Electronic Supplementary Information

for

Gold-Catalysed Allyllic Alkylation of Aromatic and Heteroaromatic Compounds with Allylic Alcohols

Weidong Rao and Philip Wai Hong Chan*

Division of Chemistry and Biological Chemistry, School of Physical and

Mathematical Sciences, Nanyang Technological University, Singapore 637371,

Singapore

General procedure for comparing the catalytic activity of a series of Lewis and Brønsted acid catalysts for the allylation of 1a with 21: To a round bottom flask containing 1a (0.3 mmol), 2l (1.2 mmol) and 4Å molecular sieves (50 mg) in 2 mL of CH_2Cl_2 , was added 5 mol% of Lewis or Brønsted acid catalyst under an N_2 atmosphere. The mixture was stirred at room temperature and monitored by TLC analysis. On completion, the reaction mixture was filtered through Celite[®] and washed with CH_2Cl_2 (20 mL). The solvent was removed under reduced pressure and the residue was subjected to purification by flash column chromatography to give 3r with the yields reported in Table S1.

Table S1. Comparison of Lewis and Brønsted acid catalysts for the allylation of 1a with $2l^a$

Me Me _	2I catalyst (5 mol%), CH ₂ Cl ₂ , 4 Å MS, r.t.	OH Me O Ph
1a		3r
entry	catalyst	yield $(\%)^b$
1	AuCl ₃	98
2	InCl ₃	C
3	Cu(OTf) ₂	C
-	()=	
4	NaAlCl ₄	C
4 5	NaAlCl ₄ ZnCl ₂	_c _c
4 5 6	NaAlCl ₄ ZnCl ₂ BF ₃ .Et ₂ .O	_ ^c _ ^c 65
4 5 6 7	NaAlCl ₄ ZnCl ₂ BF ₃ .Et ₂ .O TfOH	_c _c 65 88

^{*a*} All reactions were performed at r.t. for 1.5 h and 4 Å MS with a catalyst: **1a**: **2l** ratio = 1: 20: 80. ^{*b*} Isolated yields. ^{*c*} No reaction.

Figure S1. ¹H and ¹³C NMR spectra of (E)-4-(1,3-bis(4-bromophenyl)allyl)-2,6-dimethylphenol (**3a**)

Figure S2. ¹H and ¹³C NMR spectra of (E)-4-(1,3-di-*p*-tolylallyl)-2,6-dimethylphenol (3b)

Figure S3. ¹H and ¹³C NMR spectra of (*E*)-4-(1,3-diphenylallyl)-2,6-dimethylphenol (**3c**)

Figure S4. ¹H and ¹³C NMR spectra of (E)-4-(1,3-bis(4-bromophenyl)allyl)-2-methylphenol (3d)

Figure S5. ¹H and ¹³C NMR spectra of (E)-4-(1,3-di-*p*-tolylallyl)-2-methylphenol (3e)

Figure S6. ¹H and ¹³C NMR spectra of (*E*)-4,4'-(3-(4-(allyloxy)phenyl)prop-1ene-1,3-diyl)bis(bromobenzene) (**3f**)

Figure S7. ¹H and ¹³C NMR spectra of (*E*)-4,4'-(3-(4-methoxyphenyl)prop-1-ene-1,3diyl)bis(bromobenzene) (**3g**)

Figure S8. ¹H and ¹³C NMR spectra of (*E*)-5-(1,3-bis(4-bromophenyl)allyl)benzo[d] [1,3]dioxole (**3h**)

Figure S9. ¹H and ¹³C NMR spectra of (E)-1-(1,3-bis(4-bromophenyl)allyl)-2,4-dimethylbenzene (**3i**)

Figure S10. ¹H and ¹³C NMR spectra of (*E*)-2,6-dimethyl-4-(4-phenylbut-3-en-2-yl) phenol (**3j**)

Figure S11. ¹H and ¹³C NMR spectra of (*E*)-4-(1,5-diphenylpent-1-en-3-yl)-2-methyl phenol (3k)

Figure S12. ¹H and ¹³C NMR spectra of (E)-2-methyl-4-(1-phenylhexa-1,5-dien-3-yl) phenol (**3l**)

Figure S13. ¹H and ¹³C NMR spectra of 4-cinnamyl-2-methylphenol (3m)

Figure S14. ¹H and ¹³C NMR spectra of (E)-4-(2-benzylideneoctyl)-2-methylphenol (3n)

Figure S15. ¹H and ¹³C NMR spectra of (E)-4-(3-(4-bromophenyl)allyl)-2,6-dimethyl phenol (**30**)

Figure S16. ¹H and ¹³C NMR spectra of 4-(3,3-diphenylallyl)-2,6-dimethylphenol (**3p**)

Figure S17. ¹H and ¹³C NMR spectra of 4-{(3,4-dihydronaphthalen-2-yl)(*p*-tolyl) methyl}-2,6-dimethylphenol (**3q**)

Figure S18. ¹H and ¹³C NMR spectra of 2-({4-Hydroxy-3,5-dimethylphenyl}(phenyl) methyl)cyclohex-2-enone (**3r**)

Figure S19. ¹H and ¹³C NMR spectra of (E)-2-(1,3-bis(4-bromophenyl)allyl)-1H-pyrrole (**3s**)

Figure S20. ¹H and ¹³C NMR spectra of (E)-2-(1,3-di-*p*-tolylallyl)-1H-pyrrole (3t)

Figure S21. ¹H and ¹³C NMR spectra of (E)-2-(1,3-diphenylallyl)-1H-pyrrole (3u)

Figure S22. ¹H and ¹³C NMR spectra of (E)-2-(1,3-bis(4-bromophenyl)allyl)furan (3v)

Figure S23. ¹H and ¹³C NMR spectra of (E)-3-(1,3-bis(4-bromophenyl)allyl)-1methyl-1H-i ndole (**3w**)

Figure S24. ¹H and ¹³C NMR spectra of (*E*)-2-(1,3-bis(4-bromophenyl)allyl)-4-methylphenol (3x)

