Palladium(0)-catalyzed direct cross-coupling reaction of allylic alcohols with aryland alkenylboronic acids

Hirokazu Tsukamoto, Tomomi Uchiyama, Takamichi Suzuki and Yoshinori Kondo Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-aza aoba 6-3, Aoba-ku, Sendai 980-8578, Japan

Supplementary Material

General Procedure for the cross-coupling reaction between **4** and **3a** (Table 1): To a test tube containing cinnamyl alcohol (**4**) (1 equiv, see Table 1S), phenylboronic acid (**3a**) (1.2 equiv), and Pd(PPh₃)₄ (0.2-10 mol %) or Pd₂dba₃ (2.5 mol %)-PPh₃ (5 or 10 mol %) was added anhydrous solvent (CH₂Cl₂, Toluene, 1,4-Dioxane, DMF, THF, or *t*AmOH, 0.3 M) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 °C for the time described in Table 1. The mixture was cooled down to room temperature, and then *N*,*N*-diethanolaminomethyl polystyrene (PS-DEAMTM, 1.63 mmol/g, 2.4 equiv, X g) and THF (10 x X mL) were added to remove an excess of **3a**. The mixture was agitated at room temperature for 2 h. The mixture was filtered and thoroughly washed with CHCl₃. The filtrate was concentrated *in vacuo* and the residue was purified by gel permeation chromatography (GPC) repeated four times to afford **5a** in the yield described in Table 1.

General Procedure for the cross-coupling reaction between **4** and phenylboron reagents (Table 2): To a test tube containing **4** (0.37 mmol, see Table 2S), phenylboron reagent (0.45 mmol), and Pd(PPh₃)₄ (1.8 μ mol) was added anhydrous THF (1 mL) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 °C for 6 h. The mixture was cooled down to room temperature, and then partitioned between EtOAc and saturated aqueous Na₂CO₃. The organic layers were washed with water, brine, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by GPC repeated four times to afford **5a** in the yield described in Table 2.

General Procedure for the cross-coupling reaction between cinnamyl derivatives and **3a** (Table 3): To a test tube containing cinnamyl derivative (0.37 mmol, see Table 3S), **3a** (0.45 mmol), and Pd(PPh₃)₄ (1.8 µmol) was added anhydrous THF (1 mL) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 °C for the time described in Table 3. The mixture was cooled down to room temperature, and then PS-DEAMTM (1.63 mmol/g, 0.55 g, 0.90 mmol) and THF (5 mL) were added to remove an excess of **3a**. The mixture was agitated at room temperature for 2 h. The mixture was filtered and thoroughly washed with CHCl₃. The filtrate was concentrated *in vacuo* and the residue was purified by GPC repeated several times to afford **5a** in the yield described in Table 3.

Entry	4 (mg)	3a (mg)	[Pd] (mg)	PPh ₃ (mg) 5a (mg)
1	40.9	44.0	17.0	-	44.0
2	40.1	44.9	6.6	-	39.2
3	40.0	44.0	17.0	-	38.1
4	40.6	44.5	7.6	-	43.7
5	40.6	44.0	17.0	-	37.2
6	40.6	44.0	7.1	-	46.9
7	50.3	54.7	21.5	-	32.8
8	50.9	55.7	9.1	-	51.5
9	41.8	46.9	17.1	-	40.0
10	40.9	44.3	7.7	-	47.9
11	38.5	44.8	34.0	-	26.0
12 ^{<i>a</i>}	40.7	44.5	6.9	7.8	48.8
13 ^b	41.0	45.5	6.7	3.8	49.1
14	41.0	45.0	3.5	-	50.2
15	49.1	55.1	2.4	-	61.7
16	96.1	109.4	1.8	-	88
17	42.7	45.5	1.8	-	49.8

Table 1S

Table 2S

Entry	4 (mg)	[PhB]; (mg)	[Pd] (mg)	5a (mg)
1	49.3	(PhBO) ₃ ; 46.1	2.4	52.0
2	49.6	PhB(pinacolato); 95.1	2.3	nd
3	47.9	PhB(catecholato); 88.0	2.2	18.3
4	49.9	Ph ₃ B; 108.3	2.1	45.3
5	47.9	Ph ₄ BNa; 153.0	2.4	22.1

Т	้ล่	hl	e	3	S
T	a	U	U	2	υ

Entry	/ X; (mg)	3a (mg)	[Pd] (mg)	5a (mg)
1	OMe; 53.1	54.3	2.1	59.3
2	OCO ₂ Me; 71.5	55.9	2.0	65.8
3	OC ₆ H ₄ -4-OMe; 90.4	56.1	2.2	59.3
4	OAc; 65.8	54.9	2.0	15.4

General Procedure for the cross-coupling reaction between **4** and **3a** (Table 4): To a test tube containing **4** (0.30 mmol, see Table 4S), **3a** (0.36 mmol), Pd_2dba_3 (1.5 µmol), and ligand (3 µmol) was added anhydrous THF (1 mL) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 °C for 2 h. The mixture was cooled down to room temperature, and then PS-DEAMTM (1.63 mmol/g, 0.44 g, 0.72 mmol) and THF (4 mL) were added to remove an excess of **3a**. The mixture was agitated at room temperature for 2 h. The mixture was filtered and thoroughly washed with CHCl₃. The filtrate was concentrated *in vacuo* and the residue was purified by GPC repeated four times to afford **5a** in the yield described in Table 4.

Table 4S						
Entry	4 (mg)	3a (mg)[Pd] (mg) Ligand (mg)	5a (mg)	
1	39.3	44.2	1.4	$P(C_6H_5)_3; 0.8$	3 49.6	
2	39.8	45.0	1.5	$P(C_6H_4-4-OMe)_3; 1.4$	27.7	
3	39.9	45.4	1.5	$P(C_6H_4-4-Cl)_3; 1.1$	28.4	
4	39.9	44.9	1.4	P(2-furyl) ₃ ; 0.9	41.1	
5	41.0	45.4	1.4	P(2-thienyl) ₃ ; 1.0	48.4	
6	39.2	45.1	1.4	P(OPh) ₃ ; 1.1	48.7	
7	40.3	44.1	1.6	P(OEt) ₃ ; 0.5	6 48.7	
8	39.6	43.9	1.5	PCy ₃ ; 0.8	8 12.5	
9	39.4	45.4	1.6	PBu ₃ ; 0.6	nd	
10	39.8	44.6	1.4	dppe; 0.6	nd	
11	39.1	44.1	1.6	AsPh ₃ ; 0.9	30.0	

General Procedure for the cross-coupling reaction between **4** and boronic acids **3b-z** (Table 5): To a test tube containing **4** (0.37 mmol, see Table 5S), **3b-z** (0.45 mmol), and Pd(PPh₃)₄ (1.8 µmol) was added anhydrous THF (1 mL) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 °C for the time described in Table 5. The mixture was cooled down to room temperature, and then PS-DEAMTM (1.63 mmol/g, 0.55 g, 0.90 mmol) and THF (5 mL) were added to remove an excess of **3b-z**. The mixture was agitated at room temperature for 2 h. The mixture was filtered and thoroughly washed with CHCl₃. The filtrate was concentrated *in vacuo* and the residue was purified by GPC repeated four times to afford **5b-z** in the yield described in Table 5.

		Table	22	
Entry	4 (mg)	3 (mg)	[Pd] (mg)	5 (mg)
1	51.0	3b ; 68.9	2.3	5b ; 78.4
2	49.2	3c ; 75.3	1.9	5c ; 78.9
3	50.9	3d ; 75.3	2.1	5d ; 69.0
4	49.1	3e ; 80.1	4.3	5e ; 82.5
5	49.2	3f ; 62.1	2.1	5f ; 67.3
6	49.1	3g ; 61.6	2.2	5g ; 68.5
7	51.4	3h ; 61.6	2.0	5h ; 70.4
8	49.8	3i ; 68.0	2.5	5i ; 28.3
9	50.2	3j ; 67.1	2.4	5j ; 70.0
10	49.1	3k ; 64.6	2.0	5k ; 67.5
11	49.2	3l ; 70.4	2.6	5l ; 69.9
12	49.1	3m ; 85.8	1.9	5m ; 80.2
13	50.4	3n ; 67.1	2.2	5n ; 62.4
14	50.1	30 ; 87.3	2.0	50 ; 84.9
15	49.4	3p ; 73.3	2.5	5p ; 72.4
16	49.5	3q ; 66.6	2.3	5q ; 66.5
17	48.7	3r ; 75.9	2.2	5r ; 63.2
18	49.2	3s ; 77.1	2.3	5s ; 77.0
19	51.1	3t ; 76.7	2.1	5t ; 73.5
20	46.7	3u ; 96.2	2.6	5u; nd
21	49.6	3v ; 96.5	2.0	5v; 69.8
22	48.5	3w ; 110.1	2.1	5w ; 70.5
23	49.7	3x ; 111.2	2.4	5 x; 58.4
24	51.5	3 y; 64.2	2.1	5y ; 41.0
25	51.4	3z ; 65.7	2.1	5z ; 46.0

Table 5S

General Procedure for the cross-coupling reaction between 6-13 and 3a (Table 6): To a test tube containing 6-13 (0.37 mmol, see Table 6S), 3a (0.45 mmol), and Pd(PPh₃)₄ (1.8 µmol) was added anhydrous THF (1 mL) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 °C for the time described in Table 6. The mixture was cooled down to room temperature, and then PS-DEAMTM (1.63 mmol/g, 0.55 g, 0.90 mmol) and THF (5 mL) were added to remove an excess of 3a. The mixture was agitated at room temperature for 2 h. The mixture was filtered and thoroughly washed with CHCl₃. The filtrate was concentrated *in vacuo* and the residue was purified by GPC repeated several times to afford 5a and 14-17 in the yield described in Table 6. The optical

rotation of 15 prepared from 10 was 0°.

		Table 6	6S	
Entry	Alcohol (mg)) 3a (mg)[[Pd] (mg)Product (mg)
1	6 ; 49.7	55.4	2.2	5a ; 65.0
2	7; 50.0	55.5	2.2	5a ; 63.9
3	8 ; 55.4	55.3	2.3	14; 53.8
4	9 ; 53.2	55.4	2.0	14; 59.5
5	10; 55.8	56.0	2.3	15; 62.2
6	11; 56.3	55.7	2.2	15 ; 58.0
7	12 ; 78.1	55.0	1.9	16 ; 80.3
8	13 ; 57.0	58.8	2.4	17; 52.4

General Procedure for the cross-coupling reaction between 1 or 20-25 and 3s (Table 7): To a test tube containing 1 or 20-25 (0.45 mmol, see Table 7S), 3s (0.52 mmol), and Pd(PPh₃)₄ (1.8 μ mol) was added anhydrous THF (1 mL for Entries 1-5) or 1,4-dioxane (1 mL, for Entries 6, 7) under argon. The resulting mixture was sealed with a screw cap and agitated at 80 (for Entries 1-5) or 110 °C (Entries 6, 7) for the time described in Table 7. The mixture was cooled down to room temperature, and then PS-DEAMTM (1.63 mmol/g, 0.55 g, 0.90 mmol) and THF (5 mL) were added to remove an excess of 3s. The mixture was agitated at room temperature for 2 h. The mixture was filtered and thoroughly washed with CHCl₃. The filtrate was concentrated *in vacuo* and the residue was purified by GPC repeated several times to afford 2s or 26-31 in the yield described in Table 7.

		Table	7S	
Entry	Alcohol (mg) 3s (mg)[[Pd] (mg	g)Product (mg)
1	1; 26.3	89.2	2.2	2s ; 61.2
2	20 ; 32.8	89.2	2.4	26+27 ; 61.1
3	21 ; 31.9	90.0	2.2	26+27 ; 68.8
4	22 , 20.9	89.2	2.2	28 ; 53.3
	22; 39.8			29 ; 4.5
5	33 , 39 3	89.3	2.4	28 ; 57.1
	23 , 38.2			29 ; 7.7
6	24 ; 32.3	89.7	2.2	30 ; 62.9
7	25 ; 45.9	90.1	2.4	31 ; 22.1

Spectral data of the cross-coupling products

(*E*)-1,3-Diphenyl-1-propene (**5a**): ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.15 (m, 10H), 6.43 (d, 1H, *J*=16.0 Hz), 6.34 (dt, 1H, *J*=16.0, 6.4 Hz), 3.52 (d, 2H, *J*=6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 140.1, 137.4, 131.0, 129.1, 128.6, 128.4, 127.0, 126.1, 126.0, 39.4; IR (neat): v_{max} (cm⁻¹) 1654, 1600, 1495, 1451, 963; EI-MS *m/z* (relative intensity) 194 (M)⁺ (100), 179 (37), 165 (11), 115 (46), 103 (12), 91 (21), 77 (7); HRMS calcd for C₁₅H₁₄ (M⁺) 194.1096, found 194.1086.

(*E*)-3-(4-Methoxyphenyl)-1-phenylpropene (**5b**): ¹H NMR (400 MHz, CDCl₃): δ 7.34–6.81 (m, 9H), 6.40 (d, 1H, *J*=16.0 Hz), 6.31 (dt, 1H, *J*=16.0, 6.4 Hz), 3.75 (s, 3H), 3.46 (d, 2H, *J*=6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 137.4, 132.0, 130.6, 129.54, 129.48, 128.4, 126.9, 126.0, 113.8, 55.2, 38.5; IR (neat): v_{max} (cm⁻¹) 1654, 1609, 1509, 1243, 1034, 965; EI-MS *m/z* (relative intensity) 224 (M)⁺ (100), 208 (35), 193 (50), 178 (20), 165 (15), 147 (8), 121 (21), 115 (49), 91 (21), 77 (12); HRMS calcd for C₁₆H₁₆O (M⁺) 224.1201, found 224.1180.

(*E*)-3-(4-Methylthiophenyl)-1-phenylpropene (**5c**): ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.14 (m, 9H), 6.43 (d, 1H, *J*=16.0 Hz), 6.31 (dt, 1H, *J*=16.0, 6.4 Hz), 3.49 (d, 2H, *J*=6.4 Hz), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.3, 137.1, 135.7, 131.0, 129.1, 128.9, 128.4, 127.1, 127.0, 126.0, 38.8, 16.3; IR (neat): v_{max} (cm⁻¹) 1598, 1493, 963; EI-MS *m/z* (relative intensity) 240 (M)⁺ (100), 193 (58), 178 (20), 165 (8), 137 (20), 115 (49), 91 (18), 77 (6); HRMS calcd for C₁₆H₁₆S (M⁺) 240.0973, found 240.0953.

(*E*)-3-(4-*N*,*N*-Dimethylaminophenyl)-1-phenylpropene (**5d**): ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, 2H, *J*=7.3 Hz), 7.28 (dd, 2H, *J*=7.3, 7.3 Hz), 7.18 (t, 1H, *J*=7.3 Hz), 7.10 (d, 1H, *J*=8.8 Hz), 6.72 (d, 1H, *J*=8.8 Hz), 6.43 (d, 1H, *J*=15.8 Hz), 6.34 (dt, 1H, *J*=15.8, 6.5 Hz), 3.46 (d, 2H, *J*=6.5 Hz), 2.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 148.9, 137.3, 130.0, 129.8, 128.9, 128.1, 127.8, 126.5, 125.7, 112.7, 40.8, 38.3; IR (neat): v_{max} (cm⁻¹) 3023, 2885, 1613, 1517, 1341, 964, 946, 816, 797, 747, 696; EI-MS *m*/*z* (relative intensity) 237 (M)⁺ (100), 193 (11), 160 (9), 134 (19), 115 (11), 91 (5); HRMS calcd for C₁₇H₁₉N (M⁺) 237.1517, found 237.1517.

(*E*)-3-(4-Acetamidophenyl)-1-phenylpropene (**5e**): ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, 1H, *J*=8.3 Hz), 7.34 (d, 2H, *J*=7.2 Hz), 7.28 (dd, 2H, *J*=7.3, 7.3 Hz), 7.19 (t, 1H, *J*=7.3 Hz), 7.17 (d, 1H, *J*=8.3 Hz), 6.42 (d, 1H, *J*=15.9 Hz), 6.31 (dt, 1H, *J*=15.9, 6.6 Hz), 3.50 (d, 2H, *J*=6.6 Hz), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 137.2, 136.0, 135.9, 130.9, 128.99, 128.97, 128.3, 126.9, 125.9, 120.0, 38.8, 24.7; IR (neat): v_{max} (cm⁻¹) 3304, 1660, 1603, 1535, 1512, 1408, 1367, 1319, 961, 829, 740, 691; EI-MS *m/z* (relative intensity) 251 (M)⁺ (100), 209 (80), 194 (12), 132 (12), 115 (18), 106 (19), 91(10); HRMS calcd for C₁₇H₁₇NO (M⁺) 251.1310, found 251.1319.

(*E*)-3-(4-Methylphenyl)-1-phenylpropene (**5f**): ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.11 (m, 9H), 6.42 (d, 1H, *J*=16.0 Hz), 6.32 (dt, 1H, *J*=16.0, 6.4 Hz), 3.49 (d, 2H, *J*=6.4 Hz), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 136.9, 135.5, 130.7, 129.4, 129.1, 128.5, 128.4, 126.9, 126.0, 38.9, 21.1; IR (neat): v_{max} (cm⁻¹) 1654, 1598, 1513, 1495, 963; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 193 (86), 178 (22), 165 (13), 129 (11), 115 (53), 91 (19), 77 (9); HRMS calcd for C₁₆H₁₆ (M⁺) 208.1252, found 208.1234.

(*E*)-3-(2-Methylphenyl)-1-phenylpropene (**5g**): ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.13 (m, 9H), 6.35 (d, 1H, *J*=16.0 Hz), 6.30 (dt, 1H, *J*=16.0, 4.8 Hz), 3.50 (d, 2H, *J*=4.8 Hz), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 137.4, 136.3, 130.8, 130.1, 129.1, 128.42, 128.37, 126.9, 126.3, 125.99, 125.96, 36.9, 19.5; IR (neat): v_{max} (cm⁻¹) 1648, 1600, 1493, 965; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 193 (78), 178 (26), 167 (22), 130 (15), 115 (64), 104 (44), 91 (30), 77 (17); HRMS calcd for C₁₆H₁₆ (M⁺) 208.1252, found 208.1236.

(*E*)-3-(3-Methylphenyl)-1-phenylpropene (**5h**): ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.01 (m, 9H), 6.44 (d, 1H, *J*=16.0 Hz), 6.33 (dt, 1H, *J*=16.0, 6.4 Hz), 3.50 (d, 2H, *J*=6.4 Hz), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.0, 138.0, 137.4, 130.8, 129.33, 129.25, 128.4, 128.3, 127.0, 126.8, 126.0, 125.6, 39.3, 21.4; IR (neat): v_{max} (cm⁻¹) 1654, 1605, 1493, 1447, 963; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 193 (79), 178 (22), 165 (12), 129 (11), 115 (50), 91 (19), 77 (9); HRMS calcd for C₁₆H₁₆ (M⁺) 208.1252, found 208.1239.

(*E*)-3-(2,6-Dimethylphenyl)-1-phenylpropene (**5i**): ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.23 (m, 4H), 7.16 (t, 1H, *J*=7.0 Hz), 7.06-7.02 (m, 3H), 6.28 (dt, 1H, *J*=16.1, 4.9 Hz), 6.22 (d, 1H, *J*=16.1 Hz), 3.55 (d, 2H, *J*=4.9 Hz), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 136.6, 136.0, 129.8, 128.3, 127.9, 127.2, 126.8, 126.0, 125.8, 33.0, 22.1; IR (neat): v_{max} (cm⁻¹) 3023, 1468, 1446, 963, 767, 730, 692; EI-MS *m/z* (relative intensity) 222 (M)⁺ (100), 207 (66), 129 (31), 118 (91), 115 (44), 91 (30); HRMS calcd for C₁₇H₁₈ (M⁺) 222.1409, found 222.1390.

(*E*)-3-(4-Ethenylphenyl)-1-phenylpropene (**5j**): ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.34 (m, 4H), 7.29 (dd, 2H, *J*=7.8, 7.3 Hz), 7.21-7.19 (m, 3H), 6.71 (dd, 1H, *J*=17.6, 10.7 Hz), 6.45 (d, 1H, *J*=15.9 Hz), 6.34 (dd, 1H, *J*=15.9, 6.6 Hz), 5.72 (d, 1H, *J*=17.6 Hz), 5.21 (d, 1H, *J*=10.7 Hz), 3.53 (d, 2H, *J*=6.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 137.3, 136.4, 135.5, 131.0, 128.9, 128.7, 128.3, 127.0, 126.2, 126.0, 113.1, 39.1; IR (neat): v_{max} (cm⁻¹) 3024, 1510, 989, 964, 905, 832, 757, 738, 691; EI-MS *m*/*z* (relative intensity) 220 (M)⁺ (100), 205 (63), 129 (23), 115 (25), 91 (15); HRMS calcd for C₁₇H₁₆ (M⁺) 220.1252, found 220.1243.

(*E*)-3-(4-Fluorophenyl)-1-phenylpropene (**5k**): ¹H NMR (400 MHz, CDCl₃): δ 7.35–6.95 (m, 9H), 6.42 (d, 1H, *J*=15.6 Hz), 6.31 (dt, 1H, *J*=15.6, 6.4 Hz), 3.50 (d, 2H, *J*=6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 161.4 (d, *J*=243.0 Hz), 137.2, 135.6 (d, *J*=3.3 Hz), 131.1, 129.9 (d, *J*=7.5 Hz), 128.9, 128.4, 127.1, 126.0, 115.1 (d, *J*=20.7 Hz), 38.5; IR (neat): v_{max} (cm⁻¹) 1648, 1600, 1507, 1219, 965; EI-MS *m/z* (relative intensity) 212 (M)⁺ (100), 197 (29), 183 (8), 133 (23), 115 (24), 109 (14), 91 (11), 83 (5), 77 (5); HRMS calcd for C₁₅H₁₃F (M⁺) 212.1001, found 212.1013.

(*E*)-3-(4-Chlorophenyl)-1-phenylpropene (**5**I): ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.13 (m, 9H), 6.42 (d, 1H, *J*=15.6 Hz), 6.28 (dt, 1H, *J*=15.6, 6.8 Hz), 3.48 (d, 2H, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 138.5, 137.1, 131.8, 131.4, 129.9, 128.5, 128.4, 127.2, 126.0, 38.6; IR (neat): v_{max} (cm⁻¹) 1648, 1598, 1492, 1090, 965; EI-MS *m/z* (relative intensity) 228 (M)⁺ (87), 193 (100), 178 (35), 165 (14), 149 (10), 125 (15), 115 (75), 91 (21), 77 (10); HRMS calcd for C₁₅H₁₃Cl (M⁺) 228.0706, found 228.0686.

(*E*)-1-Phenyl-3-[4-(trifluoromethyl)phenyl]propene (**5m**): ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, 2H, *J*=8.0 Hz), 7.36-7.18 (m, 7H), 6.46 (d, 1H, *J*=16.0 Hz), 6.30 (dt, 1H, *J*=16.0, 6.8 Hz), 3.58 (d, 2H, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 137.0, 131.8, 128.9, 128.49 (q, *J*=10.8 Hz), 128.48, 127.8, 127.3, 126.1, 125.33, 125.32 (q, *J*=4.1 Hz), 39.1; IR (neat): v_{max} (cm⁻¹) 1619, 1600, 1495, 1322, 965; EI-MS *m/z* (relative intensity) 262 (M)⁺ (100), 247 (12), 193 (57), 178 (18), 165 (8), 115 (43), 91 (22), 77 (8); HRMS calcd for C₁₆H₁₃F₃ (M⁺) 262.0969, found 262.0955.

(*E*)-3-(4-Formylphenyl)-1-phenylpropene (**5n**): ¹H NMR (400 MHz, CDCl₃): δ 9.96 (s, 1H), 7.81 (d, 2H, *J*=8.0 Hz), 7.39-7.18 (m, 7H), 6.47 (d, 1H, *J*=16.0 Hz), 6.31 (dt, 1H, *J*=16.0, 7.2 Hz), 3.60 (d, 2H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 147.3, 136.9, 134.6, 131.9, 129.9, 129.2, 128.4, 127.4, 127.3, 126.0, 39.4; IR (neat): v_{max} (cm⁻¹) 1696, 1603, 1495, 965; EI-MS *m/z* (relative intensity) 222 (M)⁺ (100), 193 (70), 178 (31), 165 (11), 131 (31), 115 (61), 91 (26), 77 (17); HRMS calcd for C₁₆H₁₄O (M⁺) 222.1045, found 222.1030.

(*E*)-3-[4-(Ethoxycarbonyl)phenyl]-1-phenylpropene (**50**): ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, 2H, *J*=8.3 Hz), 7.35 (d, 2H, *J*=7.1 Hz), 7.32-7.27 (m, 4H), 7.21 (t, 1H, *J*=7.2 Hz), 6.46 (d, 1H, *J*=15.9 Hz), 6.33 (dt, 1H, *J*=15.9, 6.8 Hz), 4.37 (q, 2H, *J*=7.2 Hz), 3.60 (d, 2H, *J*=6.8 Hz), 1.39 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 145.3, 137.0, 131.6, 129.6, 128.49, 128.41, 128.39, 127.95, 127.2, 126.0, 60.9, 39.4, 14.5; IR (neat): v_{max} (cm⁻¹) 2980, 1711, 1270, 1176, 1100, 1021, 964, 754, 742, 692; EI-MS *m*/*z* (relative intensity) 266 (M)⁺ (55), 237 (22), 221 (29), 193 (100), 178 (26), 115 (43), 91 (11); HRMS calcd for C₁₈H₁₈O₂ (M⁺) 266.1307, found 266.1291.

(*E*)-3-(4-Acetylphenyl)-1-phenylpropene (**5p**): ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, 2H, *J*=8.4 Hz), 7.36-7.18 (m, 7H), 6.46 (d, 1H, *J*=16.0 Hz), 6.31 (dt, 1H, *J*=16.0, 6.8 Hz), 3.58 (d, 2H, *J*=6.8 Hz), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 145.7, 137.0, 135.2, 131.7, 128.7, 128.5, 128.4, 127.8, 127.2, 126.0, 39.2, 26.6; IR (neat): v_{max} (cm⁻¹) 1677, 1605, 1495, 1449, 959; EI-MS *m/z* (relative intensity) 236 (M)⁺ (100), 221 (64), 193 (62), 178 (27), 148 (12), 133 (30), 115 (37), 105 (20), 91 (18), 77 (18), 43 (17); HRMS calcd for C₁₇H₁₆O (M⁺) 236.1201, found 236.1172.

(*E*)-3-(4-Cyanophenyl)-1-phenylpropene (**5q**): ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, 2H, *J*=8.4 Hz), 7.41-7.20 (m, 7H), 6.46 (d, 1H, *J*=16.0 Hz), 6.28 (dt, 1H, *J*=16.0, 6.8 Hz), 3.59 (d, 2H, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 136.8, 132.3, 132.2, 129.3, 128.5, 127.4, 127.0, 126.1, 118.9, 100.0, 39.3; IR (neat): v_{max} (cm⁻¹) 2227, 1605, 1503, 1449, 967; EI-MS *m/z* (relative intensity) 219 (M)⁺ (100), 204 (27), 190 (8), 141 (14), 115 (18), 103 (7), 91 (13), 77 (7); HRMS calcd for C₁₆H₁₃N (M⁺) 219.1048, found 219.1048.

(*E*)-3-(3-Nitrophenyl)-1-phenylpropene (**5r**): ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.05 (m, 2H), 7.56

(d, 1H, *J*=7.6 Hz), 7.45 (t, 1H, *J*=7.6 Hz) 7.37-7.20 (m, 5H), 6.49 (d, 1H, *J*=15.6 Hz), 6.31 (dt, 1H, *J*=15.6, 6.8 Hz), 3.64 (d, 2H, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 136.7, 134.8, 132.3, 129.2, 128.5, 127.4, 127.1, 126.1, 123.4, 121.3, 38.9; IR (neat): v_{max} (cm⁻¹) 1596, 1528, 1345, 971; EI-MS *m/z* (relative intensity) 239 (M)⁺ (100), 222 (68), 192 (78), 178 (22), 165 (18), 115 (37), 91 (23), 77 (10); HRMS calcd for C₁₅H₁₃NO₂ (M⁺) 239.0946, found 239.0923.

(*E*)-3-(1-Naphthyl)-1-phenylpropene (**5s**): ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.13 (m, 12H), 6.47-6.45 (m, 2H), 3.96 (d, 2H, *J*=4.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 137.3, 136.1, 133.8, 131.9, 131.2, 128.7, 128.6, 128.4, 127.0, 126.3, 126.0, 125.8, 125.54, 125.47, 123.9, 36.4; IR (neat): v_{max} (cm⁻¹) 1596, 1492, 1449, 971; EI-MS *m/z* (relative intensity) 244 (M)⁺ (100), 229 (23), 215 (10), 202 (7), 165 (36), 153 (84), 141 (14), 115 (27), 91 (20), 77 (4); HRMS calcd for C₁₉H₁₆ (M⁺) 244.1252, found 244.1246.

(*E*)-3-(2-Naphthyl)-1-phenylpropene (**5t**): ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.78 (m, 3H), 7.68 (s, 1H), 7.48-7.36 (m, 6H), 7.30 (dd, 2H, *J*=7.8, 7.3 Hz), 7.21 (t, 1H, *J*=7.3 Hz), 6.51 (d, 1H, *J*=15.9 Hz), 6.43 (dt, 1H, *J*=15.9, 6.1 Hz), 3.71 (d, 2H, *J*=6.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 137.3, 133.5, 132.0, 131.2, 128.9, 128.4, 127.9, 127.5, 127.4, 127.3, 127.0, 126.6, 126.0, 125.8, 125.2, 39.6; IR (neat): v_{max} (cm⁻¹) 3053, 3022, 1507, 1495, 965, 818, 752, 740, 691; EI-MS *m/z* (relative intensity) 244 (M)⁺ (100), 229 (25), 165 (21), 153 (30), 115 (18), 91 (10); HRMS calcd for C₁₉H₁₆ (M⁺) 244.1252, found 244.1237.

(*E*)-1-Phenyl-3-(thiophen-3-yl)propene (**5v**): ¹H NMR (400 MHz, CDCl₃): δ 7.36-6.97 (m, 8H), 6.45 (d, 1H, *J*=16.0 Hz), 6.35 (dt, 1H, *J*=16.0, 6.4 Hz), 3.55 (d, 2H, *J*=6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 140.4, 137.3, 131.0, 128.4, 128.3, 127.1, 126.0, 125.5, 120.8, 33.9; IR (neat): v_{max} (cm⁻¹) 1654, 1598, 1495, 1447, 963; EI-MS *m/z* (relative intensity) 200 (M)⁺ (100), 185 (23), 167 (18), 123 (13), 115 (25), 97 (15), 91 (8), 77 (6); HRMS calcd for C₁₃H₁₂S (M⁺) 200.0660, found 200.0660.

(*E,E*)-1,5-Diphenylpenta-1,4-diene (**5w**): ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.17 (m, 10H), 6.45 (d, 2H, *J*=16.0 Hz), 6.23 (dt, 2H, *J*=16.0, 6.8 Hz), 3.11 (t, 2H, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 130.9, 128.4, 128.1, 127.0, 126.0, 36.2; IR (neat): v_{max} (cm⁻¹) 1648, 1598, 1493, 1447, 963; EI-MS *m/z* (relative intensity) 220 (M)⁺ (61), 205 (12), 178 (8), 165 (6), 142 (23), 129 (100), 115 (43), 91 (39), 77 (14); HRMS calcd for C₁₇H₁₆ (M⁺) 220.1252, found 220.1247.

(*E*)-1,4-Diphenylpenta-1,4-diene (**5x**): ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, 2H, *J*=8.3 Hz), 7.35-7.25 (m, 7H), 7.19 (t, 1H, *J*=7.8 Hz), 6.47 (d, 1H, *J*=15.9 Hz), 6.30 (dt, 1H, *J*=15.9, 6.6 Hz), 5.43 (s, 1H), 5.15 (s, 1H), 3.40 (d, 2H, *J*=6.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 146.3, 137.4, 131.5, 128.3, 128.2, 127.9, 127.4, 126.9, 125.95, 125.85, 113.2, 38.8; IR (neat): v_{max} (cm⁻¹) 3024, 1493, 1424, 1025, 969, 893, 777, 732, 700, 688; EI-MS *m/z* (relative intensity) 220 (M)⁺ (100), 205 (56), 142 (38), 129 (76), 115 (30), 103 (47), 91 (23), 77 (20); HRMS calcd for C₁₇H₁₆ (M⁺) 220.1252, found 220.1233.

(1*E*,4*E*)-1-Phenyl-1,4-hexadiene (**5y**): ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, 2H, *J*=7.8 Hz), 7.28 (dd, 2H, *J*=7.8, 7.4 Hz), 7.19 (t, 1H, *J*=7.4 Hz), 6.38 (d, 1H, *J*=15.9 Hz), 6.21 (dt, 1H, *J*=15.9, 6.6 Hz), 5.54-5.50 (m, 2H), 2.91-2.87 (m, 2H), 1.72-1.67 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.6, 130.0, 129.1, 128.7, 128.3x2, 126.7, 126.2, 125.8, 36.0, 18.1; IR (neat): v_{max} (cm⁻¹) 3024, 2915, 1494, 1448, 962, 740, 691; EI-MS *m/z* (relative intensity) 158 (M)⁺ (69), 143 (60), 129 (100), 115 (30), 91 (25); HRMS calcd for C₁₂H₁₄ (M⁺) 158.1096, found 158.1083.

(1E,4Z)-1-Phenyl-1,4-hexadiene (**5z**): ¹H NMR (300 MHz, CDCl₃): δ 7.36-7.16 (m, 5H), 6.41 (d, 1H, *J*=15.8 Hz), 6.20 (dt, 1H, *J*=15.8, 6.3 Hz), 5.59 (dtq, 1H, *J*=10.7, 1.4, 6.6 Hz), 5.49 (dtq, 1H, *J*=10.7, 7.0, 1.7 Hz), 2.96 (dddq, 2H, *J*=6.3, 1.4, 7.0, 0.8 Hz), 1.67 (ddt, 3H, *J*=6.6, 1.7, 0.8 Hz); ¹³C NMR (75.4 MHz, CDCl₃): δ 137.9, 130.0, 129.0, 128.5, 127.6, 126.9, 126.1, 125.3, 30.3, 12.7; IR (neat): v_{max} (cm⁻¹) 3024, 2917, 1683, 1648, 1600, 1493, 1447, 1436, 1401, 963, 739, 691; EI-MS *m/z* (relative intensity) 158 (M)⁺ (77), 143 (56), 129 (100), 128 (54), 115 (31), 91 (24), 77 (11); HRMS calcd for C₁₂H₁₄ (M⁺) 158.1096, found 158.1086.

(*E*)-1,3-Diphenyl-2-butene (**14**-*E*)¹: ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.18 (m, 10H), 5.97 (tq, 1H, *J*=7.2, 1.2 Hz), 3.57 (d, 2H, *J*=7.2 Hz), 2.14 (d, 3H, *J*=1.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 140.9, 128.4, 128.3, 128.1, 126.6, 125.9, 125.6, 35.0, 16.0; IR (neat): v_{max} (cm⁻¹) 1600, 1493, 1453; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 193 (76), 178 (22), 165 (7), 130 (18), 115 (62), 91 (26), 77 (8); HRMS calcd for C₁₆H₁₆ (M⁺) 208.1252, found 208.1247.

(*Z*)-1,3-Diphenyl-2-butene (**14**-*Z*)¹: ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.13 (m, 10H), 5.65 (tq, 1H, *J*=7.2, 1.6 Hz), 3.32 (d, 2H, *J*=7.2 Hz), 2.08 (d, 3H, *J*=1.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 141.4, 137.3, 128.3, 128.2, 128.1, 127.9, 126.6, 125.7, 125.6, 35.3, 25.7; IR (neat): v_{max} (cm⁻¹) 1600, 1493, 1453; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 193 (75), 178 (21), 165 (8), 130 (18), 115 (62), 91 (25), 77 (8); HRMS calcd for C₁₆H₁₆ (M⁺) 208.1252, found 208.1237.

(*E*)-1,3-Diphenyl-1-butene (**15**): ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.16 (m, 10H), 6.42 (d, 1H, *J*=16.0 Hz), 6.37 (dd, 1H, *J*=16.0, 5.2 Hz), 3.63 (dq, 1H, *J*=5.2, 7.2 Hz), 1.46 (d, 3H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 137.5, 135.1, 128.43, 128.39, 127.2, 127.0, 126.13, 126.06, 42.6, 21.3; IR (neat): v_{max} (cm⁻¹) 1600, 1492, 1449, 963; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 193 (84), 178 (27), 154 (42), 130 (20), 115 (71), 91 (28), 77 (11); HRMS calcd for C₁₆H₁₆ (M⁺) 208.1252, found 208.1263.

(*E*)-1,3,3-Triphenylpropene (**16**): ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.17 (m, 15H), 6.67 (dd, 1H, *J*=15.6, 7.6 Hz), 6.34 (d, 1H, *J*=15.6 Hz), 4.89 (d, 1H, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 137.2, 132.5, 131.3, 128.6, 128.42, 128.39, 127.2, 126.3, 126.2, 54.2; IR (neat): v_{max} (cm⁻¹) 1598, 1492, 1445, 969; EI-MS *m/z* (relative intensity) 270 (M)⁺ (100), 192 (83), 179 (40), 165 (25), 152 (7), 115 (24), 91 (16), 77 (4); HRMS calcd for C₂₁H₁₈ (M⁺) 270.1409, found 270.1413.

2-Methyl-1,3-diphenylpropene (*E/Z* mixture) (17)²: ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.16 (m, 10H), [17-*E* is found at δ 6.37 (d, 0.7H, *J*=1.2 Hz), 3.47 (s, 1.4H), 1.80 (d, 2.1H, *J*=1.2 Hz)], [17-*Z* is

found at δ 6.51 (d, 0.3H, J=1.6 Hz), 3.60 (s, 0.6H), 1.81 (d, 0.9H, J=1.6 Hz)].

1-(2-Propenyl)naphthalene (**2s**): ¹H NMR (400 MHz, CDCl₃): δ 8.01-7.30 (m, 7H), 6.10 (ddt, 1H, J=16.8, 10.8, 6.4 Hz), 5.11-5.05 (m, 2H), 3.82 (d, 2H, J=6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 136.9, 136.0, 133.7, 131.9, 128.6, 126.9, 126.2, 125.7, 125.5, 125.4, 123.9, 116.1, 37.3; IR (neat): v_{max} (cm⁻¹) 1596, 1509, 1395, 911; EI-MS *m/z* (relative intensity) 168 (M)⁺ (100), 153 (64), 141 (19), 115 (17), 83 (10), 63 (4); HRMS calcd for C₁₃H₁₂ (M⁺) 168.0939, found 168.0937.

1-(2-Butenyl)naphthalene (26) and 1-(1-methyl-2-propenyl)naphthalene (27) (26-*E*/ 26-*Z*/ 27 mixture)³: ¹H NMR (400 MHz, CDCl₃): δ 8.12-7.30 (m, 7H), [26-*E* is found at δ 5.76–5.68 (m, 0.55H), 5.57-5.48 (m, 0.55H), 3.75 (d, 1.10H, *J*=6.0 Hz), 1.66 (ddt, 1.65H, J=7.0, 1.6, 1.6 Hz)], [26-*Z* is found at δ 5.65–5.63 (m, 0.05H), 3.82 (d, 0.10H, *J*=6.0 Hz), 1.80 (d, 0.15H, *J*=5.2 Hz)], [27 is found at δ 6.15 (ddd, 0.4H, *J*=5.6, 10.0, 17.6 Hz), 5.12 (ddd, 0.4H, *J*=1.6, 1.6, 17.6 Hz), 5.11 (ddd, 0.4H, *J*=1.6, 1.6, 10.0 Hz), 4.29 (dddq, 0.4H, *J*=1.6, 1.6, 5.6, 7.2 Hz), 1.50 (d, 1.2H, *J*=7.2 Hz)].

1-(3-Methyl-2-butenyl)naphthalene (**28**): ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, 1H, *J*=8.0 Hz), 7.82 (d, 1H, *J*=7.6 Hz), 7.68 (d, 1H, *J*=8.0 Hz), 7.50-7.30 (m, 4H), 5.39 (t, 1H, *J*=6.8 Hz), 3.76 (d, 2H, *J*=6.8 Hz), 1.78 (s, 3H), 1.75(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 133.8, 132.6, 132.0, 128.6, 126.5, 125.6, 125.55, 125.49, 125.3, 123.9, 122.8, 31.8, 25.8, 18.0; IR (neat): v_{max} (cm⁻¹) 1598, 1509, 1449; EI-MS *m*/*z* (relative intensity) 196 (M)⁺ (74), 181 (100), 165 (36), 153 (31), 141 (17), 128 (25), 115 (11), 89 (4), 83 (4); HRMS calcd for C₁₅H₁₆ (M⁺) 196.1252, found 196.1228.

1-(1,1-Dimethyl-2-propenyl)naphthalene (**29**): ¹H NMR (400 MHz, CDCl₃): δ 8.37-8.34 (m, 1H), 7.85-7.83 (m, 1H), 7.74 (d, 1H, *J*=8.1 Hz), 7.53 (d, 1H, *J*=7.3 Hz), 7.44-7.39 (m, 3H), 6.28 (dd, 1H, *J*=10.7, 17.6 Hz), 5.09 (d, 1H, *J*=10.7 Hz), 5.06 (d, 1H, *J*=17.6 Hz), 1.63 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 148.8, 143.6, 134.5, 131.1, 128.7, 127.4, 127.3, 124.8, 124.5, 124.0, 123.2, 111.2, 41.9, 29.9; IR (neat): v_{max} (cm⁻¹) 2966, 1509, 1396, 1360, 1076, 996, 908, 801, 775, 662; EI-MS *m/z* (relative intensity) 196 (M)⁺ (45), 181 (100), 165 (43), 153 (39), 141 (11), 128 (8), 115 (5), 89 (6), 83 (7); HRMS calcd for C₁₅H₁₆ (M⁺) 196.1252, found 196.1237.

1-(2-Methyl-2-propenyl)naphthalene (**30**): ¹H NMR (400 MHz, CDCl₃): δ 8.01-7.32 (m, 7H), 4.85 (s, 1H), 4.62 (s, 1H), 3.77 (s, 2H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 135.6, 133.7, 132.3, 128.5, 127.1, 126.9, 125.6, 125.38, 125.36, 124.2, 112.2, 41.5, 22.9; IR (neat): v_{max} (cm⁻¹) 1596, 1509, 1443, 890; EI-MS *m/z* (relative intensity) 182 (M)⁺ (61), 167 (100), 152 (14), 141 (24), 115 (16); HRMS calcd for C₁₄H₁₄ (M⁺) 182.1096, found 182.1077.

1-(2-Cyclohexenyl)naphthalene (**31**): ¹H NMR (300 MHz, CDCl₃): δ 8.14 (d, 1H, *J*=8.2 Hz), 7.87 (d, 1H, *J*=7.4 Hz), 7.72 (d, 1H, *J*=7.7 Hz), 7.54-7.39 (m, 4H), 6.02 (ddd, 1H, *J*=9.9, 6.5, 3.2 Hz), 5.84 (dd, 1H, *J*=9.9, 1.9 Hz), 4.25-4.23 (m, 1H), 2.21-2.15 (m, 3H), 1.77-1.68 (m, 3H); ¹³C NMR (75.4 MHz, CDCl₃): δ 142.0, 134.1, 131.5, 130.3, 129.0, 128.9, 126.7, 125.8, 125.5, 125.4, 125.1, 123.5, 36.9, 30.8, 25.1, 20.8; IR (neat): v_{max} (cm⁻¹) 3018, 2927, 2858, 2833, 1596, 1509, 1445, 1432, 1393, 882, 795, 775, 760, 724; EI-MS *m/z* (relative intensity) 208 (M)⁺ (100), 179 (46), 165 (59), 152 (14),

128 (15), 89 (11); HRMS calcd for $C_{16}H_{16}$ (M⁺) 208.1252, found 208.1238.

References

1 S. Ide, H. Nanbu, T. Kuroki and T. Ikemura, J. Anal. Appl. Pyrol. 1984, 6, 69.

2 (a) C. L. Bumgardner and H. Iwerks, J. Am. Chem. Soc. 1966, **88**, 5518. (b) N. Fujiwara and Y. Yamamoto, J. Org. Chem. 1999, **64**, 4095.

3 (a) B. M. Trost and M. D. Spagnol, J. Chem. Soc. Perkin Trans. 1 1995, 2083; (b) Y. Obara Y. Tsuji,
M. Kobayashi and T. Kawamura, J. Org. Chem. 1995, 60, 4647. (c) D. Seomoon, K. Lee, H. Kim and P. H. Lee, Chem. Eur. J. 2007, 13, 5197.