Direct Chlorination of Alcohols with Chlorodimethylsilane Catalyzed by a Gallium Trichloride/Tartrate System under Neutral Conditions

Makoto Yasuda, Kenji Shimizu, Satoshi Yamasaki, and Akio Baba

Department of Applied Chemistry and Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Supporting Information

General. IR spectra were recorded as thin films or as solids in KBr pellets on a HORIBA FT-720 spectrophotometer. 1 H, 13 C, and 29 Si NMR spectra were obtained with a 400, 100, and 78.7 MHz spectrometer, respectively, with TMS as internal standard. Mass spectra were recorded on a JEOL JMS-DS303. All reactions were carried out under nitrogen. GLC analyses were performed on a Shimadzu GC-14A with FID using a 15 m × 3 mm capillary column packed with TC-WAX, TC-5, or TC-1701 (0.25 μ m). Column chromatography was performed on silica gel (MERK C60). Bulb-to-bulb distillation (Kugelrohr) was accomplished in a Sibata GTO-250RS at the oven temperature and pressure indicated. Yields were determined by GLC or 1 H NMR using internal standards.

Materials. Dichloromethane, dehydrated (stabilized with 2-methyl-2-butene) was used without purification. All regents in Table 1 (HSiMe₂Cl **2**, **4a-e**, GaCl₃, GaBr₃, GaI₃, Ga(OTf)₃, InCl₃, AlCl₃, ZnCl₂, TiCl₄, and BiCl₃) and alcohols **1a-f**, **1j**, **1m**, **1n** were commercially available. The alcohols **1k**¹ and **1l**² were prepared by known method. The alcohols **1g-i** and silylether **9** were prepared as shown below.

12-Hydroxytetradecyl acetate (1g)

OH OH
$$COCI$$
 OH $COCI$ OH $COCI$ OH $COCI$ $COCI$

To a solution of tetradecane-1,12-diol (10 mmol) in CH₂Cl₂ (20 mL) were added 2,4,6-collidine (20 mmol) and acetyl chloride (13 mmol) at -78 °C.³ The reaction mixture was stirred for 4 h at -78 °C. The mixture was quenched by HCl aq (1M, 10 mL) and extracted with CH₂Cl₂ (20 x 3 mL). The collected organic layers were washed with NaHCO₃ aq (20 x 2 mL) and dried over MgSO₄. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc, 80:20). Further purification was employed by recrystalization to give 12hydroxytetradecyl acetate as a white solid (5.76 mmol, 58 %). mp: 35 °C; IR: (KBr) 3352 (OH), 1732 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₂) 4.05 (t, J = 6.8 Hz, 2H, 1-H₂), 3.52 (brs, 1H, 12-H), 2.05 (s, 3H, CH₃CO), 1.63-1.27 (m, 23H, 2-H₂, 3-H₂, 4-H₂, 5-H₂, 6-H₂, 7-H₂, 8-H₂, 9-H₂, 10- H_2 , 11- H_2 , 13- H_2 and OH), 0.94 (t, J = 7.6 Hz, 3H, 14- H_3); ¹³C NMR: (100 MHz, CDCl₃) 171.3 (C, CO), 73.3 (CH, C-12), 64.6 (CH₂, C-1), 36.9 (CH₂), 30.1 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.2 (CH₂), 36.9 (CH₂), 28.6 (CH₂), 25.9 (CH₂), 25.6 (CH₂), 21.0 (CH_3, CH_3CO) , 9.9 $(CH_3, C-14)$; MS: (CI, 200 eV) m/z 273 $(M^+ + 1, 19)$, 255 $(M^+ + 1 - H_2O)$ 100), 195 (M⁺ + 1 - H₂O - CH₃COOH, 48); HRMS: (CI, 200 eV) calcd for C₁₆H₃₃O₃ 273.2429 found m/z 273.2425 (M⁺ + 1). Anal. Calcd for $C_{16}H_{32}O_3$: C, 70.54; H, 11.84. Found: C, 70.48; H, 11.61.

Tetradecane-1,12-diol

To a solution of Grignard reagent in THF (20 mL), which was synthesized from Mg (30 mmol) and 11-bromo-1-trimethylsilyloxyundecane (20 mmol) was added propionaldehyde (20 mmol) in THF (5 mL) dropwise at 0 °C. The reaction mixture was stirred for 20 h at rt. The mixture was cooled to 0 °C, then quenched by HCl (1N, 50 mL) and extracted with ether (50 x 3 mL). The collected organic layers were dried over MgSO₄. The solvent was evaporated and added MeOH (60 mL). To a solution was added K₂CO₃ in some portions at 0 °C. The reaction mixture was stirred for 2.5 h at rt. The mixture was cooled to 0 °C, then quenched by H₂O (50 mL) and

extracted with ether (50 x 3 mL). The collected organic layers were dried over MgSO₄. The solvent was evaporated and purified by the residue was purified by column chromatography (hexane/EtOAc, 50:50). Further purification was employed by recrystalization to give tetradecane-1,12-diol as a white solid (6.21 mmol, 31 %). mp: 51-53 °C; IR: (KBr) 3340 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 3.64 (t, J = 6.5 Hz, 2H, 1-H₂), 3.52 (m, 1H, 12-H), 1.60-1.20 (m, 24H, 2-H₂, 3-H₂, 4-H₂, 5-H₂, 6-H₂, 7-H₂, 8-H₂, 9-H₂, 10-H₂, 11-H₂, 13-H₂ and two OHs), 0.94 (t, J = 7.6 Hz, 3H, 14-H₃); ¹³C NMR: (100 MHz, CDCl₃) 73.3 (CH, C-12), 63.0 (CH₂, C-1), 36.9 (CH₂), 32.8 (CH₂, C-2), 30.1 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 25.7 (CH₂), 25.6 (CH₂), 9.9 (CH₃, C-14); MS: (CI, 200 eV) m/z 231 (M⁺ + 1, 8.0), 213 (M⁺ + 1 - H₂O, 100); HRMS: (CI, 200 eV) calcd for C₁₄H₃₁O₂ 231.2324 found m/z 231.2325 (M⁺ + 1). Anal. Calcd for C₁₄H₃₀O₂: C, 72.99; H, 13.12. Found: C, 72.76; H, 13.03.

11-Bromo-1-trimethylsiloxyundecane

To a solution of 11-bromo-1-undecanol (80 mmol) in THF (100 mL) were added TMSCl (120 mmol) and Et₃N (120 mmol). The reaction mixture was stirred for 8 h at rt. Evaporation of solvents and removal of the resultant salt by filtration to gave a crude mixture. The resultant mixture was distilled to give the pure product as a colorless liquid (22.6 g, 88%). bp: 94 °C/ 0.05 mmHg; IR: (KBr) 2927, 1250, 1099 (Si-O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 3.57 (t, J = 6.8 Hz, 2H, 1-H₂), 3.41 (t, J = 6.9 Hz, 2H, 11-H₂), 1.85 (tt, J = 6.9, 6.9 Hz, 2H, 10-H₂), 1.59-1.47 (m, 2H, 9-H₂), 1.47-1.36 (m, 2H, 2-H₂), 1.36-1.19 (m, 12H, 3-H₂, 4-H₂, 5-H₂, 6-H₂, 7-H₂ and 8-H₂), 0.11 (s, 9H, SiMe₃); ¹³C NMR: (100 MHz, CDCl₃) 62.7 (CH₂, C-1), 34.1 (CH₂, C-11), 32.8 (CH₂, C-9 or C-10), 32.7 (CH₂, C-10 or C-9), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 28.7 (CH₂), 28.2 (CH₂), 25.8 (CH₂), -0.5 (CH₃, SiMe₃); MS: (CI, 200 eV) m/z 325 (M⁺ + 3, 100), 323 (M⁺ + 1, 99.8); HRMS: (CI, 200 eV) calcd for C₁₄H₃₂BrOSi 325.1385 found m/z 325.1390 (M⁺ + 3) and calcd for C₁₄H₃₂BrOSi 323.1406 found m/z 323.1387 (M⁺ + 1). Anal. Calcd for C₁₄H₃₁BrOSi: C, 52.00; H, 9.66. Found: C, 52.08; H, 9.61.

Tridecane-1,12-diol (1h)

To a solution of Grignard reagent in THF (40 mL), which was synthesized from Mg (60 mmol) and 11-bromo-1-trimethylsilyloxyundecane (40 mmol) was added acetaldehyde (40 mmol) in THF (10 mL) dropwise at 0 °C. The reaction mixture was stirred for 1.5 h at rt. The mixture was cooled to 0 °C, then quenched by HCl (1N, 50 mL) and extracted with ether (100 x 3 mL). The collected organic layers were dried over MgSO₄. The solvent was evaporated and added MeOH (120 mL). To a soluion was added K₂CO₃ in some portions at 0 °C. The reaction mixture was stirred for 4 h at rt. The mixture was cooled to 0 °C, then quenched by H₂O (100 mL) and extracted with ether (70 x 3 mL). The collected organic layers were dried over MgSO₄. The solvent was evaporated and purified by the residue was purified by recrystalization to give tridecane-1,12-diol as a white solid (28.7 mmol, 72 %). mp: 49-50 °C; IR: (KBr) 3309 (OH) cm⁻¹ ¹; ¹H NMR: (400 MHz, CDCl₃) 3.79 (m, 1H, 12-H), 3.64 (t, J = 6.5 Hz, 2H, 1-H₂), 1.64-1.22 (m, 24H, 2-H₂, 3-H₂, 4-H₂, 5-H₂, 6-H₂, 7-H₂, 8-H₂, 9-H₂, 10-H₂, 11-H₂, and two OHs), 1.18 (d, J = 6.4Hz, 3H, 13-H₃); ¹³C NMR: (100 MHz, CDCl₃) 68.2 (CH, C-12), 63.1 (CH₂, C-1), 39.3 (CH₂), 32.8 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 23.5 (CH₃, C-13), some signals are obscured by similar chemical shifts.; MS: (CI, 200 eV) m/z 217 (M⁺ + 1, 14), 199 (M⁺ + 1 - H₂O, 100); HRMS: (CI, 200 eV) calcd for $C_{13}H_{29}O_2$ 217.2167 found m/z217.2175 (M $^+$ + 1). Anal. Calcd for C₁₃H₂₈O₂: C, 72.17; H, 13.04. Found: C, 71.95; H, 12.74.

2-(4-Hydroxypentyl)-isoindole-1,3-dione (1i)

To a solution of crude 2-(4-oxo-pentyl)-isoindole-1,3-dione (ca.11 mmol) in MeOH (25 mL) was added NaBH₄ (5.5 mmol) in two portions at 0 °C. The reaction mixture was stirred for 1.5 h at rt. The mixture was cooled to 0 °C, then quenched by HCl aq (1M, 10 mL) and extracted with ether (20 x 3 mL). The collected organic layers were washed with NaHCO₃ aq (20 x 2 mL) and dried

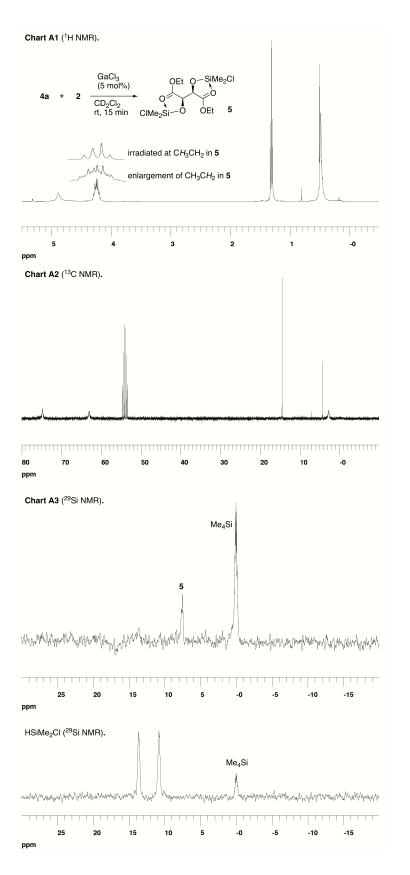
over MgSO₄. The solvent was evaporated and the residue was purified by flash column chromatography (hexane/EtOAc, 50:50). Further purification was employed by distillation under reduced pressure to give the pure product as a pale yellow liquid (5.10 mmol, 58 %). bp: 185 °C / 0.4 mmHg; IR: (neat) 3444, 1774, 1709 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.83 (dd, J = 5.4, 3.0 Hz, 2H, 5-H and 8-H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H, 6-H and 7-H), 3.85 (tq, J = 6.7, 6.7 Hz, 2H, 4'-H), 3.71 (t, 2H, 1'-H₂), 2.46 (s, 1H, OH), 1.85-1.70 (m, 2H, 3'-H₂), 1.50 (m, 2H, 2'-H₂), 1.19 (d, J = 6.7, 3H, 5'-H₃); ¹³C NMR: (100 MHz, CDCl₃) 168.4 (s, C-1 and C-3), 133.8 (d, C-6 and C-7), 131.9 (s, C-4 and C-9), 123.0 (d, C-5 and C-8), 67.2 (d, C-4'), 37.7 (d, C-1'), 35.9 (d, C-2'), 24.8 (t, C-3'), 23.3 (q, C-5'); MS: (EI, 70 eV) m/z 233 (M⁺, 2.8), 173 (32), 161 (39), 160 (M⁺ - CH₂CH₂CHOHCH₃, 100), 149 (51), 85 (23); HRMS: (EI, 70 eV) calcd for C₁₃H₁₅NO₃ 233.1052 found m/z 233.1048 (M⁺). Anal. Calcd for C₁₃H₁₅NO₃: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.71; H, 6.35; N, 5.95.

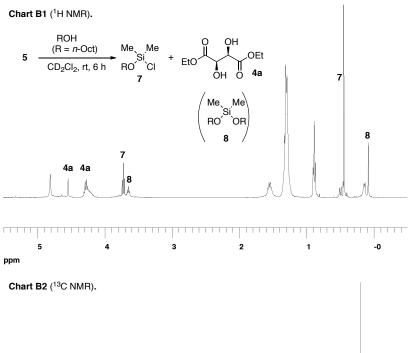
1-Phenyl-3-(chlorodimethylsiloxy)butane (9)

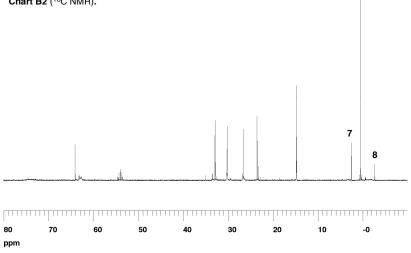
OH
$$+ Me_2SiCl_2$$
 $\xrightarrow{Et_3N}$ Cl Si O $tt, 4.5 h$

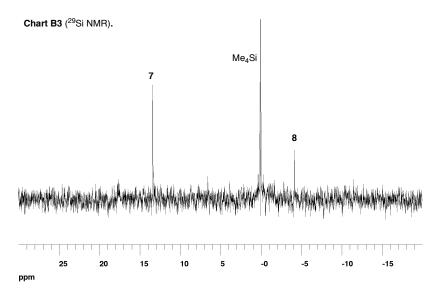
To a solution of 4-phenyl-2-butanol (9.0 g, 60 mmol) and triethylamine (10.6 g, 105 mmol) in benzene (30 mL) was slowly added a solution of Me_2SiCl_2 (13.5 g, 105 mmol) in benzene (60 mL) at room temperature for 30 min. The mixture was stirred at rt for 4 h. Removal of the resultant salt by the centrifugal separation and evaporation of solvents gave a crude mixture. The resultant mixture was distilled to give the pure product as a colorless liquid (2.4 g, 16%). bp: $54 \, ^{\circ}\text{C} / 0.03 \, \text{mmHg}$; IR: (neat) 1261 cm⁻¹; ^{1}H NMR: (400 MHz, CD_2Cl_2) 7.26-7.13 (m, 5 H, aroma), 4.07 (tq, J = 6.1, 6.1 Hz, 1H, 2-H), 2.71 (ddd, J = 13.9, 10.9, 5.8 Hz, 1H, 1-H_A), 2.60 (ddd, J = 13.9, 10.3, 6.4 Hz, 1H, 1-H_B) 1.78 (m, 2H, 2-H₂), 1.23 (d, J = 6.1 Hz, 3H, 4-H₃), 0.45 (s, 3H, $SiMe_A$), 0.44 (s, 3H, $SiMe_B$); ^{13}C NMR: (100 MHz, CD_2Cl_2) 142.6 (s, i), 128.7 (d, o or m), 128.6 (d, m or o), 126.0 (d, p), 70.0 (d, C-3), 41.2 (t, C-2), 32.3 (t, C-1), 23.5 (q, C-4), 2.9 (q, E-3), 2.6 (q, E-3); MS: (CI, 200 eV) E-245 (M⁺ + 3, 1.39), 243 (M⁺ + 1, 3.32), 133 (M⁺ + 1)

1- $HOSiMe_2Cl$, 100); HRMS: (CI, 200 eV) calcd for $C_{12}H_{20}ClOSi$ 243.0972 found m/z 243.0964 (M⁺ + 1).


Procedure for optimization of chlorination of alcohols (Table 1). According to the "General procedure for chlorination of alcohols catalyzed by GaCl₃/tartrate system (Table 2)" as shown below, the reactions were employed under the conditions noted in text.


General procedure for chlorination of alcohols catalyzed by GaCl₃/tartrate system (Table 2). To a solution of (+)-diethyl tartrate (0.1 mmol) in CH₂Cl₂ (1 mL) were added GaCl₃ in pentane (0.5 M, 0.1 mL, 0.05 mmol), alcohol 1 (1.0 mmol), and HSiMe₂Cl 2 (1.3 mmol) under nitrogen. The reaction mixture was stirred under the conditions noted in text. H₂ gas generated for the first ca. 15 minutes. The mixture was quenched by addition of water (10 mL) and extracted with diethyl ether (10 x 3 mL). The collected organic layer was dried over MgSO₄ and concentrated *in vacuo*. The procedures of further purification for new compounds are shown in the Product data section.


General procedure for chlorination of alcohols catalyzed by GaCl₃ system (Table 3). To a solution of GaCl₃ (in pentane 0.5 M, 0.1 mL, 0.05 mmol) in CH₂Cl₂ (1 mL) were added alcohol 1 (1.0 mmol) and HSiMe₂Cl 2 (1.3 mmol) under nitrogen. The reaction mixture was stirred under the conditions noted in text. The mixture was quenched by addition of water (10 mL) and extracted with diethyl ether (10 x 3 mL). The collected organic layer was dried over MgSO₄ and concentrated *in vacuo*. The procedures of further purification for new compounds are shown in the Product data section.


Mechanistic investigation. To a solution of (+)-diethyl tartrate (0.5 mmol) in CD₂Cl₂ (1 mL) were added GaCl₃ in pentane (0.5 M, 0.1 mL, 0.05 mmol) and HSiMe₂Cl **2** (1.0 mmol) under nitrogen. The reaction mixture was stirred at rt for 15 min. H₂ gas generated for the first ca. 2 minutes. The mixture was observed by NMR spectroscopy and the formation of **5** was confirmed (Chart A1-3: ²⁹Si NMR of HSiMe₂Cl is also shown for comparison.). To the mixture including **5** was added 1-octanol (1.0 mmol) and the mixture was stirred at rt for 6 h. The mixture was

observed by NMR spectroscopy and the formation of chloro(octanoxy)silane 7 and diethyl tartrate 4a was confirmed (Chart B1-3). The species 7 and 8 were assigned with the characteristic signals of the related compounds reported in the literature.⁴ To a solution of GaCl₃ (in pentane 0.5 M, 0.1 mL, 0.05 mmol) in CH₂Cl₂ (1 mL) was added chlorosilyl ether 9 (1.0 mmol) under nitrogen. The reaction mixture was stirred at rt for 5 h. The mixture was quenched by water (10 mL) and extracted with diethyl ether (10 x 3 mL). The collected organic layer was dried over MgSO₄ and concentrated *in vacuo*. The formation of 3a was observed by NMR (62% yield).

Product data. The spectral data of 3a, 3b, 6, 3d, 7, 3e, and 3k were in an excellent agreement with the reported data. The spectral data of 3c, 3f, 3m, and 3n were in an excellent agreement with those of commercially available products. Spectral data for the products, 3g-i, 3j, and 3l are shown below.

12-Chlorotetradecyl acetate (3g)

According to the general procedure, this compound was prepared from HSiMe₂Cl, **1g**, GaCl₃, and (+)-diethyl tartrate in dichloromethane to give the product as a colorless liquid after chromatography (hexane/EtOAc, 97:3). Further purification was performed by distillation under reduced pressure. Some rearrangement products were included: bp: 165 °C / 0.4 mmHg; IR: (neat) 2927 (C-H), 1743 (C=O), 1242 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.05 (t, J = 6.8 Hz, 2H, 1-H₂), 3.85 (m, 1H, 12-H), 2.05 (s, 3H, COCH₃), 1.03 (t, J = 7.4 Hz, 3H, 14-H₃) Other signals were not identified due to the overlap with those of rearrangement by-products; ¹³C NMR: (100 MHz, CDCl₃) 171.3 (C, CO), 65.9 (CH, C-12), 64.5 (CH₂, C-1), 31.5 (CH₂, C-13), 10.9 (CH₃, C-14) Other signals were not identified due to the overlap with those of rearrangement by-products; MS: (CI, 200 eV) m/z 293 (M⁺ + 3, 31), 291 (M⁺ + 1, 100), 255 (M⁺ + 1 - HCl, 65), 195 (M⁺ + 1 - HCl - CH₃COOH, 47); HRMS: (CI, 200 eV) calcd for C₁₆H₃₂ClO₂ 291.2091 found m/z 291.2086 (M⁺ + 1). Anal. Calcd for C₁₆H₃₁ClO₂: C, 66.07; H, 10.74. Found: C, 66.36; H, 10.59.

12-Chloro-1-tridecanol (3h)

According to the general procedure, this compound was prepared from $HSiMe_2Cl$, **1h**, $GaCl_3$, and (+)-diethyl tartrate in dichloromethane to give the product as a colorless liquid after chromatography (hexane/EtOAc, 90:10). Further purification was performed by distillation under reduced pressure and GPC. Some rearrangement products were included: bp: 175 °C / 0.5 mmHg; IR: (neat) 3309 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.02 (tq, J = 6.6, 6.6 Hz, 1H,

12-H), 1.50 (d, J = 6.6 Hz, 3H, 13-H₃) Other signals were not identified due to the overlap with those of rearrangement by-products; ¹³C NMR: (100 MHz, CDCl₃) 63.1 (CH₂, C-1), 59.0 (CH, C-12), 40.4 (CH₂, C-11), 25.7 (CH₃, C-13) Other signals were not identified due to the overlap with those of rearrangement by-products; MS: (CI, 200 eV) m/z 237 (M⁺ + 3, 3.47), 235 (M⁺ + 1, 12.3), 217 (M⁺ + 1 – H₂O, 41.0), 199 (M⁺ + 1 – HCl, 100), 181 (M⁺ + 1 – HCl – H₂O, 22.1), 125 (24.0), 111 (26.6), 97 (21.1); HRMS: (CI, 200 eV) calcd for C₁₃H₂₈ClO 235.1829 found m/z 235.1822 (M⁺ + 1). Anal. Calcd for C₁₃H₂₇ClO: C, 66.50; H, 11.59. Found: C, 66.42; H, 11.44.

2-(4-Chloropentyl)isoindole-1,3-dione (3i)

According to the general procedure, this compound was prepared from HSiMe₂Cl, **1i**, GaCl₃, and (+)-diethyl tartrate in dichloromethane to give the product as a colorless liquid after chromatography (hexane/EtOAc, 80:20). Further purification was performed by distillation under reduced pressure: bp: 175 °C / 1.0 mmHg; IR: (neat) 1774, 1712 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.85 (dd, J = 5.4, 3.2 Hz, 2H, 5-H and 8-H), 7.73 (dd, J = 5.4, 3.2 Hz, 2H, 6-H and 7-H), 4.08 (tq, J = 6.8, 6.8 Hz, 1H, 4'-H), 3.72 (t, J = 6.8 Hz, 2H, 1'-H₂), 1.92 (m, 1H, 3'-H^A), 1.87-1.72 (m, 3H, 3'-H^B and 2'-H₂), 1.50 (d, J = 6.8 Hz, 3H, 5'-H₃); ¹³C NMR: (100 MHz, CDCl₃) 168.4 (s, C-1 and C-3), 134.0 (d, C-6 and C-7), 132.0 (s, C-4 and C-9), 123.2 (d, C-5 and C-8), 57.9 (d, C-7'), 37.3 (d, C-1'), 37.3 (d, C-3'), 25.9 (t, C-2'), 25.4 (q, C-5'); MS: (EI, 70 eV) m/z 253 (M⁺+2, 0.82), 251 (M⁺, 2.5), 160 (M⁺ - CH₂CH₂CHCICH₃, 100); HRMS: (EI, 70 eV) calcd for C₁₃H₁₄ClNO₂ 251.0709 found m/z 251.0713 (M⁺). Anal. Calcd for C₁₃H₁₄ClNO₂: C, 62.03; H, 5.61; N, 5.56. Found: C, 61.74; H, 5.49; N, 5.60.

2-Chloro-2-methylhexane (3j)

According to the general procedure, this compound was prepared from $HSiMe_2Cl$, 1j, and $GaCl_3$, in dichloromethane to give the product as a colorless liquid after chromatography (hexane/EtOAc, 90:10). Further purification was performed by distillation under reduced pressure: bp: 58 °C / 50 mmHg; IR: (neat) 2962, 1466 cm⁻¹; 1H NMR: (400 MHz, CDCl₃) 1.74 (m, 2H, 3-H₂), 1.57 (s, 3H, 1-H₃ or 2-Me), 1.57 (s, 3H, 2-Me or 1-H₃), 1.46 (m, 2H, 4-H₂), 1.33 (tq, J = 7.4, 7.4 Hz, 2H, 5-H₂), 0.93 (t, J = 7.4 Hz, 3H, 6-H₃); 13 C NMR: (100 MHz, CDCl₃) 71.3 (s, C-2), 45.8 (t, C-3), 32.4 (q, C-1 and 2-Me), 27.3 (t, C-4), 22.8 (t, C-5), 14.0 (q, C-6); MS: (EI, 70 eV) m/z 121 (M⁺ + 2 - CH₃, 0.75), 119 (M⁺ - CH₃, 2.2), 99 (M⁺ - Cl, 17), 77 (C(CH₃)₂Cl, 65), 56 (100), 41 (55); HRMS: (EI, 70 eV) calcd for $C_6H_{12}Cl$ 119.0628 found m/z 119.0630 (M⁺ - CH₃). Anal. Calcd for $C_7H_{15}Cl$: C, 62.44; H, 11.23. Found: C, 62.59; H, 11.05.

2-(7-Chloro-3,7-dimethyloctyl)isoindole-1,3-dione (3l)

According to the general procedure, this compound was prepared from HSiMe₂Cl, **1h**, and GaCl₃ in dichloromethane to give the product as a solid after recrystallization (hexane/ether): mp: 88-90 °C; IR: (KBr) 1770, 1712 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.84 (dd, J = 5.6, 3.2 Hz, 2H, 5-H and 8-H), 7.71 (dd, J = 5.6, 3.2 Hz, 2H, 6-H and 7-H), 3.71 (m, 2H, 1'-H₂), 1.70 (m, 3H), 1.56 (s, 6H, 8'-H₃ and 7'-Me), 1.59-1.21 (m, 5H), 1.21 (m, 1H), 0.99 (d, J = 6.3 Hz, 3H, 3'-Me); ¹³C NMR: (100 MHz, CDCl₃) 168.4 (C, C-1 and C-3), 133.8 (CH, C-6 and C-7), 132.2 (C, C-4 and C-9), 123.1 (CH, C-5 and C-8), 71.2 (C, C-7'), 46.2 (CH₂), 36.7 (CH₂), 36.2 (CH₂), 35.5 (CH₂), 32.4 (CH₃, 7'-Me), 32.4 (CH₃, C-8'), 30.6 (CH, C-3'), 22.3 (CH₂), 19.3 (CH₃, 3'-Me); MS: (EI, 70 eV) m/z 323 (M⁺ + 2, 2.41), 321 (M⁺, 6.94), 200 (23.0), 161 (47.2), 160 (PhthNCH₂, 100), 148 (28.2); HRMS: (EI, 70 eV) calcd for C₁₈H₂₄ClNO₂ 321.1496 found m/z 321.1502 (M⁺). Anal. Calcd for C₁₈H₂₄ClNO₂: C, 67.17; H, 7.52; N, 4.35. Found: C, 67.15; H, 7.38; N, 4.47.

References

1) Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2007, 9, 4931-4934.

- 2) Saito, T.; Nishimoto, Y.; Yasdua, M.; Baba, A. J. Org. Chem. 2007, 72, 8588-8590.
- 3) Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1993, 58, 3791-3792.
- 4) E. Liepins, I. Zicmane, E. Lukevics, J. Organometal. Chem. 1986, 306, 167-182.
- 5) Barrett, A. G. M.; Braddock, D. C.; James, R. A.; Koike, N.; Procopiou, P. A. *J. Org. Chem.* **1998**, *63*, 6273-6280.
- 6) Yus, M.; Herrera, R. P.; Guijarro, A. Chem. Eur. J. 2002, 8, 2574-2584.
- 7) Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A. J. Am. Chem. Soc. 2004, 126, 7186-7187.