(1S*, 2R*)-2-(4-Methylsulfanylphenyl)-1-phenylpent-4-ene-1,2-diol (24)

Benzoin 16 (1.29 g, 5 mmol), allyl bromide (0.89 g, 7.5 mmol), indium metal (0.57 g, 5 mmol) were taken in THF-H₂O (2:1) mixture (10 ml) and the reaction mixture was stirred at 0 °C till the indium metal was dissolved. The turbid reaction mixture was treated with 4N HCl and was extracted with CHCl₃ (3x25 ml). The organic phase was dried over Na₂SO₄. The solvent was distilled off and the residue was column chromatographed (silica gel, 60-120 mesh) using ethyl acetate, hexane as eluents to isolate pure 24 (1.28 g, 85%) as white solid, mp 109 °C. (Found: C, 71.68; H, 6.52; S, 10.66. C₁₈H₂₀O₂S requires C, 71.96; H, 6.71; S, 10.71%); v_{max}(CHCl₃)/cm⁻¹: 3411 (OH), 3450 (OH); δ_H (300 MHz, CDCl₃, Me₄Si) 2.58 (3H, s, SCH₃), 2.68 (1H, s, OH, exchanges with D₂O), 2.73 (1H, dd, ${}^{2}J = 14.1$ Hz, ${}^{3}J = 9.0$ Hz, 1H of CH₂), 2.90 (1H, dd, ${}^{2}J = 14.1$ Hz, ${}^{3}J = 5.7$ Hz, 1H of CH₂), 4.79 (1H, s, CH), 5.08-5.53 (2H, m, =CH₂), 5.54-5.58 (1H, m, =CH), 7.00-7.11 (6H, m, ArH), 7.14-7.21 (3H, m, ArH); δ_C (75.4 MHz, CDCl₃. Me₄Si): 15.61 (+ve, CH₃), 42.34 (-ve, CH₂), 78.12 (ab, C), 80.41 (+ve, CH), 119.95 (-ve, =CH₂), 125.54 (+ve, ArCH), 127.15 (+ve, ArCH), 127.51 (+ve, ArCH), 127.68 (+ve, ArCH), 127.79 (+ve, ArCH), 133.08 (+ve, =CH), 136.91 (ab, ArC), 138.24 (ab, ArC), 139.13 (ab, ArC); *m/z* (FAB) 299.6 (M⁺).

(1S*, 2R*)-2-(4-Methoxyphenyl)-1-phenylpent-4-ene-1,2-diol (25)

According to the preparation of **24**, **25** was obtained from benzoin **17** (1.21 g, 5 mmol), allyl bromide (0.89 g, 7.5 mmol) and indium metal (0.57 g, 5 mmol) as light yellow liquid. Yield 69%; (Found C, 76.5; H, 6.90. $C_{18}H_{20}O_3$ requires C, 76.03; H, 7.09%); v_{max} (CHCl₃)/cm⁻¹: 3390 (OH), 3430 (OH); δ_H (300 MHz, CDCl₃, Me₄Si) 2.53 (1H, bs, OH, exchanges with D₂O), 2.57 (1H, bs, OH, exchanges with D₂O), 2.71 (1H, dd, ²J = 14 Hz, ³J = 8.7 Hz, 1H of CH₂), 2.90 (1H, dd, ²J = 14 Hz, ³J = 5.4 Hz, 1H of CH₂), 3.77 (3H, s, OCH₃), 4.81 (1H, s, CH), 5.08-5.19 (2H, m, =CH₂), 5.51-5.63 (1H, m, =CH), 6.74 (2H, d, J = 8.7 Hz, ArH), 6.99-7.21 (7H, m, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 42.32 (-ve, CH₂), 55.15 (+ve, CH₃), 78.08 (ab, C), 80.54 (+ve, CH), 112.88 (+ve, CH), 119.73 (-ve, =CH₂), 127.42 (+ve, ArCH), 127.56 (+ve, ArCH), 127.81 (+ve, ArCH), 127.92 (+ve, ArCH), 127.97 (+ve, ArCH), 128.40 (+ve, ArCH), 127.81 (+ve, ArCH), 127.92 (+ve, ArCH), 127.97 (+ve, ArCH), 128.40 (+ve, V)

ArCH), 130.12 (+ve, ArCH), 132.28 (+ve, ArCH), 133.23 (+ve, ArCH), 133.31 (+ve, =CH), 133.36 (ab, ArC), 139.31 (ab, ArC), 158.39 (ab, ArC); *m/z* (FAB) 284 (M⁺).

(1*S**, 2*R**)-2-(4-Methanesulfonylphenyl)-1-phenylpent-4-ene-1,2-diol (27)

To the ice cold solution of **25** (2.8 g, 10 mmol) in THF-H₂O (1:1) was added oxone (20 mmol) and the reaction mixture was stirred at 0 °C for 2 h. After the completion of the reaction (TLC monitoring), the reaction mixture was extracted with ethyl acetate. The organic phase was dried over Na₂SO₄. The solvent was distilled off under vacuum and the pure compound **27** (3.29 g, 90%) was isolated through recrystallization with CHCl₃–diethyl ether (1:20) as white solid, mp 142 °C. v_{max} (CHCl₃)/cm⁻¹: 3481(OH), 3448 (OH), 1311 (S=O); $\delta_{\rm H}$ (300 MHz, CDCl₃, Me₄Si): 2.84 (2H, m, 1H of CH₂ and 1H of OH) 2.94 (1H, dd, ²*J* = 14.7 Hz, ³*J* = 6.0 Hz, 1H of CH₂), 3.01 (3H, s, SO₂CH₃), 4.83 (1H, s, CH), 5.1-5.20 (2H, m, =CH₂), 5.46-5.60 (1H, m, =CH), 7.00 (2H, d, *J* = 6.3 Hz, ArH), 7.14-7.22 (3H, m, ArH), 7.35 (2H, d, *J* = 8.7 Hz, ArH), 7.75 (2H, d, *J* = 8.4 Hz, ArH); $\delta_{\rm C}$ (75.4 MHz, CDCl₃, Me₄Si): 42.66, 44.47, 78.34, 80.14, 120.45, 126.51, 127.63, 127.72, 127.77, 128.12, 132.33, 138.67, 148.21, 169.46; *m*/z [MALDI (TOF)] 355.30 (M⁺+ Na⁺), 371.69 (M⁺+ K⁺).

(2R*,3S*,5R*)-2,3-Bis-(2-chlorophenyl)-5-iodomethyl-tetrahydrofuran-3-ol (29A) and (2R*, 3S*, 5S*)-2,3-Bis-(2-chlorophenyl)-5-iodomethyltetrahydrofuran-3-ol (29B)

Sodium hydrogen carbonate (0.75 g, 9 mmol) was added to an ice cold solution of homoallylic alcohol **19** (0.96 g, 3 mmol) in dry acetonitrile (5 ml) and resulting suspension was stirred for 15 min at 0 °C. Iodine (2.28 g, 9 mmol) was added and stirring was continued for 3-4 hrs at 0 °C (TLC monitoring). The reaction mixture was diluted with water and extracted with CHCl₃. The organic layer was washed with saturated aqueous sodium thiosulphate to remove excess of iodine and dried over anhydrous sodium sulphate. The residue obtained after removing the chloroform was column chromatographed (silica gel 100-200) to isolate **29A** (higher R_f component, 72%) as thick liquids.

29A

(Found C, 45.23; H, 3.23. $C_{17}H_{15}$ Cl_2IO_2 requires C, 45.46; H, 3.37%). v_{max} (CHCl₃)/cm⁻¹: 3434 (OH); δ_{H} (300 MHz, CDCl₃, Me₄Si) 1.58 (1H, bs, OH, exchanges with D₂O), 2.15 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 6.3 Hz, 4-H), 3.49 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 8.7 Hz, 4-H), 3.56 (1H, dd, ²*J* = 10.5 Hz, ³*J* = 4.8 Hz, CH₂I), 3.72 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 5.4 Hz, CH₂I), 4.47–4.55 (1H, m, 5-H), 6.27 (1H, s, 2-H), 7.13-7.25 (4H, m, ArH), 7.34 (1H, t, *J* = 7.5 Hz, ArH), 7.39 (1H, dd, ³*J* = 7.5 Hz, ³*J* = 1.8 Hz, ArH) 7.48 (1H, dd, ³*J* = 7.5 Hz, ³*J* = 2.4 Hz, ArH) 7.81 (1H, dd, ³*J* = 7.5 Hz, ³*J* = 1.5 Hz, ArH); On decoupling the double doublet at δ 3.72 converted double doublet at δ 3.56 into a doublet. Similarly the decoupling of double doublet at δ 2.15 converts the double doublet at δ 3.49 into a doublet. δ_C (75.4 MHz, CDCl₃, Me₄Si): 11.76 (-ve, CH₂I), 46.84 (-ve, C-4), 76.24 (+ve, C-5), 82.06 (ab, C-3), 82.84 (+ve, C-2), 126.58 (+ve, ArCH), 126.92 (+ve, ArCH), 128.11 (+ve, ArCH), 128.98 (+ve, ArCH), 132.91 (ab, ArC), 132.97 (ab, ArC), 134.85 (ab, ArC), 138.35 (ab, ArC); *m*/z (FAB) 449.65 (M⁺).

29B

(Found C, 45.33; H, 3.19. $C_{17}H_{15}Cl_2IO_2$ requires C, 45.46; H, 3.37%). v_{max} (CHCl₃)/cm⁻¹: 3434 (OH); δ_H (300 MHz, CDCl₃Me₄Si): 2.00 (1H, d, J = 1.8 Hz, OH, exchanges with D₂O), 2.43 (1H, dd, ²J = 13.2 Hz, ³J = 5.7 Hz, 4-H), 3.23 (1H, ddd, ²J = 13.2 Hz, ³J = 9.6 Hz, ⁴J = 1.8 Hz, 4-H, gets converted into dd with ²J = 13.2 Hz, ³J = 9.6 Hz on D₂O exchange), 3.50 (2H, two doublets, J = 2.4 Hz, J = 0.9 Hz, CH₂I), 4.72–4.81 (1H, m, 5-H), 6.53 (1H, s, 2-H), 7.16-7.25 (4H, m, ArH), 7.30-7.40 (2H, m, ArH), 7.49-7.52 (1H, m, ArH), 7.68 (1H, dd, ³J = 7.8 Hz, ³J = 1.5, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 9.37 (-ve, CH₂I), 35.36 (-ve, C-4), 78.85 (+ve, C-5), 82.68 (+ve, C-2), 83.29 (ab, C-3), 126.79 (+ve, ArCH), 129.76 (+ve, ArCH), 129.86 (+ve, ArCH), 131.42 (+ve, ArCH), 131.64 (ab, ArC), 133.10 (ab, ArC), 133.90 (ab, ArC), 137.72 (ab, ArC); m/z (FAB) 449.65 (M⁺).

$(2R^*, 3S^*, 5R^*)$ -2,3-Bis-(4-chlorophenyl)-5-iodomethyl-tetrahydrofuran-3-ol (30A) and $(2R^*, 3S^*, 5S^*)$ -2,3-Bis-(4-chlorophenyl)-5-iodomethyltetrahydrofuran-3-ol (30B)

According to the preparation of **29A**, **29B**, compounds **30A**, **30B** were obtained from **20** (0.96 g, 3 mmol), NaHCO₃ (0.75 g, 9 mmol), iodine (2.28 g, 9 mmol) as transparent (higher R_f , 10%) and pale yellow (lower R_f , 72%) liquids respectively. **30A**

(Found C, 45.01; H, 3.15. $C_{17}H_{15}Cl_2IO_2$ requires C, 45.46; H, 3.37%). v_{max} (CHCl₃)/cm⁻¹: 3434 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.89 (1H, bs, OH, exchanges with D₂O), 2.43 (1H, dd, ²*J* = 14.4 Hz, ³*J* = 4.2 Hz, 4-H), 2.75 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 9 Hz, 4-H), 3.58 (1H, dd, ²*J* = 9.9 Hz, ³*J* = 5.7 Hz, CH₂I), 3.63 (1H, dd, ²*J* = 9.9 Hz, ³*J* = 6.6 Hz, CH₂I), 4.49–4.58 (1H, m, 5-H), 5.15 (1H, s, 2-H), 6.97 (2H, d, *J* = 8.4 Hz, ArH), 7.23 (2H, d, *J* = 8.4 Hz, ArH), 7.33 (4H, two double doublets, *J* = 6.3 Hz, *J* = 2.7 Hz, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 10.61 (-ve, CH₂I), 48.34 (-ve, C-4), 77.60 (+ve, C-5), 82.02 (ab, C-3), 90.15 (+ve, C-2), 126.76 (+ve, ArCH), 127.94 (+ve, ArCH), 128.49 (+ve, ArCH), 128.63 (+ve, ArCH), 132.98 (ab, ArC), 133.41 (ab, ArC), 134.30 (ab, ArC), 140.17 (ab, ArC); *m/z* [MALDI (TOF)] 450.02 (M⁺+1).

30B

(Found C, 45.12; H, 3.08. $C_{17}H_{15}Cl_2IO_2$ requires C, 45.46; H, 3.37%). v_{max} (CHCl₃)/cm⁻¹: 3434 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.69 (1H, bs, OH, exchanges with D₂O), 2.43 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 9.6 Hz, 4-H), 2.58 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 6.0 Hz, 4-H), 3.49 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 3.6 Hz, CH₂I), 3.60 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 6.0 Hz, CH₂I), 4.48-4.56 (1H, m, 5-H), 5.42 (1H, s, 2-H), 6.96 (2H, d, *J* = 8.4 Hz, ArH), 7.23 (2H, d, *J* = 8.4 Hz, ArH), 7.35 (4H, m, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 12.20 (-ve, CH₂I), 49.31 (-ve, C-4), 77.08 (+ve, C-5), 83.18 (ab, C-3), 89.21 (+ve, C-2), 126.75 (+ve, ArCH), 127.94 (+ve, ArCH), 128.59 (+ve, ArCH), 128.71 (+ve, ArCH), 133.34 (ab, ArC), 133.57 (ab, ArC), 134.35 (ab, ArC), 139.46 (ab, ArC); *m*/*z* [MALDI (TOF)] 450.02 (M⁺+1).

(2R*,3S*,5R*)-2,3-Bis-(4-fluorophenyl)-5-iodomethyl-tetrahydrofuran-3-ol (31A) and (2R*, 3S*, 5S*)-2,3-Bis-(4-fluorophenyl)-5-iodomethyltetrahydrofuran-3-ol (31B) According to the preparation of 29A, 29B, compounds 31A, 31B were obtained from 21 as transparent (higher R_f , 25%) and pale yellow (lower R_f , 57%) liquids.

31A

(Found: C, 49.21; H, 3.58. $C_{17}H_{15}F_{2}IO_{2}$ requires C, 49.06; H, 3.63%). v_{max} (CHCl₃)/cm⁻¹: 3411 (OH); δ_{H} (300 MHz, CDCl₃; Me₄Si): 1.88 (1H, bs, OH, exchanges with D₂O), 2.43 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 3.9 Hz, 4-H), 2.75 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 9.0 Hz, 4-H), 3.58 (1H, dd, ²*J* = 9.9 Hz, ³*J* = 5.7 Hz, CH₂I), 3.63 (1H, dd, ²*J* = 9.9 Hz, ³*J* = 6.6 Hz, CH₂I), 4.49–4.58 (1H, m, 5-H), 5.16 (1H, s, 2-H), 6.91-7.08 (2H, m, ArH), 7.19 (2H, t, *J* = 8.4 Hz, ArH), 7.35 (2H, dd, ³*J* = 9.0 Hz, ³*J* = 5.7 Hz, ArH), 8.02 (2H, dd, ³*J* = 9.0 Hz, ³*J* = 5.1 Hz, ArH); δ_{C} (75.4 MHz, CDCl₃, Me₄Si): 10.67 (-ve, CH₂I), 48.21 (-ve, C-4), 77.56 (+ve, C-5), 81.88 (ab, C-3), 90.22 (+ve, C-2), 115.24 (+ve, d, *J*_{C-F(ortho)} = 21.67 Hz, ArCH), 115.31 (+ve, d, *J*_{C-F(ortho)} = 21.60 Hz, ArCH), 127.01 (+ve, d, *J*_{C-F(meta)} = 8.03 Hz, ArCH), 128.33 (+ve, d, *J*_C._{F(meta)} = 8.10 Hz, ArCH), 130.19 (ab, d, *J*_{C-F(para)} = 3.08 Hz, ArC), 162.37 (ab, d, *J*_{C-F} = 246.07 Hz, ArC), 163.06 (ab, d, *J*_{C-F} = 245.4 Hz, ArC); *m/z* [MALDI (TOF)] 438.9 (M⁺ + Na⁺), 453.1 (M⁺-2 + K⁺).

31B

(Found: C, 49.21; H, 3.58. $C_{17}H_{15}F_{2}IO_{2}$ requires C, 49.06; H, 3.63%). v_{max} (CHCl₃)/cm⁻¹: 3411 (OH); δ_{H} (300 MHz, CDCl₃, Me₄Si): 1.81 (1H, bs, OH, exchanges with D₂O), 2.43 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 9.6 Hz, 4-H), 2.58 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 5.7 Hz, 4-H), 3.48 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 3.3 Hz, CH₂I), 3.59 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 6.0 Hz, CH₂I), 4.48-4.56 (1H, m, 5-H), 5.41 (1H, s, 2-H), 6.90-7.08 (6H, m, ArH), 7.38 (2H, dd, ²*J* = 9.0 Hz, ³*J* = 2.1 Hz, ArH); δ_{C} (75.4 MHz, CDCl₃, Me₄Si): 12.23 (-ve, CH₂I), 49.18 (-ve, C-4), 77.00 (+ve, C-5), 82.96 (ab, C-3), 89.16 (+ve, C-2), 115.21 (+ve, d, *J*_{C-F(ortho)} = 21.07 Hz, ArCH), 115.29 (+ve, d, *J*_C. F_(ortho) = 21.00 Hz, ArCH), 126.99 (+ve, d, *J*_{C-F(meta)} = 8.03 Hz, ArCH), 130.56 (ab, d, *J*_{C-F(para)} = 3.08 Hz, ArC), 136.69 (ab, d, *J*_{C-F(para)} = 3.08 Hz, ArC), 162.41 (ab, d, *J*_{C-F} = 244.8 Hz, ArC), 162.99 (ab, d, *J*_{C-F} = 244.7 Hz, ArC); *m/z* [MALDI (TOF)] 438.9 (M⁺ + Na⁺), 453.1 (M⁺-2 + K⁺).

(2*R**,3*S**,5*R**)-5-Iodomethyl-2,3-bis-(4-methoxyphenyl)-tetrahydrofuran-3-ol (32A) and (2*R**,3*S**,5*S**)-5-Iodomethyl-2,3-bis-(4-methoxyphenyl)-tetrahydrofuran-3-ol (32B)

According to the preparation of **29A**, **29B**, compounds **32A**, **32B** were obtained from **22** as white solid (higher R_f , 12%, mp 132 °C) and thick liquid (lower R_f , 62%), respectively.

32A

(Found: C, 51.67; H, 4.59. $C_{19}H_{21}IO_4$ requires C, 51.83; H, 4.81%). v_{max} (CHCl₃)/cm⁻¹: 3060 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.80 (1H, bs, due to OH, exchanges with D₂O), 2.42 (1H, dd, ²*J* = 14.4 Hz, ³*J* = 3.6 Hz, 4-H), 2.72 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 9.0 Hz, 4-H), 3.59 (2H, d, *J* = 6.6 Hz, CH₂I), 3.75 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 4.53–4.57 (1H, m, 5-H), 5.17 (1H, s, 2-H), 6.78 (2H, d, *J* = 9.0 Hz, ArH), 6.88 (2H, d, *J* = 8.7 Hz, ArH), 6.98 (2H, d, *J* = 8.7 Hz, ArH), 7.27 (2H, d, *J* = 9.0 Hz, ArH); δ_C (75.4 MHz, CDCl₃, Me4Si): 10.86 (-ve, CH₂I), 47.78 (-ve, C-4), 55.14 (+ve, CH₃), 55.22 (+ve, CH₃), 77.81 (+ve, C-5), 81.79 (ab, C-3), 90.52 (+ve, C-2), 113.63 (+ve, ArCH), 126.43 (+ve, ArCH), 126.59 (ab, ArC), 127.88 (+ve, ArCH), 134.05 (ab, ArC), 158.62 (ab, ArC), 159.51 (ab, ArC); *m*/*z* (FAB) 440 (M⁺).

32B

(Found: C, 51.77; H, 4.74. $C_{19}H_{21}IO_4$ requires C, 51.83; H, 4.81%). v_{max} (CHCl₃)/cm⁻¹: 3040 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.80 (1H, bs, OH, exchanges with D₂O), 2.38 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 9.6 Hz, 4-H), 2.55 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 5.7 Hz, 4-H), 3.47 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 3.6 Hz, CH₂I), 3.55 (1H, d, ²*J* = 10.2 Hz, ³*J* = 6.0 Hz, CH₂I), 3.73 (3H, s, CH₃), 3.79 (3H, s, CH₃), 4.46–4.54 (1H, m, 5-H), 5.39 (1H, s, 2-H), 6.76 (2H, d, *J* = 8.7 Hz, ArH), 6.87 (2H, d, *J* = 8.7 Hz, ArH), 6.97 (2H, d, *J* = 8.7 Hz, ArH), 7.31 (2H, d, *J* = 8.7 Hz, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 12.60 (-ve, CH₂I), 48.96 (-ve, C-4), 55.07 (+ve, CH₃), 55.14 (+ve, CH₃), 76.77 (+ve, C-5), 82.88 (ab, C-3), 89.39 (+ve, ArCH), 133.22 (ab, ArC), 127.83 (+ve, ArCH), 133.22 (ab, ArC), 158.62 (ab, ArC), 159.41 (ab, ArC); *m*/*z* (FAB) 440 (M⁺).

(2*R**, 3*S**, 5*S**)-5-Iodomethyl-2,3-bis-(4-methanesulfonyl-phenyl)-tetrahydrofuran-3-ol (33B)

According to the preparation of **29A**, **29B**, compound **33B** was obtained from **26** as white solid (85%), mp 166 °C; (Found: C, 42.35; H, 3.65; S, 11.96. C₁₉H₂₁IO₆S₂ requires C, 42.54; H, 3.95; S, 11.96%). v_{max} (CHCl₃)/cm⁻¹: 3430 (OH), 1320 (S=O); $\delta_{\rm H}$ (300 MHz, CDCl₃, Me₄Si): 1.26 (1H, bs, OH, exchanges with D₂O), 2.55 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 9.6 Hz, 4-H), 2.65 (1H, dd, ²*J* = 13.5 Hz, ³*J* = 6.0 Hz, 4-H), 3.00 (3H, s, SO₂CH₃), 3.08 (3H, s, SO₂CH₃), 3.52 (1H, dd, ²*J* = 10.5 Hz, ³*J* = 3.6 Hz, CH₂I), 3.65 (1H, d, ²*J* = 10.5 Hz, ³*J* = 6.3 Hz, CH₂I), 4.58–4.67 (1H, m, 5-H), 5.49 (1H, s, 2-H), 7.20 (2H, d, *J* = 8.4 Hz, ArH), 7.66 (2H, d, *J* = 8.7 Hz, ArH), 7.76 (2H, d, *J* = 8.1 Hz, ArH), 7.90 (2H, d, *J* = 8.4 Hz, ArH); $\delta_{\rm C}$ (75.4 MHz, CDCl₃, Me₄Si): 11.78 (-ve, CH₂I), 44.36 (+ve, CH₃), 44.44 (+ve, CH₃), 49.93 (-ve, C-4), 77.42 (+ve, C-5), 83.74 (ab, C-3), 89.18 (+ve, C-2), 126.51 (+ve, ArCH), 127.35 (+ve, ArCH), 127.64 (+ve, ArCH), 127.80 (+ve, ArCH), 140.11 (ab, ArC), 140.56 (ab, ArC), 141.34 (ab, ArC), 146.97 (ab, ArC); *m*/z [MALDI (TOF)] 559.83 (M⁺+ Na⁺), 575.94 (M⁺+ K⁺).

 $(2R^*, 3S^*, 5R^*)$ -5-Iodomethyl-3-(4-methylsulfanylphenyl)-2-phenyltetrahydrofuran-3-ol (34A) and (2 R^* , 3 S^* , 5 S^*)-5-Iodomethyl-3-(4-methylsulfanylphenyl)-2phenyltetrahydro-furan-3-ol (34B)

According to the preparation of **29A**, **29B**, compounds **34A**, **34B** were obtained from **24** as white solid (higher R_f , 14%, mp 130 °C) and thick liquid (lower R_f , 72%), respectively.

34A

(Found: C, 50.50; H, 4.38. $C_{18}H_{19}IO_2S$ requires C, 50.71; H, 4.49). v_{max} (CHCl₃)/cm⁻¹: 3434 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.82 (1H, bs, OH, exchanges with D₂O), 2.45 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 3.9 Hz, 4-H), 2.50 (3H, s, SCH₃), 2.74 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 9.0 Hz, 4-H), 3.62 (2H, d, *J* = 6.6 Hz, CH₂I), 4.54–4.63 (1H, m, 5-H), 5.24 (1H, s, 2-H), 7.04-7.07 (2H, m, ArH), 7.22-7.32 (7H, m, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 10.66 (-ve, CH₂I), 15.58 (+ve, SCH₃), 48.15 (-ve, C-4), 77.96 (+ve, C-5), 82.12 (ab, C-3), 90.73 (+ve, C-2), 125.82 (+ve, ArCH), 126.21 (+ve, ArCH),

126.59 (+ve, ArCH), 128.29 (+ve, ArCH), 128.39 (+ve, ArCH), 134.63 (ab, ArC), 137.51 (ab, ArC), 138.81 (ab, ArC); m/z [MALDI (TOF)] 448.9 (M⁺ + Na⁺), 464.9 (M⁺ + K⁺).

34B

(Found: C, 50.65; H, 4.46. $C_{18}H_{19}IO_2S$ requires C, 50.71; H, 4.49%). v_{max} (CHCl₃)/cm⁻¹: 3434(OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.83 (1H, bs, exchanges with D₂O), 2.39 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 9.6 Hz, 4-H), 2.47 (3H, s, SCH₃), 2.50 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 5.7 Hz, 4-H), 3.47 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 3.6 Hz, CH₂I), 3.52 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 6.0 Hz, CH₂I), 4.47-4.55 (1H, m, 5-H), 5.45 (1H, s, 2-H), 7.01-7.04 (2H, m, ArH), 7.20-7.24 (5H, m, ArH), 7.31 (2H, d, *J* = 8.7 Hz, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 12.48 (-ve, CH₂I), 15.44 (+ve, SCH₃), 49.19 (-ve, C-4), 77.42 (+ve, C-5), 83.14 (ab, C-3), 89.57 (+ve, ArCH), 128.23 (+ve, ArCH), 126.05 (+ve, ArCH), 126.49 (+ve, ArCH), 128.19 (+ve, ArCH), 128.23 (+ve, ArCH), 134.91 (ab, ArC), 137.49 (ab, ArC), 137.86 (ab, ArC); m/z [MALDI (TOF)] 448.9 (M⁺ + Na⁺), 464.9 (M⁺ + K⁺).

(2R*, 3S*, 5S*)-5-Iodomethyl-3-(4-methanesulfonylphenyl)-2phenyltetrahydrofuran-3-ol (35B)

According to the preparation of **29A**, **29B**, compounds **35B** was obtained from **27** as white solid (84%), mp 161 °C; (Found: C, 47.06; H, 4.04; S, 7.09. $C_{18}H_{19}IO_4S$ requires C, 47.17; H, 4.18; S, 7.00%). v_{max} (CHCl₃)/cm⁻¹): 3470 (OH), 1300 (S=O); δ_H (300 MHz, CDCl₃, Me₄Si): 1.92 (1H, bs, OH, exchanges with D₂O), 2.46 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 9.6 Hz, 4-H), 2.65 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 5.7 Hz, 4-H), 3.08 (3H, s, SO₂CH₃), 3.52 (1H, dd, ²*J* = 10.5 Hz, ³*J* = 3.6 Hz, CH₂I), 3.63 (1H, d, ²*J* = 10.5 Hz, ³*J* = 6.0 Hz, CH₂I), 4.55–4.59 (1H, m, 5-H), 5.55 (1H, s, 2-H), 7.00 (2H, dd, ³*J* = 7.2 Hz, ³*J* = 4.8 Hz, ArH), 7.27 (3H, m, ArH), 7.67 (2H, d, *J* = 6.9 Hz, ArH), 7.95 (2H, dd, ³*J* = 8.4 Hz, ³*J* = 4.8 Hz, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 11.99 (-ve, CH₂I), 44.46 (+ve, SO₂CH₃), 49.74 (-ve, C-4), 77.26 (+ve, C-5), 83.31 (ab, C-3), 89.93 (+ve, ArCH), 128.80 (ab, ArC), 134.34 (ab, ArC), 139.70 (ab, ArC), 147.98 (ab, ArC); The assignments of chemical shifts to all the hydrogens and carbons are made on the basis

of various NMR experiments like ¹H, ¹³C, HSQC, INEPT long range and NOE; m/z [MALDI (TOF)] 457.80 (M⁺).

$(2R^*, 3S^*, 5R^*)$ -5-Iodomethyl-3-(4-methoxyphenyl)-2-phenyl-tetrahydrofuran-3-ol (36A) and $(2R^*, 3S^*, 5S^*)$ -5-Iodomethyl-3-(4-methoxyphenyl)-2phenyltetrahydrofuran-3-ol (36B)

According to the preparation of **29A**, **29B**, compounds **36A**, **36B** were obtained from **25** as white solid (higher R_f , 12%, mp 128 °C) and thick liquid (lower R_f , 65%), respectively.

36A

(Found: C, 52.59; H, 4.70. $C_{18}H_{19}IO_3$ requires C, 52.70; H, 4.67%). v_{max} (CHCl₃)/cm⁻¹: 3436 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.80 (1H, bs, OH, exchanges with D₂O), 2.43 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 3.3 Hz, 4-H), 2.74 (1H, dd, ²*J* = 14.1 Hz, ³*J* = 9.0 Hz, 4-H), 3.62 (2H, d, *J* = 6.3 Hz, CH₂I), 3.82 (3H, s, OCH₃), 4.54-4.61 (1H, m, 5-H), 5.23 (1H, s, 2-H), 6.87-6.92 (2H, m, ArH), 7.04-7.07 (2H, m, ArH), 7.24-7.35 (5H, m, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 10.71 (-ve, CH₂I), 48.06 (-ve, C-4), 55.26 (+ve, CH₃), 77.97 (+ve, C-5), 82.09 (ab, C-3), 90.74 (+ve, C-2), 113.71 (+ve, ArCH), 126.46 (+ve, ArCH), 126.67 (+ve, ArCH), 128.24 (+ve, ArCH), 133.98 (ab, ArC), 134.82 (ab, ArC), 158.72 (ab, ArC); *m*/*z* [MALDI (TOF)] 433 (M⁺+ Na⁺), 449 (M⁺+ K⁺).

36B

(Found: C, 52.55; H, 4.50. $C_{18}H_{19}IO_3$ requires C, 52.70; H, 4.67%). v_{max} (CHCl₃)/cm⁻¹: 3436 (OH); δ_H (300 MHz, CDCl₃, Me₄Si): 1.72 (1H, bs, OH, exchanges with D₂O), 2.43 (1H, dd, ²*J* = 12.9 Hz, ³*J* = 9.6 Hz, 4-H), 2.58 (1H, dd, ²*J* = 13.2 Hz, ³*J* = 5.7 Hz, 4-H), 3.50 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 3.6 Hz, CH₂I), 3.60 (1H, dd, ²*J* = 10.2 Hz, ³*J* = 6.0 Hz, CH₂I), 3.83 (3H, s, OCH₃), 4.53-4.55 (1H, m, 5-H), 5.47 (1H, s, 2-H), 6.91 (2H, d, *J* = 9.0 Hz, ArH), 7.04-7.06 (2H, m, ArH), 7.25-7.26 (3H, m, ArH), 7.34 (2H, d, *J* = 9.0 Hz, ArH); δ_C (75.4 MHz, CDCl₃, Me₄Si): 12.5 (-ve, CH₂I), 49.3 (-ve, C-4), 55.3 (+ve, OCH₃), 77.1 (+ve, C-5), 83.2 (ab, C-3), 89.8 (+ve, C-2), 113.7 (+ve, ArCH), 126.5 (+ve, ArCH), 126.7 (+ve, ArCH), 128.3 (+ve, ArCH), 133.2 (ab, ArC), 135.2 (ab, ArC), 158.8 (ab, ArC); The assignments of chemical shifts to all the

hydrogens and carbons are made on the basis of various NMR experiments like ¹H, ¹³C, HSQC, INEPT long range and NOE; m/z [MALDI (TOF)] 433 (M⁺+ Na⁺), 449 (M⁺+ K⁺).