Electronic Supplementary Information.

Reagent Switchable Stereoselective $\boldsymbol{\beta}(\mathbf{1 , 2})$ Mannoside Mannosylation: OH-2 of Mannose is a Privileged Acceptor.

Katie J. Doores and Benjamin G. Davis*
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK, OX1 3TA. Fax: +44 (0) 1865 275674; Tel: +44 (0) 1865

275654; E-mail: ben.davis@chem.ox.ac.uk
para-Methoxyphenyl (2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow \mathbf{2}$)-3,4,6-tri-O-benzyl- α-D-mannopyranoside 5α

para-Methoxyphenyl 3,4,6-tri- O-benzyl- α-D-mannopyranoside 4 ($33 \mathrm{mg}, 0.06 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-D-mannopyranoside $3(41 \mathrm{mg}, 0.065 \mathrm{mmol}$) and 2,4,6-tri-tert-butylpyrimidine ($76 \mathrm{mg}, 0.30 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. Dimethylthiosulfonium triflate ($260 \mu \mathrm{~L}$ of a 0.4 M solution in DCM) was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (4:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.4$) with complete consumption of the starting materials $\left(\mathrm{R}_{\mathrm{f}} 0.1,0.7\right)$. The reaction mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 5: 1$, petrol:ethyl acetate) to afford para-methoxyphenyl (2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl)$(1 \rightarrow 2)$-3,4,6-tri- O-benzyl- α-D-mannopyranoside $\mathbf{5} \boldsymbol{\alpha}$ ($43 \mathrm{mg}, 67 \%$) as a colourless oil; $[\alpha]^{7}+41.3\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (thin film) no significant peaks; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3.69 (1 H, ad, $J 11.2 \mathrm{~Hz}, \mathrm{H}-6$), 3.74-3.75 (2H, m, H-6, H-6'), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.80 (1 H , dd, $J_{5,6}, 3.8 \mathrm{~Hz}, J_{6,6}, 11.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.87 (1 H , as, H-2b), 3.89-4.00 (5H, m, H-3b, H$4 \mathrm{a}, \mathrm{H}-4 \mathrm{~b}, \mathrm{H}-5 \mathrm{a}, \mathrm{H}-5 \mathrm{~b}), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 9.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 4.27(1 \mathrm{H}$, at, J 2.6 Hz , $\mathrm{H}-2 \mathrm{a}), 4.47-4.52(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}), 4.54(1 \mathrm{H}, \mathrm{d}, J 12.4 \mathrm{~Hz}, \mathrm{CH}), 4.59(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}$, CH), $4.60(1 \mathrm{H}, \mathrm{d}, J 12.4 \mathrm{~Hz}, \mathrm{CH}), 4.62(1 \mathrm{H}, \mathrm{d}, J 10.6 \mathrm{~Hz}, \mathrm{CH}), 4.66(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}$, $\mathrm{CH}), 4.72(1 \mathrm{H}, \mathrm{d}, J 11.3 \mathrm{~Hz}, \mathrm{CH}), 4.76(1 \mathrm{H}, \mathrm{d}, J 11.3 \mathrm{~Hz}, \mathrm{CH}), 4.87(1 \mathrm{H}, \mathrm{d}, J 10.9 \mathrm{~Hz}$, $\mathrm{CH}), 4.90(1 \mathrm{H}, \mathrm{d}, J 10.8 \mathrm{~Hz}, \mathrm{CH}), 5.25\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.59\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.8 \mathrm{~Hz}\right.$, H-1a), 6.75 ($2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}_{\text {PMP }}$), 6.99 (2H, d, $2 \times \mathrm{Ar}-\mathrm{H}_{\text {PMP }}$), 7.16-7.59 (35H, $\mathrm{m}, 35 \mathrm{x} \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.6$ (q, OMe), 69.2, 69.4 ($2 \mathrm{x} \mathrm{t}, \mathrm{C}-6 \mathrm{a}, \mathrm{C}-6 \mathrm{~b}$), 72.2 (t, CH_{2}), 72.4 (d, C-4a, C-4b), 72.6, 73.2 ($2 \mathrm{xt}, 2 \times \mathrm{CH}_{2}$), 74.3 (d, C-2a), 74.4, 74.9 (2 x d, C-2b, C-5a, C-5b), 75.0, 75.1 ($2 \times \mathrm{t}, 2 \times \mathrm{CH}_{2}$), 79.7 (d, C-3a, C-3b), 97.8 (d, C-1a), 99.7 (d, C-1b), 114.5, 117.8 ($2 \times \mathrm{d}, 2 \times \mathrm{Ar}-\mathrm{C}_{\text {PMP }}$), 127.4-128.5 (d, $35 \times \mathrm{Ar}-\mathrm{C}$), 138.2, $138.3,138.4,138.5,138.6$ ($\mathrm{s}, \mathrm{Ar}-\mathrm{C}$), $150.1,154.9$ ($2 \mathrm{x} \mathrm{s}, 2 \mathrm{x} \mathrm{Ar-C} \mathrm{CMP}$); $m / z\left(\mathrm{ESI}^{+}\right) 1137$ $\left(\mathrm{M}+\mathrm{MeCN}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right),\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1101.5 (100%), 1102.5 (75\%), 1103.5 (30%), 1104.5 (9%), 1105.5 (2%), peaks calculated: 1101.5 (100%), 1102.5 (71\%), 1103.5 (23\%), 1104.5 (4\%), 1105.5 (1\%).
para-Methoxyphenyl (2,3,4,6-tetra-O-benzyl- β-D-mannopyranosyl)-(1 $\boldsymbol{\rightarrow} \mathbf{2}$)-3,4,6-tri-O-benzyl- α-d-mannopyranoside 5β

para-Methoxyphenyl 3,4,6-tri- O-benzyl- α-D-mannopyranoside 4 ($74 \mathrm{mg}, 0.13 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-D-mannopyranoside $3(101 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 2,6-di-tert-butyl-4-methylpyridine ($216 \mathrm{mg}, 0.85 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. DCM (2 mL) was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added
dimethyldisulfide ($70 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) and trifluoromethylsulfonic anhydride ($136 \mu \mathrm{~L}$, 0.78 mmol). After 2 min , the solution was transferred to the flask containing the sugar reagents at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (4:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.3$) with complete consumption of the starting materials $\left(R_{f} 0.1,0.5\right)$. The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 4: 1$, petrol:ethyl acetate) to afford para-methoxyphenyl (2,3,4,6-tetra- O-benzyl-β-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranoside $\mathbf{5 \beta}$ ($98 \mathrm{mg}, 70$ $\%)$ as a colourless oil; $[\alpha]^{22}-15.5\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (thin film) no significant peaks; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.47-3.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}, \mathrm{H}-5 \mathrm{~b}), 3.65\left(1 \mathrm{H}, \mathrm{d}, J_{5,6} 1.8 \mathrm{~Hz}, J_{6,6}{ }^{1} 10.7\right.$ Hz, H-6), 3.69-3.78 (3H, m, H-6, $2 \times$ H-6'), 3.77 (3H, s, OMe), 3.88-3.93 (2H, m, H-5a, H-4b), $4.00(1 \mathrm{H}$, at, $J 9.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.09\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 3.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3\right.$ $\left.\mathrm{Hz}, J_{3,4} 8.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 4.29(1 \mathrm{H}, \mathrm{d}, J 10.8 \mathrm{~Hz}, \mathrm{CH}), 4.39(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{CH}), 4.40$ $(1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, \mathrm{CH}), 4.47(2 \mathrm{H}, \mathrm{ad}, J 12.8 \mathrm{~Hz}, 2 \times \mathrm{CH}), 4.53(1 \mathrm{H}, \mathrm{d}, J 10.8 \mathrm{~Hz}, \mathrm{CH})$, $4.54(1 \mathrm{H}, \mathrm{d}, J 10.9 \mathrm{~Hz}, \mathrm{CH}), 4.58-4.62$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, 2 \times \mathrm{CH}$), 4.66 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1 \mathrm{~b}$), 4.79 ($1 \mathrm{H}, \mathrm{d}, J 10.8 \mathrm{~Hz}, \mathrm{CH}$), 4.88 ($1 \mathrm{H}, \mathrm{d}, J 11.7 \mathrm{~Hz}, \mathrm{CH}$), 4.93 ($1 \mathrm{H}, \mathrm{d}, J 10.9 \mathrm{~Hz}, \mathrm{CH}$), 5.08 (1H, d, J $11.0 \mathrm{~Hz}, \mathrm{CH}$), 5.16 ($1 \mathrm{H}, \mathrm{d}, J 11.7 \mathrm{~Hz}, \mathrm{CH}$), $5.56\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 6.81$ ($2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{PMP}}$), 7.03 (2H, d, $2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{PMP}}$), 7.19-7.57 (35H, m, $35 \mathrm{x} \mathrm{Ar-}$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.6$ (q, OMe), 68.7, 70.0 (2 x t, C-6a, C-6b), 70.3, 70.9, 73.2, $73.4,74.4,74.9,75.2$ ($7 \times \mathrm{t}, 7 \times \mathrm{CH}_{2}$), 71.6 (d, C-2a), 73.9, 74.0 ($2 \times \mathrm{d}, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-4 \mathrm{~b}, \mathrm{C}-$ 2b), 74.8 (d, C-5a), 74.8 (d, C-5b), 77.8 (d, C-3a), 81.7 (d, C-3b), 96.3 (d, C-1a), 99.5 (d, C-1b), 114.6, 117.7 ($2 \times \mathrm{d}, 2 \times \mathrm{Ar}-\mathrm{C}_{\text {PMP }}$), 127.3-128.6 (d, Ar-C), 138.1-138.9 (s, Ar-C), 150.3, 155.5 ($\mathrm{s}, \mathrm{Ar}-\mathrm{C}_{\mathrm{PMP}}$); $m / z\left(\mathrm{ESI}^{+}\right) 1137\left(\mathrm{M}+\mathrm{MeCN}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$, $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1101.5 (100\%), 1102.5 (74%), 1103.5 (28\%), 1104.5 (7\%), 1105.5 (2\%), peaks calculated: 1101.5 (100\%), 1102.5 (71\%), 1103.5 (23\%), 1104.5 (4\%), 1105.5 (1\%).
para-Methoxyphenyl (2,3,4,6-tetra-O-acetyl- α-D-mannopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-benzyl- α-D-mannopyranoside 7

para-Methoxyphenyl 3,4,6-tri- O-benzyl- α-D-mannopyranoside 4 ($54 \mathrm{mg}, 0.10 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-acetyl-1-thio- α-D-mannopyranoside 6 ($64 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 2,6-di-tert-butyl-4-methylpyridine ($205 \mathrm{mg}, 0.8 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. DCM (2 mL) was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($67 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) and trifluoromethylsulfonic anhydride ($126 \mu \mathrm{~L}$, 0.75 mmol). After 2 min , the solution was transferred to the flask containing the sugar reagents at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.25$) with complete consumption of the starting materials $\left(\mathrm{R}_{\mathrm{f}} 0.2,0.3\right)$. The reaction mixture was quenched with triethylamine $(1 \mathrm{~mL})$ and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 4: 1$, petrol:ethyl acetate) to afford para-methoxyphenyl (2,3,4,6-tetra- O-acetyl-α-D-mannopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranoside 7 ($49 \mathrm{mg}, 55 \%$) as a colourless oil; $[\alpha]^{9}+64.6\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \boldsymbol{v}_{\text {max }}($ thin film $) 1752(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.90, 2.00, 2.03, $2.14(12 \mathrm{H}, 4 \mathrm{x} \mathrm{s}, 4 \mathrm{x} \mathrm{OAc}), 3.71\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.3 \mathrm{~Hz}\right.$, $\left.J_{6,6}, 11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} \cdot 3.0 \mathrm{~Hz}, \mathrm{H}-6\right.$ 'a), 3.94-4.03(2H, m, H-5a, H-4a), 4.07-4.14 (3H, m, H-2a, H-3a, H-6b), 4.20-4.27 (2H, m, H-5b, H-6'b),
 $4.71\left(1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, \mathrm{CHH}\right.$ 'c), $4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH} \underline{H}^{\prime} \mathrm{c}\right), 4.87(11 \mathrm{H}, \mathrm{d}, \mathrm{CH} \underline{H}$ 'b), $5.02(1 \mathrm{H}$, d, $\left.J_{1,2} 1.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.25(1 \mathrm{H}$, at, $J 9.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 5.45\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4 \mathrm{~Hz}, J_{3,4} 9.9 \mathrm{~Hz}\right.$, H-3b), 5.50-5.51 (2H, m, H-1a, H-2b), 6.79 ($2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}, 2$ x Ar-H PMP), 7.01 (2H, d, $J 9.1 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$ Рмр $), 7.19-7.38(15 \mathrm{H}, \mathrm{m}, 15 \mathrm{x} \operatorname{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.5$, 20.7, 20.7, 20.9 (4 x q, $4 \times$ OAc), 55.6 (q, OMe), 62.7 (t, C-6b), 66.2 (d, C-4b), 68.9 (t, C-

6a), 69.0 ($2 \times \mathrm{x} \mathrm{d}, \mathrm{C}-5 \mathrm{~b}, \mathrm{C}-3 \mathrm{~b}$), 69.4 (d, C-2b), 72.1, 74.6 ($2 \times \mathrm{d}, \mathrm{C}-5 \mathrm{a}, \mathrm{C}-4 \mathrm{a}$), 72.6, 73.0, 75.3 ($3 \mathrm{x} \mathrm{t}, 3 \mathrm{x} \mathrm{CH}_{2}$), 76.3, 79.3 (2 x d, C-2a, C-3a), 97.9 (d, C-1a), 99.4 (d, C-1b), 114.6, 118.1 (2 x d, $2 \times$ Ar-C PMP), 127.4-128.9 (d, Ar-C), 138.3, 150.1, 155.5 (s, Ar-C), 169.7, 169.8, 169.9, 170.7 ($4 \mathrm{x} \mathrm{s}, 4 \times \mathrm{C}=\mathrm{O}$); $m / z\left(\mathrm{ESI}^{+}\right) 945\left(\mathrm{M}+\mathrm{MeCN}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$; HRMS (ESI^{+}) calcd. for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{16} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$909.3304. Found 909.3321.

2,3,4,6-Tetra- O-acetyl- α-D-mannopyranosyl-(1 $\rightarrow 6$)-1,2:3,4-diisopropylidene-D-

 galactopyranose 9α and 2,3,4,6-Tetra- O-acetyl- β-D-mannopyranosyl-(1 \rightarrow 6)-1,2:3,4-diisopropylidene-D-galactopyranose 9β

1,2:3,4-Diisopropylidene-D-galactose 8 ($19 \mathrm{mg}, 0.072 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O -benzyl-1-thio- α-D-mannopyranoside $3(50 \mathrm{mg}, 0.08 \mathrm{mmol}$) and 2,6-di-tert-butyl-4methylpyridine ($145 \mathrm{mg}, 0.56 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. DCM (2 mL) was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($39 \mu \mathrm{~L}, 0.43$ mmol) and trifluoromethylsulfonic anhydride ($73 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$). After 2 min , the solution was transferred to the flask containing the flask containing the sugar reagents at $78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting materials $\left(R_{f} 0.6,0.2\right)$. The reaction mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 6$:1, petrol:ethyl acetate) to afford 2,3,4,6-tetra- O-acetyl-D-mannopyranosyl-($1 \rightarrow 6$)-1,2:3,4-diisopropylidene-D-galactopyranose 9 ($36 \mathrm{mg}, 53 \%, \alpha: \beta 3: 1$) as a colourless oil.
$9 \boldsymbol{\alpha}:[\alpha]_{\mathrm{D}}{ }^{25}-10.9\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}$ (thin film) no significant peaks; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) $1.34,1.44,1.51$ ($12 \mathrm{H}, 3 \mathrm{x} \mathrm{s}, 4 \times \mathrm{Me}$), $3.46-3.82$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6$ 'a, H-6b, H-6'b), 3.84 (1 H, dd, $J_{1,2} 1.9 \mathrm{~Hz}, J_{2,3} 2.8 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$), 3.93 ($1 \mathrm{H}, \mathrm{dd}, J_{3,4} 9.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 3.97 (1H, m, H-5a), $4.03(1 \mathrm{H}$, at, $J 9.1 \mathrm{H}-4 \mathrm{~b}), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 1.8 \mathrm{~Hz}, J_{3,4} 8.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}\right), 4.33$ ($1 \mathrm{H}, \mathrm{dd}, J_{1,2} 5.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}$), 4.51-4.62 (5H, m, H-3a, $4 \times \mathrm{CH}$), 4.68-4.77 (3H, m, $3 \times \mathrm{CH}$), 4.88 ($1 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, \mathrm{CH}$), $5.03(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1 \mathrm{~b}), 5.54(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1 \mathrm{a}), 7.16-7.40(20 \mathrm{H}, \mathrm{m}$, $20 \times \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6,24.9,26.0,26.1$ (4 x q, $4 \times \mathrm{Me}$), 65.2 (d, C-5a), 65.3, 69.1 ($2 \mathrm{x} \mathrm{t}, \mathrm{C}-6 \mathrm{a}, \mathrm{C}-6 \mathrm{~b}$), 70.6 ($2 \mathrm{x} \mathrm{d}, \mathrm{C}-2 \mathrm{a}, \mathrm{C}-3 \mathrm{a}$), 70.9 (d, C-4a), 72.0 (d, C-5b), $72.1,72.3,73.3,75.1\left(4 \times \mathrm{t}, 4 \times \mathrm{CH}_{2}\right.$), 74.6 (d, C-2b), 74.8 (d, C-4b), 80.0 (d, C-3b), 96.3 (d, C-1a), 97.2 (d, C-1b), 108.5, 109.3 ($2 \times \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$), 127.4-128.3 (d, Ar-C), 138.4, 138.5, 138.6 (s, Ar-C); $m / z\left(\mathrm{ESI}^{+}\right) 800\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 100\%); HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{46} \mathrm{H}_{54} \mathrm{NaO}_{11}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$805.3558. Found 805.3550.

9 $\boldsymbol{\beta}^{[}[\alpha]_{D}{ }^{25}-38.3\left(c, 0.4\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\boldsymbol{v}_{\text {max }}$ (thin film) no significant peaks; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, CDCl_{3}) $1.33,1.34,1.45,1.48\left(12 \mathrm{H}, 4 \mathrm{x} \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 2.2 \mathrm{~Hz}, J_{5,6} 5.0 \mathrm{~Hz}\right.$, $\left.J_{4,5} 9.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}\right), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 9.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 8.2 \mathrm{~Hz}\right.$, $\left.J_{6,6} \cdot 10.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J_{6,6} 10.7 \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.90(1 \mathrm{H}$, at, J $9.8 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 4.01(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}), 4.11-4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 4.21-4.25(2 \mathrm{H}, \mathrm{m}$, H-4a, H-6a), $4.34\left(1 \mathrm{H}, ~ d d, J_{1,2} 4.7 \mathrm{~Hz}, J_{2,3} 2.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 4.35(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, \mathrm{CH})$, $4.45(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{CH}), 4.47(1 \mathrm{H}, \mathrm{s} \mathrm{H}-1 \mathrm{~b}), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.1 \mathrm{~Hz}, \mathrm{CH}), 4.57(1 \mathrm{H}, \mathrm{d}$, $J 12.3 \mathrm{~Hz}, \mathrm{CH}), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 8.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 4.65(1 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}, \mathrm{CH}), 4.91(1 \mathrm{H}$, d, $J 10.8 \mathrm{~Hz}, \mathrm{CH}), 4.93(1 \mathrm{H}, \mathrm{d}, J 12.7 \mathrm{~Hz}, \mathrm{CH}), 5.02(1 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}, \mathrm{CH}), 5.61(1 \mathrm{H}, \mathrm{d}$, H-1a), 7.16-7.52 ($20 \mathrm{H}, \mathrm{m}, 20 \times \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, from HSQC) 24.6, 25.8 (2 x q, $2 \times \mathrm{Me}$), 67.9 (d, C-5a), 69.3 (d, C-6b), 69.8 (t, C-6a), 70.3 (d, C-2a), 70.6 (d, C-3a), 70.9 (t, CH_{2}), 71.5 (d, C-4a), 72.5 (d, C-2b), 73.4, 73.4 ($2 \times \mathrm{t}, 2 \times \mathrm{CH}_{2}$), 74.6 (d, C-4b), 75.0 (t, CH2), 75.7 (d, C-5b), 81.8 (d, C-3b), 96.2 (d, C-1a), 102.3 (d, C-1b), 127.7-128.1 (d, Ar-C); m/z (ESI $\left.{ }^{+}\right) 800\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{NO}_{11}$ $\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$800.4004. Found 800.4017.

Methyl-(2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 4$)-2,3,6-tri- O-benzoyl- α -D-galactopyranoside 11

2,3,6-Tri- O-benzoyl- α-D-galactopyranoside 10 ($56 \mathrm{mg}, 0.11 \mathrm{mmol}$), phenyl 2,3,4,6-tetra-O-benzyl-1-thio- α-D-mannopyranoside 3 ($77 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 2,6-di-tert-butyl-4methylpyridine ($199 \mathrm{mg}, 0.77 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. DCM (2 mL) was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($59 \mu \mathrm{~L}, 0.66$ mmol) and trifluoromethylsulfonic anhydride ($111 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$). After 2 min , the solution was transferred to the flask containing the sugar reagents at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (4:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.3$) with complete consumption of the starting materials ($\mathrm{R}_{\mathrm{f}} 0.2,0.7$). The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 5: 1$, petrol:ethyl acetate) to afford methyl-(2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 4$)-2,3,6-tri- O-benzoyl- α-Dgalactopyranoside 11 ($85 \mathrm{mg}, 75 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}{ }^{25}+67.1\left(c, 2.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ thin film $) 1723(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.66\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 1.6 \mathrm{~Hz}, J_{6,6} 11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.10\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 3.6 \mathrm{~Hz}, \mathrm{H}-6\right.$ 'b), 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.90-3.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-5 \mathrm{~b}$), 3.99-4.04 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}, \mathrm{CH}$), 4.094.15 (2H, m, H-4b, H-6a), 4.33 (1H, at, J $6.9 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 4.37-4.49 (4H, m, H-4a, H-6'a, 2 x CH), $4.65(1 \mathrm{H}, \mathrm{d}, J 12.7 \mathrm{~Hz}, \mathrm{CH}), 4.73(1 \mathrm{H}, \mathrm{d}, J 11.7 \mathrm{~Hz}, \mathrm{CH}), 4.74-4.80(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\mathrm{CH}), 4.82(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, \mathrm{CH}), 4.91\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.24\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.7 \mathrm{~Hz}\right.$, $\mathrm{H}-1 \mathrm{a}), 5.51\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.8 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 5.72\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 3.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 7.09-7.63$ (35 H , $\mathrm{m}, 35 \mathrm{x} \operatorname{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.5$ (q, OMe), 62.2 (t, C-6a), 67.8 (t, C-6b), 67.8 (d, C-5b), 69.1 (d, C-2a), 69.7 (d, C-3a), 73.6 (d, C-5b), 72.7, 72.8, 73.2 (t, CH_{2}), 74.2 (d, C-3b), 74.6 (d, C-2b), 74.7 (d, C-4a), 74.9 (t, CH ${ }_{2}$), 79.8 (d, C-4b), 97.3 (d, C-1a), 100.0 (d, C-1b), 127.3-129.9 (d, Ar-C), 133.5, 133.2, 138.2, 138.5, 138.7 (s, Ar-C), 166.0 (s,
$\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{ESI}^{+}\right) 1046\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right) ;\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1051.4 (100\%), 1052.4 (65\%), 1053.4 (21\%), 1054.4 (6%), calculated peaks: 1051.4 (100\%), 1052.4 (67\%), 1053.4 (22\%), 1054.4 (5\%).

para-Methoxyphenyl (2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl)-(1 \rightarrow 4)-2,6-di- O -

 benzyl-2- N-phthalimido- β-D-glucopyranoside 13
para-Methoxyphenyl 2,6-di- O-benzyl-2- N-phthalimido- β-D-glucopyranoside 12 (60 mg , 0.10 mmol), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-D-mannopyranoside 3 ($69 \mathrm{mg}, 0.11$ mmol) and 2,6-di-tert-butyl-4-methylpyridine ($181 \mathrm{mg}, 0.70 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{DCM}(2 \mathrm{~mL})$ was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($55 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) and trifluoromethylsulfonic anhydride ($101 \mu \mathrm{~L}$, 0.60 mmol). After 2 min , the solution was transferred to the flask containing the flask containing the sugar reagents at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.4$) with complete consumption of the starting materials $\left(\mathrm{R}_{\mathrm{f}} 0.7,0.2\right)$. The reaction mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography ($3: 1$, petrol:ethyl acetate $\rightarrow 2: 1$, petrol:ethyl acetate) to afford paramethoxyphenyl (2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 4$)-2,6-di-O-benzyl-2-N-phthalimido- β-D-glucopyranoside 13 ($61 \mathrm{mg}, 78 \%, \alpha$ anomer only) as a colourless oil; $[\alpha]_{\mathrm{D}}{ }^{25}+47.7\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ thin film $) 1715(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 3.68\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 10.6 \mathrm{~Hz}, J_{6,6} 1.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.71$ (3H, s, OMe), 3.73-3.79 (2H, m, H-5a, H-6'b), 3.82 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2 \mathrm{~b}$), $3.85\left(1 \mathrm{H}, \mathrm{dd}, J_{6,6}, 2.8 \mathrm{~Hz}, J_{5,6} 7.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.90-$ 3.98 (4H, m, H-4a, H-6a, H-3b, H-5b), 4.05 (1 H , at, J $9.4 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}$), 4.23 (1H, d, J 12.1 $\mathrm{Hz}, \mathrm{CH}), 4.40(1 \mathrm{H}, \mathrm{at}, J 10.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 4.44-4.49(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}, \mathrm{CH}), 4.51-4.69$ ($9 \mathrm{H}, \mathrm{m}$,
$9 \times \mathrm{CH}), 4.90(1 \mathrm{H}, \mathrm{d}, J 10.9 \mathrm{~Hz}, \mathrm{CH}), 5.37\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 2.0 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.59\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.1\right.$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{a}), 6.79\left(2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}_{\text {PMP }}\right), 6.85\left(2 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{Ar}-\mathrm{H}_{\text {PMP }}\right), 6.93$ (2H, at, $J 7.8 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{Phth}}$), $7.00\left(2 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{Phth}}\right)$, 7.18-7.68 (30H, $30 \times \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.6(\mathrm{q}, \mathrm{OMe}), 55.6$ (d, C-2a), 69.3, 69.4 ($2 \times \mathrm{t}, \mathrm{C}-6 \mathrm{a}, \mathrm{C}-6 \mathrm{~b}$), 72.3, $72.4\left(2 \mathrm{xt}, \mathrm{CH}_{2}\right), 73.1(\mathrm{~d}, \mathrm{C}-5 \mathrm{~b}), 73.3,73.4,74.5\left(3 \mathrm{xt}, 3 \mathrm{x} \mathrm{CH}_{2}\right), 74.9$ (d, C-4b), 75.0 (t , CH_{2}), 75.1 (d, C-2b), 75.6 (d, C-5a), 78.5 (d, C-4a), 79.7 (d, C-3b), 80.5 (d, C-3a), 97.4 (d, C-1a), 100.3 (d, C-1b), 114.3, 118.6 (2 x d, Ar-H PMP), 123.4 (d, Ar-C Phth), 127.3128.4 (d, Ar-C Bn), 133.9 (d, Ar-C Phth), 138.2-138.5 (s, Ar-C), 150.9, 155.3 (s, C=O); m/z $\left(\mathrm{ESI}^{+}\right) 1135\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$; $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1140.4 (100\%), 1141.5 (73\%), 1142.5 (27\%), 1143.5 (7\%), calculated peaks: 1140.5 (100%), 1141.5 (76%), 1142.5 (31\%), 1143.5 (9\%).

2,3,4,6-Tetra- O-benzyl- α-D-mannopyranosyl-(1 $\rightarrow 3$)-1,2:5,6-diisopropylidene-D-

 glucopyranose 15

1,2:5,6-Diisopropylidene-D-glucose $14(25 \mathrm{mg}, 0.096 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O -benzyl-1-thio- α-D-mannopyranoside 3 ($73 \mathrm{mg}, 0.11 \mathrm{mmol}$) and 2,6-di-tert-butyl-4methylpyridine ($148 \mathrm{mg}, 0.576 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. DCM (2 mL) was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($43 \mu \mathrm{~L}, 0.48$ mmol) and trifluoromethylsulfonic anhydride ($84 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$). After 2 min , the solution was transferred to the flask containing the flask containing the sugar reagents at $78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h, t.l.c (2:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.7$) with complete consumption of the starting materials $\left(R_{f} 0.2,0.8\right)$. The reaction mixture was quenched
with triethylamine (1 mL) and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 5$:1, petrol:ethyl acetate) to afford 2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 3$)-1,2:5,6-diisopropylidene-D-glucopyranose 15 ($48 \mathrm{mg}, 64 \%$) as a colourless oil;
$[\alpha]_{\mathrm{D}}{ }^{25}+9.4\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }$ (thin film) no significant peaks; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.23, 1.33, 1.41, 1.49 ($12 \mathrm{H}, 4 \mathrm{x} \mathrm{s}, 4$ x CH$_{3}$), 3.78 (1 H , at, $J 2.8 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$), 3.80-3.85 (4 H , m, H-6b, H-6'b, H-5a, H-5b), 3.99-4.03 (2H, m, H-3b, H-6a), 4.06-4.11 (3H, m, H-4a, H4b, H-6'a), 4.28 ($1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 4.51(1 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, \mathrm{CH}), 4.55(1 \mathrm{H}, \mathrm{d}, J 11.6$ $\mathrm{Hz}, \mathrm{CH}), 4.56(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{CH}), 4.60(1 \mathrm{H}, \mathrm{d}, J 11.7 \mathrm{~Hz}, \mathrm{CH}), 4.66-4.69(3 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ CH, H-2a), $4.76(1 \mathrm{H}, \mathrm{d}, 12.6 \mathrm{~Hz}, \mathrm{CH}), 4.89(1 \mathrm{H}, \mathrm{d}, J 10.4 \mathrm{~Hz}, \mathrm{CH}), 5.24\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.6\right.$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{~b}), 5.81\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 7.17-7.40(20 \mathrm{H}, \mathrm{m}, 20 \mathrm{x} \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 25.5, 26.1, 26.8, 26.9 (4 x q, $4 \times \mathrm{Me}$), 67.7 (t, C-6a), 69.2 (t, C-6b), 72.1, 72.2 (2 $\mathrm{x} \mathrm{t}, 2 \times \mathrm{CH}_{2}$), 72.5 (d, C-4b), 72.6 (d, C-5b), 73.5 (t, CH_{2}), 74.2 (d, C-2b), 74.7 (d, C-3b), 75.3 (t, CH2 $)$, 79.6 (d, C-5a), 80.6 (d, C-3a), 81.3 (d, C-4a), 83.7 (d, C-2a), 98.9 (d, C1b), 105.2 (d, C-1a), 109.3, 111.9 ($2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$), 127.5-128.4 (d, Ar-C), 138.1, 138.2, 138.3 (s, Ar-C); m/z (ESI $) 800\left(\mathrm{M}^{+} \mathrm{NH}_{4}{ }^{+}, 100 \%\right)$; HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{46} \mathrm{H}_{54} \mathrm{NaO}_{11}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 805.3558$. Found 805.3560.

Benzyl (2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow \mathbf{2}$)-(3,4,6-tri- O -

 benzyl- α-D-mannopyranosyl)-($1 \rightarrow 3$)-2,4-di- O-benzyl-6-O-tert-butyldimethylsilyl- α -D-mannopyranoside 18

Benzyl 2,4-di-O-benzyl-6-O-tert-butyldimethylsilyl- α-D-mannopyranoside 17 (77 mg, 0.14 mmol), ethyl $2-O$-acetyl-3,4,6- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-3,4,6-tri- O -benzyl-thio- α-D-mannopyranoside 16 ($160 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 2,6-di-tert-butyl-4methylpyridine ($235 \mathrm{mg}, 0.95 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask
containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. DCM (2 mL) was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($73 \mu \mathrm{~L}, 0.816$ mmol) and trifluoromethylsulfonic anhydride ($137 \mu \mathrm{~L}, 0.816 \mathrm{mmol}$). After 2 min , the solution was transferred to the flask containing the sugar reagents at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting materials ($\mathrm{R}_{\mathrm{f}} 0.6,0.3$). The reaction mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 6: 1$, petrol:ethyl acetate) to afford benzyl $2-O$-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-(3,4,6-tri- O -benzyl- α-D-mannopyranosyl)-($1 \rightarrow 3$)-2,4,di-O-benzyl-6-O-tert-butyldimethylsilyl- α-Dmannopyranoside 18 (136 mg, 68\%) as a colourless oil; $[\alpha]^{11}+15.3\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ thin film $) 1758(\mathrm{br}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.06,0.07(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 3.68-4.00$ ($14 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-3 \mathrm{~b} / \mathrm{c}, \mathrm{H}-4 \mathrm{a} / \mathrm{b} / \mathrm{c}, \mathrm{H}-5 \mathrm{a} / \mathrm{b} / \mathrm{c}, \mathrm{H}-6 \mathrm{~b} / \mathrm{c}, \mathrm{H}-6$ ' $\mathrm{a} / \mathrm{b} / \mathrm{c}$), 4.03 (1H, m, H-2b), 4.15 $\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 9.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 4.31(1 \mathrm{H}, \mathrm{d}, J 12.2 \mathrm{~Hz}, \mathrm{CH}), 4.40(1 \mathrm{H}, \mathrm{d}, J 10.9$ $\mathrm{Hz}, \mathrm{CH}), 4.42-4.46(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}), 4.51(1 \mathrm{H}, \mathrm{d}, J 12.1 \mathrm{~Hz}, \mathrm{CH}), 4.53-4.68(10 \mathrm{H}, \mathrm{m}, 10$ x CH), $4.76(1 \mathrm{H}, \mathrm{d}, J 11.7 \mathrm{~Hz}, \mathrm{CH}), 4.82(1 \mathrm{H}, \mathrm{d}, J 10.9 \mathrm{~Hz}, \mathrm{CH}), 4.88(1 \mathrm{H}, \mathrm{d}, J 11.2 \mathrm{~Hz}$, $\mathrm{CH}), 4.90\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right), 5.2\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.3\right.$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{~b}), 5.54$ (1H, at, J $2.2 \mathrm{H}, \mathrm{H}-2 \mathrm{c}$), 7.14-7.36 ($45 \mathrm{H}, \mathrm{m}, 45 \mathrm{x} \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) -5.3, -5.1, (q, $2 \times \mathrm{CH}_{3}$), $18.4\left(\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.0\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 62.6(\mathrm{t}, \mathrm{C}-6 \mathrm{~b}), 68.4$ ($\mathrm{t}, \mathrm{C}-6 \mathrm{a}$), 68.7 ($\mathrm{t}, \mathrm{CH}_{2}$), 68.8 (d, C-2c), 69.5 (C-6c), 71.9, 72.1, 73.2, 73.4, 74.8, 74.9, 75.0 (t, $8 \times \mathrm{CH}_{2}$), 72.6, 73.4, 74.2, 74.8, 75.1, 77.2, 78.1 (d, C-2a/b, C-3b/c, C-4a/b/c, C5a/b/c), 78.1 (d, C-3a), 96.1 (d, C-1a), 99.3 (d, C-1c), 100.9 (d, C-1b), 127.3-128.5 (d, 45 x Ar-C), 137.5-138.7 (s, 9 x Ar-C), 170.1 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$); $m / z\left(\mathrm{ESI}^{+}\right) 1493$ ($\mathrm{M}+\mathrm{Na}^{+}, 100 \%$); $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks observed: 1451.7 (100\%), 1452.7 (98\%), 1453.7 (47\%), 1454.7 (15\%), 1555.7 (5\%), peaks calculated: 1451.7 (99\%), 1452.7 (100\%), 1453.7 (56\%), 1454.7 (22\%), 1555.7 (7\%).

Benzyl 2,3,4,6-tetra- O-benzyl- β-d-mannopyranosyl-(1 $\rightarrow 2$)- 3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 3$)-2,4-di- O -benzyl-6- O-tert-butyldimethylsilyl- α-D-mannopyranoside 20β and Benzyl 2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-d-mannopyranosyl-($1 \rightarrow 3$)-2,4-di- O -benzyl-6-O-tert-butyldimethylsilyl- α-D-mannopyranoside 20α

Conditions A:
Benzyl (3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 2$)-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 3$)-2,4,di-O-benzyl-6-O-tert-butyldimethylsilyl- α-D-
mannopyranoside 19 ($63 \mathrm{mg}, 0.044 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-Dmannopyranoside 3 ($42 \mathrm{mg}, 0.066 \mathrm{mmol}$) and 2,4,6-tri-tert-butylpyrimidine (90 mg , 0.35 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM $(1 \mathrm{~mL})$ and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78^{\circ} \mathrm{C} . \mathrm{DCM}(1 \mathrm{~mL})$ was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($30 \quad \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) and trifluoromethylsulfonic anhydride ($57 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$). After 2 min , the solution was transferred to the flask containing the sugar reagents at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting materials $\left(\mathrm{R}_{\mathrm{f}}\right.$ $0.1,0.6)$. The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 6: 1$, petrol:ethyl acetate) to afford benzyl 2,3,4,6-tetra-O-benzyl- β-D-mannopyranosyl-($1 \rightarrow 2$)- 3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-

3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 3$)-2,4-di- O-benzyl-6- O-tert-butyldimethylsilyl- α-D-mannopyranoside $\mathbf{2 0 \beta}$ ($40 \mathrm{mg}, 47 \%$) as a colourless oil.

Conditions B:

Benzyl (3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 3$)-2,4,di- O-benzyl-6-O-tert-butyldimethylsilyl- α-Dmannopyranoside 19 ($63 \mathrm{mg}, 0.044 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-Dmannopyranoside 3 ($36 \mathrm{mg}, 0.057 \mathrm{mmol}$) and 2,4,6-tri-tert-butylpyrimidine (57 mg , 0.22 mmol) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. Dimethylthiosulfonium triflate ($50 \mathrm{mg}, 0.194 \mathrm{mmol}$) was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting materials $\left(\mathrm{R}_{\mathrm{f}}\right.$ $0.1,0.6)$. The reaction mixture was quenched with triethylamine (0.5 mL) and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 5: 1$, petrol:ethyl acetate) to afford benzyl 2,3,4,6-tetra-O-benzyl- β-D-mannopyranosyl-($1 \rightarrow 2$)- 3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 3$)-2,4-di- O-benzyl-6-O-tert-butyldimethylsilyl- α-D-mannopyranoside 20 ($35 \mathrm{mg}, 41 \%$, $\alpha: \beta, 2.5: 1$, inseparable mixture) as a colourless oil.

20ß: $[\alpha]^{7}+2.2\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max }$ (thin film) no significant peaks; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 0.10, $0.11\left(2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.23-3.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~d}), 3.31$ $(1 \mathrm{H}, \mathrm{dd}, J 3.1 \mathrm{~Hz}, J 9.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~d}), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 1.4 \mathrm{~Hz}, J_{6,6}, 10.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}\right), 3.60$ ($1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 3.6 \mathrm{~Hz}, \mathrm{H}-6$ 'c $), 3.65-3.81$ (7H, m, H-5a, H-6a, H-6' a, H-6b, H-6’b, H-6d, H6'd), 3.83-3.85 (1H, m, H-4b), 3.87-3.97 (5H, m, H-2d, H-4a, H-4c, H-4d, H-5c), 4.024.07 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-3 \mathrm{~b}, \mathrm{H}-3 \mathrm{c}, \mathrm{H}-5 \mathrm{~b}$), $4.20\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 2.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}\right), 4.22-4.28$ ($2 \mathrm{H}, \mathrm{m}$, 2 x CH), 4.24 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3 \mathrm{a}$), 4.35 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1 \mathrm{~d}$), 4.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2 \mathrm{c}$), $4.38-4.77$ ($18 \mathrm{H}, \mathrm{m}$, $18 \times \mathrm{CH})$, 4.85-5.01 (5H, m, $5 \times \mathrm{CH}), 4.95\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 5.12(1 \mathrm{H}, \mathrm{d}, J 11.8$ $\mathrm{Hz}, \mathrm{CH}), 5.21\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 2.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right), 5.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1 \mathrm{~b}), 7.09-7.57(65 \mathrm{H}, \mathrm{m}, 65 \mathrm{x} \mathrm{Ar}-$
$\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.3,-5.1\left(2 \mathrm{x} \mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 18.4\left(\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9(\mathrm{q}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 62.6$ (t, C-6a), $68.5(\mathrm{t}, \mathrm{C}-6 \mathrm{c}), 68.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 69.6$ (t, C-6b), $69.9(\mathrm{t}, \mathrm{C}-6 \mathrm{~d}), 70.3$, 70.5 ($2 \mathrm{x} \mathrm{t}, 2 \times \mathrm{CH}_{2}$), 71.6 (d, C-5c), 71.9 (t, CH_{2}), 72.1 (d, C-2c), 72.7 (d, C-5b), 72.8, 73.1, 73.3 ($3 \times \mathrm{t}, 3 \times \mathrm{CH}_{2}$), 73.3 (d, C-5a), $73.4\left(\mathrm{t}, \mathrm{CH}_{2}\right.$), 73.8 (d, C-2d, C-4c), 74.2, 74.4 ($2 \mathrm{xt}, 2 \times \mathrm{CH}_{2}$), 74.7, 74.7 ($2 \mathrm{x} \mathrm{d}, \mathrm{C}-2 \mathrm{~b}, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-4 \mathrm{~d}$), $74.8,74.8\left(2 \times \mathrm{t}, 2 \times \mathrm{CH}_{2}\right.$), $75.2(\mathrm{~d}$, C-4b), 75.6 (d, C-5d), 77.7 (d, C-3c), 78.0 (d, C-2a), 80.2 (d, C-3a, C-3b), 81.4 (d, C-3d), 96.0 (d, C-1a), 99.4 (d, C-1c, C-1d), 101.1 (d, C-1b), 127.2-128.9 (d, $65 \times \mathrm{Ar}-\mathrm{C}), 137.5-$ 138.7 (s, $13 \times \mathrm{Ar}-\mathrm{C}) ; ~ m / z\left(\mathrm{ESI}^{+}\right) 1975\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right) ;\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1973.9 (58%), 1974.9 (100%), 1975.9 (64%), 1976.9 (23\%), 1977.9 (6%), 1978.9 (2\%), 1979.9 (1\%), peaks calculated: 1973.9 (72\%), 1974.9 (100\%), 1975.9 (74%), 1976.9 (39\%), 1977.9 (16\%), 1978.9 (5\%), 1979.9 (2\%).
para-Methoxyphenyl (2,3,4,6-tetra-O-benzyl- β-d-mannopyranosyl)-(1 $\rightarrow \mathbf{2}$)-(3,4,6-tri-O-benzyl- α-D-mannopyranosyl)-($\mathbf{1 \rightarrow 2) - 3 , 4 , 6 - t r i - O \text { -benzyl- } \alpha \text { -D-mannopyranoside }}$ 22β and para-Methoxyphenyl (2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow \mathbf{2}$)-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-Dmannopyranoside 22α

22α

22β

Conditions A:

para-Methoxyphenyl (3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O -benzyl- α-D-mannopyranoside 21 ($82 \mathrm{mg}, 0.083 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-D-mannopyranoside $\mathbf{3}$ ($66 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2,4,6-tri-tert-butylpyrimidine (154 $\mathrm{mg}, 0.60 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (2 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$
molecular sieves. The mixture was stirred for 1 h and cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{DCM}(2 \mathrm{~mL})$ was added to a flame dried flask containing $4 \AA$ molecular sieves and stirred for 1 h then cooled to $0{ }^{\circ} \mathrm{C}$. To this flask was added dimethyldisulfide ($45 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) and trifluoromethylsulfonic anhydride ($87 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$). After 2 min , the solution was transferred to the flask containing the flask containing the sugar reagents at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (4:1, petrol:ethyl acetate) indicated formation of 2 products ($\mathrm{R}_{\mathrm{f}} 0.45,0.5$) with complete consumption of the starting materials $\left(\mathrm{R}_{\mathrm{f}} 0.1,0.6\right)$. The reaction mixture was quenched with triethylamine (1 mL) and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 8: 1$, petrol:ethyl acetate) to afford para-methoxyphenyl (2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)$(1 \rightarrow 2)$-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-Dmannopyranoside 22 ($105 \mathrm{mg}, 84 \%, \alpha: \beta, 1: 11$) as a colourless oil.

Conditions B:

para-Methoxyphenyl (3,4,6-tri-O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O -benzyl- α-D-mannopyranoside 21 ($85 \mathrm{mg}, 0.086 \mathrm{mmol}$), phenyl 2,3,4,6-tetra- O-benzyl-1-thio- α-D-mannopyranoside $\mathbf{3}$ ($65 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2,4,6-tri-tert-butylpyrimidine (111 $\mathrm{mg}, 0.43 \mathrm{mmol}$) were dried in a desiccator overnight. The reagents were dissolved in DCM (1 mL) and transferred using a cannula to a flame dried flask containing $4 \AA$ molecular sieves. The mixture was stirred for 1 h and cooled to $-78{ }^{\circ} \mathrm{C}$. Dimethylthiosulfonium triflate ($89 \mathrm{mg}, 0.34 \mathrm{mmol}$) was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 1 h , t.l.c (5:1, petrol:ethyl acetate) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting materials ($\mathrm{R}_{\mathrm{f}} 0.1,0.6$). The reaction mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (petrol $\rightarrow 5: 1$, petrol:ethyl acetate) to afford para-methoxyphenyl (2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-($1 \rightarrow 2$)-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranoside 22 ($98 \mathrm{mg}, 75 \%, \alpha: \beta, 3: 1$) as a colourless oil.

22 α : $\mathrm{R}_{\mathrm{f}} 0.5$ (4:1, petrol:ethyl aceate); $[\alpha]_{\mathrm{D}}{ }^{25}+17.3$ ($c, 1.0$ in CHCl_{3}); $v_{\text {max }}$ (thin film) no significant peaks; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.28(1 \mathrm{H}$, ddd, J $1.9 \mathrm{~Hz}, J 5.3 \mathrm{~Hz}, J 7.6 \mathrm{~Hz}, \mathrm{H}-$ 5c), 3.32 (1 H , dd, $\left.J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 9.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{c}\right), 3.63$ ($2 \mathrm{H}, \mathrm{d}, J 3.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-6$ 'b), 3.68-3.80 (5H, m, H-4b, H-6a, H-6'a, H-6c, H-6'c), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.87 (1 H , at, J $9.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{c}$), $3.90-3.97$ (5H, m, H-2c, H-4a, H-4b, H-5a, H-5b), 4.03 ($1 \mathrm{H}, \mathrm{dd}, J_{2,3} 2.9$ $\left.\mathrm{Hz}, J_{3,4} 7.9 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 2.8 \mathrm{~Hz}, J_{3,4} 8.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 4.21(1 \mathrm{H}, \mathrm{d}, J 11.0$ $\mathrm{Hz}, \mathrm{CH}), 4.31(1 \mathrm{H}, \mathrm{at}, J 1.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 4.34-4.39(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}), 4.41-4.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $1 \mathrm{c}, \mathrm{CH}), 4.45-4.48(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}), 4.50-4.56(4 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}, \mathrm{H}-2 \mathrm{~b}), 4.60(1 \mathrm{H}, \mathrm{d}, J 11.1$ $\mathrm{Hz}, \mathrm{CH}), 4.63(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{CH}), 4.70(2 \mathrm{H}, \mathrm{d}, J 11.7 \mathrm{~Hz}, 2 \times \mathrm{CH}), 4.78(1 \mathrm{H}, \mathrm{s}, J$ $11.3 \mathrm{~Hz}, \mathrm{CH}), 4.84(1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, \mathrm{CH}), 4.90-4.99(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}), 5.08(1 \mathrm{H}, \mathrm{d}, J$ $12.0 \mathrm{~Hz}, \mathrm{CH}), 5.28\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.58\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 6.76(2 \mathrm{H}, \mathrm{d}$, $\left.J 9.1 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{PMP}}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{PMP}}\right), 7.04-7.52(50 \mathrm{H}, \mathrm{m}, 50 \mathrm{x} \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 55.6 (q, OMe), 69.2, 69.2 ($2 \mathrm{x} \mathrm{t}, \mathrm{C}-6 \mathrm{a}, \mathrm{C}-6 \mathrm{c}$), 69.8 (t, C-6b), 70.6, 70.7 (t, CH_{2}), 71.7, 72.3 (d, C-2b, C-5a, C-5b), 72.9, 73.2, 73.3 (t, CH_{2}), 74.0 (d, C-2c), 74.2 (d, C-2a), 74.3, 74.3 (t, CH2), 74.6 (d, C-4b), 74.8 (d, C-4c), 74.9 (d, C-4a), 75.0 (t, CH_{2}), 75.2 (t, CH2), 75.7 (d, C-3c), 77.7 (d, C-3b), 80.0 (d, C-3a), 81.5 (d, C-5c), 97.9 (d, C-1a), 99.5 (d, C-1c), 99.7 (d, C-1b), 114.5, 117.8 (d, Ar-C PMP), 127.2-128.6 (d, Ar-C), 138.0-139.1 (s, Ar-C), 150.1, 154.9 ($2 \times \mathrm{s} \mathrm{s}, \mathrm{Ar}-\mathrm{C}_{\mathrm{PMP}}$); $m / z\left(\mathrm{ESI}^{+}\right) 1529\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$; $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1533.6 (98\%), 1534.6 (100\%), 1535.6 (53\%), 1536.6 (17\%), 1537.6 (5\%) calculated peaks: 1533.6 (96%), 1534.6 (100%), 1535.6 (55%), 1536.6 (21\%), 1537.6 (6\%).

22 $\boldsymbol{\beta}$: $\mathrm{R}_{\mathrm{f}} 0.45$ (4:1, petrol:ethyl aceate); $[\alpha]_{\mathrm{D}}{ }^{25}-3.1\left(c, 2.0\right.$ in CHCl_{3}); $v_{\text {max }}$ (thin film) no significant peaks; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.60\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 1.6 \mathrm{~Hz}, J_{6,6} \cdot 10.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}\right)$, 3.66-3.71 (5H, m, H-6a, H-6'a, H-6b, H-6'c, H-5c), 3.73 (3H, s, OMe), 3.79-3.81 (2H, m, H-2a, H-6'b), 3.86-3.94 (5H, m, H-3a, H-3b, H-4b, H-4c, H-5a), 3.97-4.02 (2H, m, H-4a, H-5b), $4.06\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 8.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{c}\right), 5.15-6.16(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-2 \mathrm{c}), 4.36$ ($1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, \mathrm{CH}$), 4.45-4.59 ($13 \mathrm{H}, \mathrm{m}, 13 \times \mathrm{CH}$), 4.61-4.66 (3H, m, $3 \times \mathrm{CH}$), 4.82 $(1 \mathrm{H}, \mathrm{d}, J 11.1 \mathrm{~Hz}, \mathrm{CH}), 4.87(2 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, 2 \times \mathrm{CH}), 5.16\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right)$, $5.15\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right), 5.63\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 6.72(2 \mathrm{H}, \mathrm{d}, J 9.2 \mathrm{~Hz}, 2 \mathrm{x}$ Ar-H pmp), 6.96 ($2 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{Ar}-\mathrm{H}_{\text {PMP }}$), 7.15-7.37 (50H, m, 50 x Ar-H); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) 55.6(\mathrm{q}, \mathrm{OMe}), 69.1(\mathrm{t}, \mathrm{C}-6 \mathrm{~b}), 69.3(\mathrm{t}, \mathrm{C}-6 \mathrm{a}), 69.4(\mathrm{t}, \mathrm{C}-6 \mathrm{c}), 71.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.1$ (2 $\mathrm{x} \mathrm{d}, \mathrm{C}-4 \mathrm{~b}, \mathrm{C}-4 \mathrm{c}$), $72.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.2$ (d, C-4a), 72.4, 72.5, 73.2, $73.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 74.6(2 \mathrm{x} \mathrm{d}$, C-5a C-2b), 74.9 ($2 \mathrm{x} \mathrm{d}, \mathrm{C}-5 \mathrm{c}, \mathrm{C}-5 \mathrm{~b}$), 75.0, $75.0\left(2 \mathrm{xt}, \mathrm{CH}_{2}\right.$), 75.1 ($2 \mathrm{x} \mathrm{d}, \mathrm{C}-2 \mathrm{a}, \mathrm{C}-2 \mathrm{c}$), 79.1 (d, C-3c), 79.6, 79.6 ($2 \times \mathrm{d}, \mathrm{C}-3 \mathrm{a}, \mathrm{C}-3 \mathrm{~b}$), 97.6 (d, C-1a), 99.5 (d, C-1c), 101.0 (d, C1b), 114.5, 117.8 (d, Ar-C pмp), 127.3-128.5 (d, Ar-C), 132.8-138.6 (s, Ar-C), 150.1, 154.8 ($2 \mathrm{x} \mathrm{s}, \mathrm{Ar}-\mathrm{C}_{\mathrm{PMP}}$); $m / z\left(\mathrm{ESI}^{+}\right) 1529\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$; $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$peaks measured: 1533.6 (98%), 1534.6 (100%), 1535.6 (53%), 1536.6 (17%), 1537.6 (5%) calculated peaks: 1533.6 (96%), 1534.6 (100%), 1535.6 (55\%), 1536.6 (21%), 1537.6 (6%).

