Electronic Supplementary Information.

Reagent Switchable Stereoselective $\beta(1,2)$ Mannoside Mannosylation: OH-2 of Mannose is a Privileged Acceptor.

Katie J. Doores and Benjamin G. Davis*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK, OX1 3TA. Fax: +44 (0) 1865 275674; Tel: +44 (0) 1865 275654; E-mail: ben.davis@chem.ox.ac.uk

para-Methoxyphenyl (2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)-(1→2)-3,4,6-tri-*O*-benzyl- α -D-mannopyranoside 5 α

para-Methoxyphenyl 3,4,6-tri-*O*-benzyl-α-D-mannopyranoside **4** (33 mg, 0.06 mmol), phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio-α-D-mannopyranoside **3** (41 mg, 0.065 mmol) and 2,4,6-tri-*tert*-butylpyrimidine (76 mg, 0.30 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. Dimethylthiosulfonium triflate (260 µL of a 0.4 M solution in DCM) was added and the reaction mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.1.c (4:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.4) with complete consumption of the starting materials (R_f 0.1, 0.7). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol→5:1, petrol:ethyl acetate) to afford *para*-methoxyphenyl (2,3,4,6-tetra-*O*-benzyl-α-D-mannopyranosyl)-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranoside **5α** (43 mg, 67 %) as a colourless oil; [α]⁷₇+41.3 (*c*, 1.0 in CHCl₃); v_{max} (thin film) no significant peaks; δ_H (500 MHz, CDCl₃)

3.69 (1H, ad, J 11.2 Hz, H-6), 3.74-3.75 (2H, m, H-6, H-6'), 3.75 (3H, s, OMe), 3.80 (1H, dd, J_{5.6}, 3.8 Hz, J_{6.6}, 11.4 Hz, H-6'), 3.87 (1H, as, H-2b), 3.89-4.00 (5H, m, H-3b, H-4a, H-4b, H-5a, H-5b), 4.14 (1H, dd, J_{2,3} 3.1 Hz, J_{3,4} 9.0 Hz, H-3a), 4.27 (1H, at, J 2.6 Hz, H-2a), 4.47-4.52 (5H, m, 5 x CH), 4.54 (1H, d, J 12.4 Hz, CH), 4.59 (1H, d, J 12.5 Hz, CH), 4.60 (1H, d, J 12.4 Hz, CH), 4.62 (1H, d, J 10.6 Hz, CH), 4.66 (1H, d, J 12.0 Hz, CH), 4.72 (1H, d, J 11.3 Hz, CH), 4.76 (1H, d, J 11.3 Hz, CH), 4.87 (1H, d, J 10.9 Hz, CH), 4.90 (1H, d, J 10.8 Hz, CH), 5.25 (1H, d, J_{1.2} 1.6 Hz, H-1b), 5.59 (1H, d, J_{1.2} 1.8 Hz, H-1a), 6.75 (2H, d, J 9.1 Hz, 2 x Ar-H_{PMP}), 6.99 (2H, d, 2 x Ar-H_{PMP}), 7.16-7.59 (35H, m, 35 x Ar-H); δ_C (125 MHz, CDCl₃) 55.6 (q, OMe), 69.2, 69.4 (2 x t, C-6a, C-6b), 72.2 (t, CH₂), 72.4 (d, C-4a, C-4b), 72.6, 73.2 (2 x t, 2 x CH₂), 74.3 (d, C-2a), 74.4, 74.9 (2 x d. C-2b. C-5a. C-5b). 75.0. 75.1 (2 x t. 2 x CH₂). 79.7 (d. C-3a. C-3b). 97.8 (d. C-1a). 99.7 (d, C-1b), 114.5, 117.8 (2 x d, 2 x Ar-C_{PMP}), 127.4-128.5 (d, 35 x Ar-C), 138.2, 138.3, 138.4,138.5, 138.6 (s, Ar-C), 150.1, 154.9 (2 x s, 2 x Ar-C_{PMP}); m/z (ESI⁺) 1137 (M+MeCN+NH₄⁺, 100%), (M+Na⁺) peaks measured: 1101.5 (100%), 1102.5 (75%), 1103.5 (30%), 1104.5 (9%), 1105.5 (2%), peaks calculated: 1101.5 (100%), 1102.5 (71%), 1103.5 (23%), 1104.5 (4%), 1105.5 (1%).

para-Methoxyphenyl (2,3,4,6-tetra-*O*-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-*O*-benzyl- α -D-mannopyranoside 5 β

para-Methoxyphenyl 3,4,6-tri-*O*-benzyl- α -D-mannopyranoside **4** (74 mg, 0.13 mmol), phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- α -D-mannopyranoside **3** (101 mg, 0.16 mmol) and 2,6-di-*tert*-butyl-4-methylpyridine (216 mg, 0.85 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added

dimethyldisulfide (70 µL, 0.78 mmol) and trifluoromethylsulfonic anhydride (136 µL, 0.78 mmol). After 2 min, the solution was transferred to the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (4:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.3) with complete consumption of the starting materials ($R_f 0.1, 0.5$). The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite[®]. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol \rightarrow 4:1, petrol:ethyl acetate) to afford *para*-methoxyphenyl (2,3,4,6-tetra-O-benzylβ-D-mannopyranosyl)- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl-α-D-mannopyranoside **5**β (98 mg, 70 %) as a colourless oil; $\left[\alpha_{\rm b}^{2}\right]^{2}$ -15.5 (c, 1.0 in CHCl₃); $v_{\rm max}$ (thin film) no significant peaks; δ_H (400 MHz, CDCl₃) 3.47-3.55 (2H, m, H-3b, H-5b), 3.65 (1H, d, J_{5,6} 1.8 Hz, J_{6,6}, 10.7 Hz, H-6), 3.69-3.78 (3H, m, H-6, 2 x H-6'), 3.77 (3H, s, OMe), 3.88-3.93 (2H, m, H-5a, H-4b), 4.00 (1H, at, J 9.6 Hz, H-4a), 4.09 (1H, d, J_{2,3} 3.0 Hz, H-2b), 4.17 (1H, dd, J_{2,3} 3.3 Hz, J_{3,4} 8.8 Hz, H-3a), 4.29 (1H, d, J 10.8 Hz, CH), 4.39 (1H, d, J 12.0 Hz, CH), 4.40 (1H, d, J 11.9 Hz, CH), 4.47 (2H, ad, J 12.8 Hz, 2 x CH), 4.53 (1H, d, J 10.8 Hz, CH), 4.54 (1H, d, J 10.9 Hz, CH), 4.58-4.62 (3H, m, H-2a, 2 x CH), 4.66 (1H, s, H-1b), 4.79 (1H, d, J 10.8 Hz, CH), 4.88 (1H, d, J 11.7 Hz, CH), 4.93 (1H, d, J 10.9 Hz, CH), 5.08 (1H, d, J 11.0 Hz, CH), 5.16 (1H, d, J 11.7 Hz, CH), 5.56 (1H, d, J_{1.2} 1.9 Hz, H-1a), 6.81 (2H, d, J 9.0 Hz, 2 x Ar-H_{PMP}), 7.03 (2H, d, 2 x Ar-H_{PMP}), 7.19-7.57 (35H, m, 35 x Ar-H); δ_{C} (100 MHz, CDCl₃) 55.6 (q, OMe), 68.7, 70.0 (2 x t, C-6a, C-6b), 70.3, 70.9, 73.2, 73.4, 74.4, 74.9, 75.2 (7 x t, 7 x CH₂), 71.6 (d, C-2a), 73.9, 74.0 (2 x d, C-4a, C-4b, C-2b), 74.8 (d, C-5a), 74.8 (d, C-5b), 77.8 (d, C-3a), 81.7 (d, C-3b), 96.3 (d, C-1a), 99.5 (d, C-1b), 114.6, 117.7 (2 x d, 2 x Ar-C_{PMP}), 127.3-128.6 (d, Ar-C), 138.1-138.9 (s, Ar-C), 150.3, 155.5 (s, Ar-C_{PMP}); m/z (ESI⁺) 1137 (M+MeCN+NH₄⁺, 100%), (M+Na⁺) peaks measured: 1101.5 (100%), 1102.5 (74%), 1103.5 (28%), 1104.5 (7%), 1105.5 (2%), peaks calculated: 1101.5 (100%), 1102.5 (71%), 1103.5 (23%), 1104.5 (4%), 1105.5 (1%).

para-Methoxyphenyl (2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-*O*-benzyl- α -D-mannopyranoside 7

para-Methoxyphenyl 3,4,6-tri-O-benzyl-α-D-mannopyranoside 4 (54 mg, 0.10 mmol), phenyl 2,3,4,6-tetra-O-acetyl-1-thio- α -D-mannopyranoside 6 (64 mg, 0.15 mmol) and 2,6-di-tert-butyl-4-methylpyridine (205 mg, 0.8 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (67 µL, 0.75 mmol) and trifluoromethylsulfonic anhydride (126 µL, 0.75 mmol). After 2 min, the solution was transferred to the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.25) with complete consumption of the starting materials (R_f 0.2, 0.3). The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite[®]. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol \rightarrow 4:1, petrol:ethyl acetate) to afford *para*-methoxyphenyl (2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -D-mannopyranoside 7 (49 mg, 55%) as a colourless oil; $\left[\alpha\right]_{D}^{9}$ +64.6 (c, 1.0 in CHCl₃); ν_{max} (thin film) 1752 (s, C=O) cm⁻¹; δ_{H} (400 MHz, CDCl₃) 1.90, 2.00, 2.03, 2.14 (12H, 4 x s, 4 x OAc), 3.71 (1H, dd, J_{5,6} 2.3 Hz, J_{6.6}, 11.3 Hz, H-6a), 3.76 (3H, s, OMe), 3.77 (1H, dd, J_{5.6}, 3.0 Hz, H-6'a), 3.94-4.03 (2H, m, H-5a, H-4a), 4.07-4.14 (3H, m, H-2a, H-3a, H-6b), 4.20-4.27 (2H, m, H-5b, H-6'b), 4.50 (1H, d, J 12.1 Hz, CHH'a), 4.55 (1H, d, J 10.9 Hz, CHH'b), 4.63 (1H, d, CHH'a), 4.71 (1H, d, J 11.9 Hz, CHH'c), 4.81 (1H, d, CHH'c), 4.87 (11H, d, CHH'b), 5.02 (1H, d, J_{1,2} 1.7 Hz, H-1b), 5.25 (1H, at, J 9.9 Hz, H-4b), 5.45 (1H, dd, J_{2,3} 3.4 Hz, J_{3,4} 9.9 Hz, H-3b), 5.50-5.51 (2H, m, H-1a, H-2b), 6.79 (2H, d, J 9.1 Hz, 2 x Ar-H PMP), 7.01 (2H, d, J 9.1 Hz, 2 x Ar-H _{PMP}), 7.19-7.38 (15H, m, 15 x Ar-H); δ_C (100 MHz, CDCl₃) 20.5, 20.7, 20.7, 20.9 (4 x q, 4 x OAc), 55.6 (q, OMe), 62.7 (t, C-6b), 66.2 (d, C-4b), 68.9 (t, C- 6a), 69.0 (2 x d, C-5b, C-3b), 69.4 (d, C-2b), 72.1, 74.6 (2 x d, C-5a, C-4a), 72.6, 73.0, 75.3 (3 x t, 3 x CH₂), 76.3, 79.3 (2 x d, C-2a, C-3a), 97.9 (d, C-1a), 99.4 (d, C-1b), 114.6, 118.1 (2 x d, 2 x Ar-C _{PMP}), 127.4-128.9 (d, Ar-C), 138.3, 150.1, 155.5 (s, Ar-C), 169.7, 169.8, 169.9, 170.7 (4 x s, 4 x C=O); m/z (ESI⁺) 945 (M+MeCN+NH₄⁺, 100%); HRMS (ESI⁺) calcd. for C₄₈H₅₄O₁₆Na (M+Na⁺) 909.3304. Found 909.3321.

2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -1,2:3,4-diisopropylidene-D-galactopyranose 9 α and 2,3,4,6-Tetra-O-acetyl- β -D-mannopyranosyl- $(1\rightarrow 6)$ -1,2:3,4-diisopropylidene-D-galactopyranose 9 β

1,2:3,4-Diisopropylidene-D-galactose 8 (19 mg, 0.072 mmol), phenyl 2,3,4,6-tetra-Obenzyl-1-thio- α -D-mannopyranoside **3** (50 mg, 0.08 mmol) and 2,6-di-tert-butyl-4methylpyridine (145 mg, 0.56 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (39 µL, 0.43 mmol) and trifluoromethylsulfonic anhydride (73 µL, 0.43 mmol). After 2 min, the solution was transferred to the flask containing the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h. t.l.c. (2:1, petrol:ethyl acetate) indicated formation of a product (Rf 0.5) with complete consumption of the starting materials ($R_f 0.6, 0.2$). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite. The filtrate was concentrated in *vacuo* and the residue purified by flash column chromatography (petrol \rightarrow 6:1, petrol:ethyl acetate) to afford 2,3,4,6-tetra-O-acetyl-D-mannopyranosyl- $(1\rightarrow 6)$ -1,2:3,4diisopropylidene-D-galactopyranose 9 (36 mg, 53%, α : β 3:1) as a colourless oil.

9 α : $[\alpha]_D^{25}$ -10.9 (*c*, 1.0 in CHCl₃); ν_{max} (thin film) no significant peaks; δ_H (400 MHz, CDCl₃) 1.34, 1.44, 1.51 (12H, 3 x s, 4 x Me), 3.46-3.82 (5H, m, H-5b, H-6a, H-6'a, H-6b, H-6'b), 3.84 (1H, dd, $J_{1,2}$ 1.9 Hz, $J_{2,3}$ 2.8 Hz, H-2b), 3.93 (1H, dd, $J_{3,4}$ 9.5 Hz, H-3b), 3.97 (1H, m, H-5a), 4.03 (1H, at, *J* 9.1 H-4b), 4.17 (1H, dd, $J_{2,3}$ 1.8 Hz, $J_{3,4}$ 8.1 Hz, H-4a), 4.33 (1H, dd, $J_{1,2}$ 5.0 Hz, H-2a), 4.51-4.62 (5H, m, H-3a, 4 x CH), 4.68-4.77 (3H, m, 3 x CH), 4.88 (1H, d, *J* 10.7 Hz, CH), 5.03 (1H, d, H-1b), 5.54 (1H, d, H-1a), 7.16-7.40 (20H, m, 20 x Ar-H); δ_C (100 MHz, CDCl₃) 24.6, 24.9, 26.0, 26.1 (4 x q, 4 x Me), 65.2 (d, C-5a), 65.3, 69.1 (2 x t, C-6a, C-6b), 70.6 (2 x d, C-2a, C-3a), 70.9 (d, C-4a), 72.0 (d, C-5b), 72.1, 72.3, 73.3, 75.1 (4 x t, 4 x CH₂), 74.6 (d, C-2b), 74.8 (d, C-4b), 80.0 (d, C-3b), 96.3 (d, C-1a), 97.2 (d, C-1b), 108.5, 109.3 (2 x s, 2 x C(CH₃)₂), 127.4-128.3 (d, Ar-C), 138.4, 138.5, 138.6 (s, Ar-C); *m*/*z* (ESI⁺) 800 (M+NH₄⁺, 100%); HRMS (ESI⁺) calcd. for C₄₆H₅₄NaO₁₁ (M+Na⁺) 805.3558. Found 805.3550.

9β: $[α]_D^{25}$ -38.3 (*c*, 0.4 in CHCl₃); v_{max} (thin film) no significant peaks; δ_H (500 MHz, CDCl₃) 1.33, 1.34, 1.45, 1.48 (12H, 4 x s, 4 x CH₃), 3.43 (1H, dd, *J*_{5,6} · 2.2 Hz, *J*_{5,6} 5.0 Hz, *J*_{4,5} 9.4 Hz, H-5b), 3.48 (1H, dd, *J*_{2,3} 3.1 Hz, *J*_{3,4} 9.4 Hz, H-3b), 3.63 (1H, dd, *J*_{5,6} 8.2 Hz, *J*_{6,6} · 10.7 Hz, H-6a), 3.76 (1H, dd, *J*_{6,6} · 10.7 H-6'b), 3.80 (1H, dd, H-6'b), 3.90 (1H, at, *J* 9.8 Hz, H-4b), 4.01 (1H, d, *J* 3.2 Hz, H-2b), 4.11-4.13 (1H, m, H-5a), 4.21-4.25 (2H, m, H-4a, H-6a), 4.34 (1H, dd, *J*_{1,2} 4.7 Hz, *J*_{2,3} 2.2 Hz, H-2a), 4.35 (1H, d, *J* 11.0 Hz, CH), 4.45 (1H, d, *J* 12.0 Hz, CH), 4.47 (1H, s H-1b), 4.51 (1H, d, *J* 12.3 Hz, CH), 4.57 (1H, d, *J* 12.3 Hz, CH), 4.62 (1H, dd, *J*_{3,4} 8.2 Hz, H-3a), 4.65 (1H, d, *J* 12.3 Hz, CH), 5.61 (1H, d, H-1a), 7.16-7.52 (20H, m, 20 x Ar-H); δ_C (125 MHz, CDCl₃, from HSQC) 24.6, 25.8 (2 x q, 2 x Me), 67.9 (d, C-5a), 69.3 (d, C-6b), 69.8 (t, C-6a), 70.3 (d, C-2a), 70.6 (d, C-3a), 70.9 (t, CH₂), 71.5 (d, C-4a), 72.5 (d, C-2b), 73.4, 73.4 (2 x t, 2 x CH₂), 74.6 (d, C-4b), 75.0 (t, CH₂), 75.7 (d, C-5b), 81.8 (d, C-3b), 96.2 (d, C-1a), 102.3 (d, C-1b), 127.7-128.1 (d, Ar-C); *m*/*z* (ESI⁺) 800 (M+NH₄⁺, 100%); HRMS (ESI⁺) calcd. for C₄₆H₅₈NO₁₁ (M+NH₄⁺) 800.4004. Found 800.4017.

Methyl-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzoyl- α -D-galactopyranoside 11

2,3,6-Tri-*O*-benzyl- α -D-galactopyranoside **10** (56 mg, 0.11 mmol), phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- α -D-mannopyranoside **3** (77 mg, 0.12 mmol) and 2,6-di-*tert*-butyl-4methylpyridine (199 mg, 0.77 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (59 µL, 0.66 mmol) and trifluoromethylsulfonic anhydride (111 µL, 0.66 mmol). After 2 min, the solution was transferred to the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (4:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.3) with complete consumption of the starting materials (R_f 0.2, 0.7). The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol—5:1, petrol:ethyl acetate) to afford methyl-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl-(1—4)-2,3,6-tri-*O*-benzoyl- α -D-

galactopyranoside 11 (85 mg, 75 %) as a colourless oil;

[α]_D²⁵ +67.1 (*c*, 2.0 in CHCl₃); v_{max} (thin film) 1723 (s, C=O) cm⁻¹; $\delta_{\rm H}$ (500 MHz, CDCl₃) 2.66 (1H, dd, $J_{5,6}$ 1.6 Hz, $J_{6,6}$ 11.0 Hz, H-6b), 3.10 (1H, dd, $J_{5,6}$ 3.6 Hz, H-6'b), 3.42 (3H, s, OMe), 3.90-3.95 (2H, m, H-2b, H-5b), 3.99-4.04 (2H, m, H-3b, CH), 4.09-4.15 (2H, m, H-4b, H-6a), 4.33 (1H, at, *J* 6.9 Hz, H-5a), 4.37-4.49 (4H, m, H-4a, H-6'a, 2 x CH), 4.65 (1H, d, *J* 12.7 Hz, CH), 4.73 (1H, d, *J* 11.7 Hz, CH), 4.74-4.80 (2H, m, 2 x CH), 4.82 (1H, d, *J* 11.0 Hz, CH), 4.91 (1H, d, $J_{1,2}$ 1.6 Hz, H-1b), 5.24 (1H, d, $J_{1,2}$ 3.7 Hz, H-1a), 5.51 (1H, dd, $J_{2,3}$ 10.8 Hz, H-2a), 5.72 (1H, dd, $J_{3,4}$ 3.2 Hz, H-3a), 7.09-7.63 (35H, m, 35 x Ar-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 55.5 (q, OMe), 62.2 (t, C-6a), 67.8 (t, C-6b), 67.8 (d, C-5b), 69.1 (d, C-2a), 69.7 (d, C-3a), 73.6 (d, C-5b), 72.7, 72.8, 73.2 (t, CH₂), 74.2 (d, C-3b), 74.6 (d, C-2b), 74.7 (d, C-4a), 74.9 (t, CH₂), 79.8 (d, C-4b), 97.3 (d, C-1a), 100.0 (d, C-1b), 127.3-129.9 (d, Ar-C), 133.5, 133.2, 138.2, 138.5, 138.7 (s, Ar-C), 166.0 (s,

C=O); m/z (ESI⁺) 1046 (M+NH₄⁺, 100%); (M+Na⁺) peaks measured: 1051.4 (100%), 1052.4 (65%), 1053.4 (21%), 1054.4 (6%), calculated peaks: 1051.4 (100%), 1052.4 (67%), 1053.4 (22%), 1054.4 (5%).

para-Methoxyphenyl (2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 4)-2,6-di-*O*-benzyl-2-*N*-phthalimido- β -D-glucopyranoside 13

para-Methoxyphenyl 2,6-di-O-benzyl-2-N-phthalimido-β-D-glucopyranoside **12** (60 mg, 0.10 mmol), phenyl 2,3,4,6-tetra-O-benzyl-1-thio- α -D-mannopyranoside 3 (69 mg, 0.11 mmol) and 2,6-di-tert-butyl-4-methylpyridine (181 mg, 0.70 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (55 µL, 0.60 mmol) and trifluoromethylsulfonic anhydride (101 µL, 0.60 mmol). After 2 min, the solution was transferred to the flask containing the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.4) with complete consumption of the starting materials (R_f 0.7, 0.2). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (3:1, petrol:ethyl acetate \rightarrow 2:1, petrol:ethyl acetate) to afford paramethoxyphenyl (2,3,4,6-tetra-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 4)-2,6-di-O-benzyl-2-*N*-phthalimido– β -D-glucopyranoside **13** (61 mg, 78 %, α anomer only) as a colourless oil; $[\alpha]_D^{25}$ +47.7 (c, 1.0 in CHCl₃); v_{max} (thin film) 1715 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 3.68 (1H, dd, J_{5.6} 10.6 Hz, J_{6.6}, 1.5 Hz, H-6b), 3.71 (3H, s, OMe), 3.73-3.79 (2H, m, H-5a, H-6'b), 3.82 (1H, bs, H-2b), 3.85 (1H, dd, J_{6.6'} 2.8 Hz, J_{5.6} 7.9 Hz, H-6a), 3.90-3.98 (4H, m, H-4a, H-6a, H-3b, H-5b), 4.05 (1H, at, J 9.4 Hz, H-4b), 4.23 (1H, d, J 12.1 Hz, CH), 4.40 (1H, at, J 10.9 Hz, H-2a), 4.44-4.49 (2H, m, H-3a, CH), 4.51-4.69 (9H, m, 9 x CH), 4.90 (1H, d, *J* 10.9 Hz, CH), 5.37 (1H, d, $J_{1,2}$ 2.0 Hz, H-1b), 5.59 (1H, d, $J_{1,2}$ 8.1 Hz, H-1a), 6.79 (2H, d, *J* 9.1 Hz, 2 x Ar-H _{PMP}), 6.85 (2H, d, 2 x Ar-H _{PMP}), 6.93 (2H, at, *J* 7.8 Hz, 2 x Ar-H _{Phth}), 7.00 (2H, d, *J* 7.1 Hz, 2 x Ar-H _{Phth}), 7.18-7.68 (30H, 30 x Ar-H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 55.6 (q, OMe), 55.6 (d, C-2a), 69.3, 69.4 (2 x t, C-6a, C-6b), 72.3, 72.4 (2 x t, CH₂), 73.1 (d, C-5b), 73.3, 73.4, 74.5 (3 x t, 3 x CH₂), 74.9 (d, C-4b), 75.0 (t, CH₂), 75.1 (d, C-2b), 75.6 (d, C-5a), 78.5 (d, C-4a), 79.7 (d, C-3b), 80.5 (d, C-3a), 97.4 (d, C-1a), 100.3 (d, C-1b), 114.3, 118.6 (2 x d, Ar-H _{PMP}), 123.4 (d, Ar-C _{Phth}), 127.3-128.4 (d, Ar-C _{Bn}), 133.9 (d, Ar-C _{Phth}), 138.2-138.5 (s, Ar-C), 150.9, 155.3 (s, C=O); *m*/*z* (ESI⁺) 1135 (M+NH₄⁺, 100%); (M+Na⁺) peaks measured: 1140.4 (100%), 1141.5 (73%), 1142.5 (27%), 1143.5 (7%), calculated peaks: 1140.5 (100%), 1141.5 (76%), 1142.5 (31%), 1143.5 (9%).

2,3,4,6-Tetra-*O*-benzyl-α-D-mannopyranosyl-(1→3)-1,2:5,6-diisopropylidene-Dglucopyranose 15

1,2:5,6-Diisopropylidene-D-glucose **14** (25 mg, 0.096 mmol), phenyl 2,3,4,6-tetra-*O*benzyl-1-thio- α -D-mannopyranoside **3** (73 mg, 0.11 mmol) and 2,6-di-*tert*-butyl-4methylpyridine (148 mg, 0.576 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (43 µL, 0.48 mmol) and trifluoromethylsulfonic anhydride (84 µL, 0.48 mmol). After 2 min, the solution was transferred to the flask containing the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.7) with complete consumption of the starting materials (R_f 0.2, 0.8). The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol \rightarrow 5:1, petrol:ethyl acetate) to afford 2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-1,2:5,6-diisopropylidene-D-glucopyranose **15** (48 mg, 64 %) as a colourless oil;

[α]_D²⁵ +9.4 (*c*, 1.0 in CHCl₃); v_{max} (thin film) no significant peaks; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.23, 1.33, 1.41, 1.49 (12H, 4 x s, 4 x CH₃), 3.78 (1H, at, *J* 2.8 Hz, H-2b), 3.80-3.85 (4H, m, H-6b, H-6'b, H-5a, H-5b), 3.99-4.03 (2H, m, H-3b, H-6a), 4.06-4.11 (3H, m, H-4a, H-4b, H-6'a), 4.28 (1H, d, *J* 1.5 Hz, H-3a), 4.51 (1H, d, *J* 10.7 Hz, CH), 4.55 (1H, d, *J* 11.6 Hz, CH), 4.56 (1H, d, *J* 12.0 Hz, CH), 4.60 (1H, d, *J* 11.7 Hz, CH), 4.66-4.69 (3H, m, 2 x CH, H-2a), 4.76 (1H, d, 12.6 Hz, CH), 4.89 (1H, d, *J* 10.4 Hz, CH), 5.24 (1H, d, *J*_{1,2} 1.6 Hz, H-1b), 5.81(1H, d, *J*_{1,2} 3.8 Hz, H-1a), 7.17-7.40 (20H, m, 20 x Ar-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 25.5, 26.1, 26.8, 26.9 (4 x q, 4 x Me), 67.7 (t, C-6a), 69.2 (t, C-6b), 72.1, 72.2 (2 x t, 2 x CH₂), 72.5 (d, C-4b), 72.6 (d, C-5b), 73.5 (t, CH₂), 74.2 (d, C-2b), 74.7 (d, C-3b), 75.3 (t, CH₂), 79.6 (d, C-5a), 80.6 (d, C-3a), 81.3 (d, C-4a), 83.7 (d, C-2a), 98.9 (d, C-1b), 105.2 (d, C-1a), 109.3, 111.9 (2 x s, 2 x C(CH₃)₂), 127.5-128.4 (d, Ar-C), 138.1, 138.2, 138.3 (s, Ar-C); *m*/z (ESI⁺) 800 (M+NH₄⁺, 100%); HRMS (ESI⁺) calcd. for C₄₆H₅₄NaO₁₁ (M+Na⁺) 805.3558. Found 805.3560.

Benzyl (2-*O*-acetyl-3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-(3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-2,4-di-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-mannopyranoside 18

Benzyl 2,4-di-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-mannopyranoside **17** (77 mg, 0.14 mmol), ethyl 2-*O*-acetyl-3,4,6-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl-thio- α -D-mannopyranoside **16** (160 mg, 0.16 mmol) and 2,6-di-tert-butyl-4-methylpyridine (235 mg, 0.95 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask

containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (73 µL, 0.816 mmol) and trifluoromethylsulfonic anhydride (137 µL, 0.816 mmol). After 2 min, the solution was transferred to the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($R_f 0.5$) with complete consumption of the starting materials (R_f 0.6, 0.3). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol \rightarrow 6:1, petrol:ethyl acetate) to afford benzyl 2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-(3,4,6-tri-Obenzyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-2,4,di-O-benzyl-6-O-tert-butyldimethylsilyl- α -Dmannopyranoside **18** (136 mg, 68%) as a colourless oil; $\left[\alpha \int_{0}^{1} +15.3 (c, 1.0 \text{ in CHCl}_{3})\right];$ v_{max} (thin film) 1758 (br, C=O) cm⁻¹; δ_{H} (500 MHz, CDCl₃) 0.06, 0.07 (6H, 2 x s, 2 x CH₃), 0.91 (9H, s, C(CH₃)₃), 2.13 (3H, s, Ac), 3.46 (1H, d, J 10.5 Hz, H-6a), 3.68-4.00 (14H, m, H-2a, H-3b/c, H-4a/b/c, H-5a/b/c, H-6b/c, H-6'a/b/c), 4.03 (1H, m, H-2b), 4.15 (1H, dd, J_{2,3} 3.1 Hz, J_{3,4} 9.5 Hz, H-3a), 4.31 (1H, d, J 12.2 Hz, CH), 4.40 (1H, d, J 10.9 Hz, CH), 4.42-4.46 (2H, m, 2 x CH), 4.51 (1H, d, J 12.1 Hz, CH), 4.53-4.68 (10H, m, 10 x CH), 4.76 (1H, d, J 11.7 Hz, CH), 4.82 (1 H, d, J 10.9 Hz, CH), 4.88 (1H, d, J 11.2 Hz, CH), 4.90 (1H, d, J_{1,2} 1.4 Hz, H-1a), 5.06 (1H, d, J_{1,2} 1.5 Hz, H-1c), 5.2 (1H, d, J_{1,2} 1.3 Hz, H-1b), 5.54 (1H, at, J 2.2 H, H-2c), 7.14-7.36 (45H, m, 45 x Ar-H); δ_C (125 MHz, CDCl₃) -5.3, -5.1, (q, 2 x CH₃), 18.4 (s, <u>C</u>(CH₃)₃), 26.0 (q, C(<u>C</u>H₃)₃), 62.6 (t, C-6b), 68.4 (t, C-6a), 68.7 (t, CH₂), 68.8 (d, C-2c), 69.5 (C-6c), 71.9, 72.1, 73.2, 73.4, 74.8, 74.9, 75.0 (t, 8 x CH₂), 72.6, 73.4, 74.2, 74.8, 75.1, 77.2, 78.1 (d, C-2a/b, C-3b/c, C-4a/b/c, C-5a/b/c), 78.1 (d, C-3a), 96.1 (d, C-1a), 99.3 (d, C-1c), 100.9 (d, C-1b), 127.3-128.5 (d, 45 x Ar-C), 137.5-138.7 (s, 9 x Ar-C), 170.1 (s, C=O); m/z (ESI⁺) 1493 (M+Na⁺, 100 %); (M+Na⁺) peaks observed: 1451.7 (100%), 1452.7 (98%), 1453.7 (47%), 1454.7 (15%), 1555.7 (5%), peaks calculated: 1451.7 (99%), 1452.7 (100%), 1453.7 (56%), 1454.7 (22%), 1555.7 (7%).

Benzyl 2,3,4,6-tetra-*O*-benzyl- β -D-mannopyranosyl- $(1\rightarrow 2)$ - 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranoside 20 β and Benzyl 2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ - 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ - 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di- α -benzyl- α -ben

Conditions A:

Benzyl $(3,4,6-\text{tri}-O-\text{benzyl}-\alpha-D-\text{mannopyranosyl})-(1\rightarrow 2)-(3,4,6-\text{tri}-O-\text{benzyl}-\alpha-D-\text{mannopyranosyl})-(1\rightarrow 3)-2,4,di-O-\text{benzyl}-6-O-tert-butyldimethylsilyl-\alpha-D-$

mannopyranoside **19** (63 mg, 0.044 mmol), phenyl 2.3,4,6-tetra-O-benzyl-1-thio-α-Dmannopyranoside **3** (42 mg, 0.066 mmol) and 2.4.6-tri-*tert*-butylpyrimidine (90 mg, 0.35 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (1 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. То this flask added dimethyldisulfide (30 µL, 0.33 mmol) was and trifluoromethylsulfonic anhydride (57 µL, 0.33 mmol). After 2 min, the solution was transferred to the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($R_f 0.5$) with complete consumption of the starting materials (R_f 0.1, 0.6). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol \rightarrow 6:1, petrol:ethyl acetate) to afford benzyl 2,3,4,6-tetra-*O*-benzyl- β -D-mannopyranosyl- $(1 \rightarrow 2)$ - 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -

3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzyl-6-*O*-tertbutyldimethylsilyl- α -D-mannopyranoside **20** β (40 mg, 47 %) as a colourless oil.

Conditions B:

Benzyl $(3,4,6-\text{tri}-O-\text{benzyl}-\alpha-D-\text{mannopyranosyl})-(1\rightarrow 2)-(3,4,6-\text{tri}-O-\text{benzyl}-\alpha-D$ mannopyranosyl)- $(1\rightarrow 3)$ -2,4,di-O-benzyl-6-O-tert-butyldimethylsilyl- α -Dmannopyranoside **19** (63 mg, 0.044 mmol), phenyl 2,3,4,6-tetra-O-benzyl-1-thio-α-Dmannopyranoside 3 (36 mg, 0.057 mmol) and 2,4,6-tri-tert-butylpyrimidine (57 mg, 0.22 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. Dimethylthiosulfonium triflate (50 mg, 0.194 mmol) was added and the reaction mixture was stirred at -78 $^{\circ}$ C under an atmosphere of argon. After 1 h, t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($R_f 0.5$) with complete consumption of the starting materials (R_f 0.1, 0.6). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol \rightarrow 5:1, petrol:ethyl acetate) to afford benzyl 2,3,4,6-tetra-*O*-benzyl- β -D-mannopyranosyl- $(1 \rightarrow 2)$ - 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3.4.6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzyl-6-*O*-tert-

butyldimethylsilyl- α -D-mannopyranoside **20** (35 mg, 41 %, α : β , 2.5:1, inseparable mixture) as a colourless oil.

20β: $[\alpha]_{7}^{7}$ +2.2 (*c*, 1.0 in CHCl₃); ν_{max} (thin film) no significant peaks; δ_{H} (500 MHz, CDCl₃) 0.10, 0.11 (2 x s, 2 x CH₃), 0.96 (9H, s, C(CH₃)₃), 3.23-3.26 (1H, m, H-5d), 3.31 (1H, dd, *J* 3.1 Hz, *J* 9.3 Hz, H-3d), 3.43 (1H, dd, *J*_{5,6} 1.4 Hz, *J*_{6,6} 10.6 Hz, H-6c), 3.60 (1H, dd, *J*_{5,6} 3.6 Hz, H-6'c), 3.65-3.81 (7H, m, H-5a, H-6a, H-6'a, H-6b, H-6'b, H-6d, H-6'd), 3.83-3.85 (1H, m, H-4b), 3.87-3.97 (5H, m, H-2d, H-4a, H-4c, H-4d, H-5c), 4.02-4.07 (4H, m, H-2a, H-3b, H-3c, H-5b), 4.20 (1H, d, *J*_{2,3} 2.4 Hz, H-2b), 4.22-4.28 (2H, m, 2 x CH), 4.24 (1H, s, H-3a), 4.35 (1H, s, H-1d), 4.47 (1H, s, H-2c), 4.38 -4.77 (18H, m, 18 x CH), 4.85-5.01 (5H, m, 5 x CH), 4.95 (1H, d, *J*_{1,2} 1.2 Hz, H-1a), 5.12 (1H, d, *J* 11.8 Hz, CH), 5.21 (1H, d, *J*_{1,2} 2.1 Hz, H-1c), 5.30 (1H, s, H-1b), 7.09-7.57 (65H, m, 65 x Ar-

H); δ_{C} (125 MHz, CDCl₃) -5.3, -5.1 (2 x q, 2 x CH₃), 18.4 (s, <u>C</u>(CH₃)₃), 25.9 (q, C(<u>C</u>H₃)₃), 62.6 (t, C-6a), 68.5 (t, C-6c), 68.7 (t, CH₂), 69.6 (t, C-6b), 69.9 (t, C-6d), 70.3, 70.5 (2 x t, 2 x CH₂), 71.6 (d, C-5c), 71.9 (t, CH₂), 72.1 (d, C-2c), 72.7 (d, C-5b), 72.8, 73.1, 73.3 (3 x t, 3 x CH₂), 73.3 (d, C-5a), 73.4 (t, CH₂), 73.8 (d, C-2d, C-4c), 74.2, 74.4 (2 x t, 2 x CH₂), 74.7, 74.7 (2 x d, C-2b, C-4a, C-4d), 74.8, 74.8 (2 x t, 2 x CH₂), 75.2 (d, C-4b), 75.6 (d, C-5d), 77.7 (d, C-3c), 78.0 (d, C-2a), 80.2 (d, C-3a, C-3b), 81.4 (d, C-3d), 96.0 (d, C-1a), 99.4 (d, C-1c, C-1d), 101.1 (d, C-1b), 127.2-128.9 (d, 65 x Ar-C), 137.5-138.7 (s, 13 x Ar-C); *m*/*z* (ESI⁺) 1975 (M+Na⁺, 100%); (M+Na⁺) peaks measured: 1973.9 (58%), 1974.9 (100%), 1975.9 (64%), 1976.9 (23%), 1977.9 (6%), 1978.9 (2%), 1979.9 (1%), peaks calculated: 1973.9 (72%), 1974.9 (100%), 1975.9 (74%), 1976.9 (39%), 1977.9 (16%), 1978.9 (5%), 1979.9 (2%).

para-Methoxyphenyl (2,3,4,6-tetra-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 2)-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -D-mannopyranoside 22 β and para-Methoxyphenyl (2,3,4,6-tetra-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -Dmannopyranoside 22 α

Conditions A:

para-Methoxyphenyl (3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-*O*-benzyl- α -D-mannopyranoside **21** (82 mg, 0.083 mmol), phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- α -D-mannopyranoside **3** (66 mg, 0.10 mmol) and 2,4,6-tri-*tert*-butylpyrimidine (154 mg, 0.60 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing 4Å

molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. DCM (2 mL) was added to a flame dried flask containing 4Å molecular sieves and stirred for 1 h then cooled to 0 °C. To this flask was added dimethyldisulfide (45 µL, 0.50 mmol) and trifluoromethylsulfonic anhydride (87 µL, 0.50 mmol). After 2 min, the solution was transferred to the flask containing the flask containing the sugar reagents at -78 °C. The mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (4:1, petrol:ethyl acetate) indicated formation of 2 products (R_f 0.45, 0.5) with complete consumption of the starting materials (R_f 0.1, 0.6). The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol→8:1, petrol:ethyl acetate) to afford *para*-methoxyphenyl (2,3,4,6-tetra-*O*-benzyl-D-mannopyranosyl)-(1→2)-(3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl)-(1→2)-3,4,6-tri-*O*-benzyl- α -Dmannopyranoside **22** (105 mg, 84 %, α : β , 1:11) as a colourless oil.

Conditions B:

para-Methoxyphenyl $(3,4,6-\text{tri}-O-\text{benzyl}-\alpha-D-\text{mannopyranosyl})-(1\rightarrow 2)-3,4,6-\text{tri}-O$ benzyl-α-D-mannopyranoside 21 (85 mg, 0.086 mmol), phenyl 2,3,4,6-tetra-O-benzyl-1thio- α -D-mannopyranoside **3** (65 mg, 0.10 mmol) and 2,4,6-tri-*tert*-butylpyrimidine (111 mg, 0.43 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing 4Å molecular sieves. The mixture was stirred for 1 h and cooled to -78 °C. Dimethylthiosulfonium triflate (89 mg, 0.34 mmol) was added and the reaction mixture was stirred at -78 °C under an atmosphere of argon. After 1 h, t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product (R_f 0.5) with complete consumption of the starting materials (R_f 0.1, 0.6). The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite[®]. The filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography (petrol \rightarrow 5:1, petrol:ethyl acetate) to afford *para*-methoxyphenyl (2,3,4,6-tetra-*O*-benzyl-D-mannopyranosyl)- $(1\rightarrow 2)$ -(3,4,6tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -D-mannopyranoside 22 (98 mg, 75 %, α : β , 3:1) as a colourless oil.

22 α : R_f 0.5 (4:1, petrol:ethyl aceate); $[\alpha]_D^{25}$ +17.3 (*c*, 1.0 in CHCl₃); v_{max} (thin film) no significant peaks; $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.28 (1H, ddd, J 1.9 Hz, J 5.3 Hz, J 7.6 Hz, H-5c), 3.32 (1H, dd, J_{2.3} 3.1 Hz, J_{3.4} 9.4 Hz, H-3c), 3.63 (2H, d, J 3.5 Hz, H-6b, H-6'b), 3.68-3.80 (5H, m, H-4b, H-6a, H-6'a, H-6c, H-6'c), 3.75 (3H, s, OMe), 3.87 (1H, at, J 9.6 Hz, H-4c), 3.90-3.97 (5H, m, H-2c, H-4a, H-4b, H-5a, H-5b), 4.03 (1H, dd, J_{2.3} 2.9 Hz, J_{3.4} 7.9 Hz, H-3b), 4.14 (1H, dd, J_{2.3} 2.8 Hz, J_{3.4} 8.8 Hz, H-3a), 4.21 (1H, d, J 11.0 Hz, CH), 4.31 (1H, at, J 1.9 Hz, H-2a), 4.34-4.39 (2H, m, 2 x CH), 4.41-4.42 (2H, m, H-1c, CH), 4.45-4.48 (3H, m, 3 x CH), 4.50-4.56 (4H, m, 3 x CH, H-2b), 4.60 (1H, d, J 11.1 Hz, CH), 4.63 (1H, d, J 12.0 Hz, CH), 4.70 (2H, d, J 11.7 Hz, 2 x CH), 4.78 (1H, s, J 11.3 Hz, CH), 4.84 (1H, d, J 11.9 Hz, CH), 4.90-4.99 (3H, m, 3 x CH), 5.08 (1H, d, J 12.0 Hz, CH), 5.28 (1H, d, J_{1,2} 1.9 Hz, H-1b), 5.58 (1H, d, J_{1,2} 1.6 Hz, H-1a), 6.76 (2H, d, J 9.1 Hz, 2 x Ar-H _{PMP}), 7.00 (2H, d, 2 x Ar-H _{PMP}), 7.04-7.52 (50H, m, 50 x Ar-H); δ_C (125 MHz, CDCl₃) 55.6 (q, OMe), 69.2, 69.2 (2 x t, C-6a, C-6c), 69.8 (t, C-6b), 70.6, 70.7 (t, CH₂), 71.7, 72.3 (d, C-2b, C-5a, C-5b), 72.9, 73.2, 73.3 (t, CH₂), 74.0 (d, C-2c), 74.2 (d, C-2a), 74.3, 74.3 (t, CH₂), 74.6 (d, C-4b), 74.8 (d, C-4c), 74.9 (d, C-4a), 75.0 (t, CH₂), 75.2 (t, CH₂), 75.7 (d, C-3c), 77.7 (d, C-3b), 80.0 (d, C-3a), 81.5 (d, C-5c), 97.9 (d, C-1a), 99.5 (d, C-1c), 99.7 (d, C-1b), 114.5, 117.8 (d, Ar-C PMP), 127.2-128.6 (d, Ar-C), 138.0-139.1 (s, Ar-C), 150.1, 154.9 (2 x s, Ar-C _{PMP}); *m/z* (ESI⁺) 1529 (M+NH₄⁺, 100%); (M+Na⁺) peaks measured: 1533.6 (98%), 1534.6 (100%), 1535.6 (53%), 1536.6 (17%), 1537.6 (5%) calculated peaks: 1533.6 (96%), 1534.6 (100%), 1535.6 (55%), 1536.6 (21%), 1537.6 (6%).

22 β : R_f 0.45 (4:1, petrol:ethyl aceate); $[\alpha]_D^{25}$ -3.1 (*c*, 2.0 in CHCl₃); ν_{max} (thin film) no significant peaks; δ_H (500 MHz, CDCl₃) 3.60 (1H, dd, $J_{5,6}$ 1.6 Hz, $J_{6,6}$ 10.8 Hz, H-6c), 3.66-3.71 (5H, m, H-6a, H-6'a, H-6b, H-6'c, H-5c), 3.73 (3H, s, OMe), 3.79-3.81 (2H, m, H-2a, H-6'b), 3.86-3.94 (5H, m, H-3a, H-3b, H-4b, H-4c, H-5a), 3.97-4.02 (2H, m, H-4a, H-5b), 4.06 (1H, dd, $J_{2,3}$ 3.1 Hz, $J_{3,4}$ 8.8 Hz, H-3c), 5.15-6.16 (2H, m, H-2a, H-2c), 4.36 (1H, d, *J* 11.9 Hz, CH), 4.45-4.59 (13H, m, 13 x CH), 4.61-4.66 (3H, m, 3 x CH), 4.82 (1H, d, *J* 11.1 Hz, CH), 4.87 (2H, d, *J* 10.7 Hz, 2 x CH), 5.16 (1H, d, $J_{1,2}$ 1.3 Hz, H-1b), 5.15 (1H, d, $J_{1,2}$ 1.6 Hz, H-1c), 5.63 (1H, d, $J_{1,2}$ 1.9 Hz, H-1a), 6.72 (2H, d, *J* 9.2 Hz, 2 x Ar-H _{PMP}), 6.96 (2H, d, 2 x Ar-H _{PMP}), 7.15-7.37 (50H, m, 50 x Ar-H); δ_C (125 MHz,

CDCl₃) 55.6 (q, OMe), 69.1 (t, C-6b), 69.3 (t, C-6a), 69.4 (t, C-6c), 71.9 (t, CH₂), 72.1 (2 x d, C-4b, C-4c), 72.1 (t, CH₂), 72.2 (d, C-4a), 72.4, 72.5, 73.2, 73.3 (t, CH₂), 74.6 (2 x d, C-5a C-2b), 74.9 (2 x d, C-5c, C-5b), 75.0, 75.0 (2 x t, CH₂), 75.1 (2 x d, C-2a, C-2c), 79.1 (d, C-3c), 79.6, 79.6 (2 x d, C-3a, C-3b), 97.6 (d, C-1a), 99.5 (d, C-1c), 101.0 (d, C-1b), 114.5, 117.8 (d, Ar-C $_{PMP}$), 127.3-128.5 (d, Ar-C), 132.8-138.6 (s, Ar-C), 150.1, 154.8 (2 x s, Ar-C $_{PMP}$); *m*/*z* (ESI⁺) 1529 (M+NH₄⁺, 100%); (M+Na⁺) peaks measured: 1533.6 (98%), 1534.6 (100%), 1535.6 (53%), 1536.6 (21%), 1537.6 (5%) calculated peaks: 1533.6 (96%), 1534.6 (100%), 1535.6 (55%), 1536.6 (21%), 1537.6 (6%).