15 e as an oil ($42.0 \mathrm{mg}, 80 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.09(\mathrm{~m}, 1 \mathrm{H})$, 2.44-2.52 (m, 1 H), 2.56-2.62 (m, 1 H), 2.67-2.72 (m, 1 H), 3.71 (s, 3 H), 5.49 (d, $J=1.0 \mathrm{~Hz}, 1$ H), $6.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ (one signal not observed) $\delta 21.2(\mathrm{t}), 27.4$ (q), 28.7 (t), 31.1 (t), 55.9 (q), 82.4 (s), 101.7 (d), 122.8 (d), 161.1 (s), 167.4 (s), 174.0 (s), 189.3 (s); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast; $\left.\mathrm{cm}^{-1}\right)$ 2926, 2851, 1734, 1670, 1265; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4}(\mathrm{M}$ + Na) 287.12538, found 287.12541.

7-Methoxyindan-5-ol (15f).

15e

$15 f$

General procedure A for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}$ (20.2 mg, 0.06
$\mathrm{mmol})$, 15e ($40.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$, and a reaction time of 10 h after addition of the second portion of $\mathrm{BiCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Flash chromatography of the crude product over silica gel ($1 \times 10 \mathrm{~cm}$), using 30% EtOAc-hexane, gave $\mathbf{1 5 f}$ ($22.8 \mathrm{mg}, 92 \%$) as a white solid: mp 95-97 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 2.02-2.10 (m, 2 H), 2.77-2.87 (m, 4 H), 3.79 (s, 3 H), 4.81 ($\mathrm{s}, 1 \mathrm{H}$), 6.23 (s, 1 H), $6.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.0$ (t), 28.6 (t), 33.2 (t), 55.1 (q), 96.4 (d), 103.3 (d), 123.7 ($s), 146.9$ (s), 155.6 (s$), 156.4$ (s$) ; \mathrm{v}_{\text {max }}$
$\left(\mathrm{CHCl}_{3}\right.$ cast; $\left.\mathrm{cm}^{-1}\right) 3303,2949,2849,1613,1596,1468$; exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ 164.08372, found 164.08362.

5-Hydroxy-5-methyl-1,2,3,5-tetrahydrocyclopenta[a]naphthalene-9b-carboxylic

 Acid tert-Butyl Ester (16g).

16e

16g
$\mathrm{MeMgBr}(3 \mathrm{M}$ in THF, $0.17 \mathrm{~mL}, 0.502 \mathrm{mmol}$) was added at a fast dropwise rate to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 6 e}(95 \mathrm{mg}, 0.335 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The cold bath was removed and stirring was continued for 40 min . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched slowly with water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product $(\mathbf{1 6 g})$ was used directly in the next
step.

5-Methyl-2,3-dihydro-1H-cyclopenta[a]naphthalene (16h).

16g
16h

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}(88.4 \mathrm{mg}, 0.265$ mmol), 16g ($79.6 \mathrm{mg}, 0.265 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL}$) and water (0.1 mL), and a reaction time of 4 h . Flash chromatography of the crude product over silica gel (1 x 12 cm), using hexane, gave 16h (33.6 mg, 70\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.21-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H})$, 3.09 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.25 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 (s, 1 H), 7.45-7.53 (m, 2 H), 7.81-7.83 (m, 1 H$), 7.99-8.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.5(\mathrm{q}), 24.4(\mathrm{t}), 31.0(\mathrm{t}), 33.8(\mathrm{t})$, 124.0 (d), 124.4 (d), 124.6 (d), 124.8 (d), 125.4 (d), 130.5 (s), 131.4 (s), 132.6 (s), $137.4(\mathrm{~s})$, 140.5 (s); $v_{\text {max }}$ (microscope, CDCl_{3} cast; cm^{-1}) 3008, 2947, 2845, 1592, 1439; exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14}$ 182.10956, found 182.11250.

5-Hydroxy-5-(trimethylsilanylethynyl)-1,2,3,5-tetrahydrocyclopenta[a]naphtha-lene-9b-carboxylic Acid tert-Butyl Ester (16m).

Trimethylsilylacetylene ($0.12 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\operatorname{PrMgBr}\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.4 \mathrm{~mL}, 0.8 \mathrm{mmol}\right)$. The cooling bath was removed and the stirring was continued for 2 h . The resulting Grignard reagent was taken up into a syringe and added at fast dropwise rate to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 6 e}(152 \mathrm{mg}$, $0.535 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The cold bath was removed and stirring was continued overnight. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched by dropwise addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product (16m) was used directly in the next step.

5-(1-Chlorovinyl)-2,3-dihydro-1H-cyclopenta[a]naphthalene (16n).

16m
16n

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}(178 \mathrm{mg}$, 0.535 mmol), $\mathbf{1 6 m}$ (total product from the previous step) in $\mathrm{MeCN}(5 \mathrm{~mL})$ and water (0.1 mL), and an overnight reaction period. Flash chromatography of the crude product over silica gel, using hexane, gave 16n ($49 \mathrm{mg}, 40 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.29$ (apparent quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1$ H), $5.85(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-8.23(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.4(\mathrm{t}), 31.3$ (t), 33.6 (t), 117.3 (t), 124.1 (d), 124.6 (d), 125.2 (d), 125.9 (d), 126.1 (d), 129.3 (s), 130.4 (s), 135.4
(s), 139.1 (s), 140.1 (s), 141.2 (s); $v_{\text {max }}$ (microscope, $C D C l_{3}$ cast; cm^{-1}) 3063, 2952, 2844, 1628, 1512; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}$ 228.07057, found 228.07063.

9-Hydroxy-1,3,4,9-tetrahydro-2H-phenanthrene-4a-carboxylic Acid tert-Butyl Ester

(17f).

$\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(119.5 \mathrm{mg}, 0.32 \mathrm{mmol})$ and then $\mathrm{NaBH}_{4}(6.67 \mathrm{mg}, 0.12 \mathrm{mmol})$ were added to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 7 d}(47.8 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5 \mathrm{~mL})$. After the addition, the cold bath was removed and stirring was continued for 40 min . The
mixture was quenched slowly with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product (17f) was used directly in the next step.

1,2,3,4-Tetrahydrophenanthrene (17g). ${ }^{25}$

General procedure B for rearomatization was followed, using $\mathrm{BiCl}_{3} . \mathrm{H}_{2} \mathrm{O}$ ($56.7 \mathrm{mg}, 0.17$ mmol), $\mathbf{1 7 f}(51 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$, and a reaction time of 6 h . Flash chromatography of the crude product over silica gel (1 x 12 cm), using hexane, gave $\mathbf{1 7 g}$ (22.2 mg, 76\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.88-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 2 \mathrm{H})$, 2.93 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.14 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.53$ (m, 2 H), 7.62 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 22.9$ (t), 23.2 (t), 25.6 (t), 30.4 (t), 122.7 (d), 124.6 (d), 125.5 (d), 125.7 (d), 128.2 (d), 128.3 (d), 131.4 (s), 132.0 (s), 132.5(s), 134.2 (s); $v_{\text {max }}\left(\mathrm{CDCl}_{3}\right.$ cast; $\left.\mathrm{cm}^{-1}\right) 3047,2927,2856$, 1510, 1457; exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} 182.10956$, found 182.10936.

References

(21) W. M. Kutz, J. E. Nickels, J. J. McGovern and B. B. Corson, J. Am. Chem. Soc., 1948,

70, 4026-4031.
(22) J. R. Young, S. X. Huang, I. Chen, T. F. Walsh, R. J. DeVita, M. J. Wyvratt, Jr., M. T. Goulet, N. Ren, J. Lo, Y. T. Yang, J. B. Yudkowitz, K. Cheng and R. G. Smith, Bioorg. Med. Chem. Lett., 2000, 10, 1723-1728.
(23) A. Walser, T. Flynn, C. Mason, H. Crowley, C. Maresca and M. O'Donnell, J. Med. Chem., 1991, 34, 1440-1446.
(24) K. Ghosh and A. J. Bhattacharya, Indian J. Chem. Sect. B, 1978, 16B, 152-153.
(25) A. H. Jackson, P. V. R. Shannon and P. W. Taylor, J. Chem. Soc., Perkin Trans. 2, 1981, 286-297.

