-ELECTRONIC SUPPORTING INFORMATION (ESI)-

Nucleophilic reactivities of benzenesulfonyl-substituted carbanions

Florian Seeliger and Herbert Mayr*

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München,

Butenandtstr. 5-13, 81377 München, Germany

herbert.mayr@cup.uni-muenchen.de

Table of contents

Kinetic experiments	2
Reactions of 1a ⁻	2
Reactions of 1b ⁻	7
Reactions of 1c ⁻	12
Reactions of 1d ⁻	17
NMR spectra	21
7	21
8	22
9	23
10	24
11	25
12	26
13	27

Kinetic experiments

The temperature of the solutions during all kinetic studies was kept constant ($20 \pm 0.1^{\circ}$ C) by using a circulating bath thermostat. Dry DMSO for kinetics was purchased (< 50 ppm H₂O). For the evaluation of kinetics the stopped-flow spectrophotometer systems Hi-Tech SF-61DX2 or Applied Photophysics SX.18MV-R stopped-flow reaction analyzer were used. Rate constants k_{obs} (s⁻¹) were obtained by fitting the single exponential $A_t = A_0 \exp(-k_{obs}t) + C$ to the observed time-dependent electrophile absorbance (averaged from at least 3 kinetic runs for each nucleophile concentration). For the stopped-flow experiments 2 stock solutions were used: A solution of the electrophile in DMSO and a solution of the carbanion, which was either used as potassium salt or generated by the deprotonation of the CH acid with 1.05 equivalents of base.

Reactions of $1a^{-}(X = m-CI)$

Reaction	of 1a ⁻ with	n 2a (DMS	SO, P_4 - ^t Bu	ı, 20 °C, s	topped-flo	ow, 524 m	m)	
	[E	С] ₀ / м		[C ⁻]() / М		$k_{\rm obs}$ / s ⁻¹	
	1.28	3×10^{-5}		2.91 >	$< 10^{-4}$		1.16	
	1.28	3×10^{-5}		6.55 >	$< 10^{-4}$		4.71	
	1.28	3×10^{-5}		1.02 >	$< 10^{-3}$		8.87	
	1.28	3×10^{-5}		1.31 >	< 10 ⁻³		1.10×10	1
k / c-1	12 10 8 6 6 4 2 0	y = 98 R ² =	76x - 1.65 = 0.995					◆
	0.0E+00	2.0E-04	4.0E-04	6.0E-04	8.0E-04	1.0E-03	1.2E-03	1.4E-03
				[C ⁻] / m	nol × L^{-1}			

$$k_2 = (9.88 \pm 0.50) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$$

Reaction of **1a**⁻ with **2a** (DMSO, KO^tBu / 18-crown-6, 20 °C, stopped-flow, 524 nm)

 $k_2 = (9.74 \pm 0.57) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$

Reaction of **1a**⁻ with **2b** (DMSO, P₄-^{*t*}Bu, 20 °C, stopped-flow, 500 nm)

	11 m = 6 (2		a, = 0 0, stopp a n	e, e e e minj	
	[Е] ₀ / м		[С ⁻] ₀ / м	$k_{\rm obs}$ / s	-1
	1.76×10^{-1}	5	$2.58 imes 10^{-4}$	1.42	
	1.76×10^{-1}	5	$5.17 imes 10^{-4}$	6.47	
	1.76×10^{-1}	5	8.27×10^{-4}	1.40 × 1	10^1
	1.76×10^{-1}	5	1.34×10^{-3}	2.71 × 1	10^{1}
	1.76×10^{-1}	5	1.76×10^{-3}	3.50 × 1	10^{1}
40 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30	- y = 229 - R ² = -	978x - 4.81 = 0.997	•	•	
0.0E	+00	5.0E-04	1.0E-03	1.5E-03	2.0E-03
			[C ⁻] / mol × L ⁻¹		

$$k_2 = (2.30 \pm 0.07) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$$

Reaction of 1a⁻ with 6a (DMSO, KO^tBu, 20 °C, stopped-flow, 500 nm)

Reaction of 1a⁻ with 4a (DMSO, KO^tBu, 20 °C, stopped-flow, 500 nm)

 $k_2 = (6.75 \pm 0.23) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1a⁻ with 5a (DMSO, KO^tBu, 18-crown-6, 20 °C, stopped-flow, 500 nm)

 $k_2 = (1.54 \pm 0.09) \times 10^5 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1a⁻ with 6b (DMSO, KO^tBu, 20 °C, stopped-flow, 500 nm)

 $k_2 = (4.13 \pm 0.10) \times 10^5 \text{ M}^{-1} \text{s}^{-1}$

Fig. S1 Plot of log k_2 (DMSO) versus electrophilicity parameters *E* for the reactions of carbanion $1a^-$ with the quinone methides 2 and Michael acceptors 4-6.

Reactions of $1b^-(X = p-CF_3)$

cuellon			$, 1_2$ Du, 20	c, stoppe	a 110 <i>m</i> , 521	minj	
	[E]() / М		[C ⁻] ₀ / M		$k_{\rm obs}$ / s ⁻¹	
	1.29	$\times 10^{-5}$		1.91×10^{-4}		2.89 × 10	-1
	1.29	$\times 10^{-5}$	-	3.81×10^{-4}		6.55 × 10	-1
	1.29	$\times 10^{-5}$	-	5.72×10^{-4}		1.03	
	1.29	$\times 10^{-5}$	(5.99×10^{-4}		1.28	
	1.29	$\times 10^{-5}$		1.08×10^{-3}		2.00	
k _{obs} / s ⁻¹	2.5 2.0 1.5 1.0 0.5 0.0	y = 192 R ²	28x - 0.076 = 1.0				
	0.0E+00	2.0E-04	4.0E-04	6.0E-04	8.0E-04	1.0E-03	1.2E-03
			[C_] mol × L_	1		

Reaction of **1b**⁻ with **2a** (DMSO, P₂-^{*t*}Bu, 20 °C, stopped-flow, 524 nm)

$$k_2 = (1.93 \pm 0.01) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$$

Reaction of **1b**⁻ with **2a** (DMSO, KO^tBu, 20 °C, stopped-flow, 510 nm)

 $k_2 = (1.98 \pm 0.05) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$

[C⁻]₀ / M $k_{\rm obs}$ / s⁻ [E]₀ / M 1.35×10^{-5} 1.91×10^{-4} 5.60×10^{-1} 1.35×10^{-5} 3.81×10^{-4} 1.27 1.35×10^{-5} 5.72×10^{-4} 1.94 1.35×10^{-5} 6.99×10^{-4} 2.44 1.35×10^{-5} 1.08×10^{-3} 3.79 4 y = 3633x - 0.124k _{obs} / s⁻¹ 3 $R^2 = 1.0$ 2 1 0 0.0E+00 4.0E-04 2.0E-04 6.0E-04 8.0E-04 1.0E-03 1.2E-03 $[C^-]$ mol × L^{-1}

Reaction of **1b**⁻ with **2b** (DMSO, P₂-^{*t*}Bu, 20 °C, stopped-flow, 500 nm)

Reaction of 1b⁻ with 2b (DMSO, KO'Bu, 20 °C, stopped-flow, 510 nm)

 $k_2 = (3.72 \pm 0.19) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1b⁻ with 6a (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

 $k_2 = (1.34 \pm 0.03) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1b⁻ with 4a (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

 $k_2 = (1.86 \pm 0.07) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1b⁻ with 5a (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

 $k_2 = (3.85 \pm 0.13) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1b⁻ with 6b (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

 $k_2 = (6.09 \pm 0.48) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1b⁻ with 5b (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

Reaction of 1b⁻ with 2e (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

$$k_2 = (3.87 \pm 0.14) \times 10^5 \text{ M}^{-1} \text{s}^{-1}$$

 $k_2 = (1.65 \pm 0.04) \times 10^5 \text{ M}^{-1} \text{s}^{-1}$

Reactions of $1c^{-}(X = p-CN)$

		- , ,		/	
[E]o) / М	[C ⁻]	0 / M	$k_{\rm obs}$ / s	-1
1.93	$\times 10^{-5}$	1.92	$\times 10^{-4}$	8.29 × 1	0^{-2}
1.93	$\times 10^{-5}$	4.62	$\times 10^{-4}$	2.20 × 1	0^{-1}
1.93	$\times 10^{-5}$	7.70	$\times 10^{-4}$	3.70 × 1	0^{-1}
1.93	$\times 10^{-5}$	1.31	$\times 10^{-3}$	6.31 × 1	0^{-1}
1.93	$\times 10^{-5}$	1.92	$\times 10^{-3}$	9.32 × 1	0^{-1}
$ \begin{array}{c} 1.0\\ 0.8\\ 0.6\\ \frac{8}{0}\\ 0.2\\ 0.0\\ \end{array} $	y = 490x - 0.0 R ² = 1.0	080	•		
0.0E+00	5.0E-04	1.0E-03	1.5E-03	2.0E-03	2.5E-0
		[C ⁻] m	ol × L ^{−1}		

Reaction of $1c^{-}$ with 2a (DMSO, $P_2^{-t}Bu$, 20 °C, stopped-flow, 524 nm)

Reaction of 1c⁻ with 2b (DMSO, P₂-^tBu, 20 °C, stopped-flow, 500 nm)

 $k_2 = (9.77 \pm 0.02) \times 10^2 \text{ M}^{-1} \text{s}^{-1}$

 $k_2 = (4.90 \pm 0.02) \times 10^2 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1c⁻ with 2b (DMSO, KO^tBu, 20 °C, stopped-flow, 500 nm)

 $k_2 = (1.04 \pm 0.01) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1c⁻ with 6a (DMSO, KO^tBu, 18-K-6, 20 °C, stopped-flow, 500 nm)

$$k_2 = (5.64 \pm 0.23) \times 10^3 \text{ M}^{-1} \text{s}^{-1}$$

Reaction of 1c⁻ with 6a (DMSO, KO^tBu, 20 °C, stopped-flow, 525 nm)

Reaction of 1c⁻ with 4a (DMSO, KO^tBu, 20 °C, stopped-flow, 500 nm)

$$k_2 = (1.04 \pm 0.05) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$$

Reaction of 1c⁻ with 5a (DMSO, Verkade's base, 20 °C, stopped-flow, 495 nm)

 $k_2 = (1.47 \pm 0.09) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1c⁻ with 5a (DMSO, KO^tBu, 20 °C, stopped-flow, 500 nm)

$$k_2 = (1.51 \pm 0.04) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$$

Reaction of 1c⁻ with 6b (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

 $k_2 = (2.54 \pm 0.05) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1c⁻ with 5b (DMSO, Verkade's base, 20 °C, stopped-flow, 500 nm)

 $k_2 = (6.00 \pm 0.08) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1c⁻ with 2e (DMSO, KO^tBu, 20 °C, stopped-flow, 533 nm)

$k_2 = (1.84 \pm 0.04) \times 10^5 \text{ M}^{-1} \text{s}^{-1}$

Reactions of $1d^{-}(X = p-NO_2)$

 $k_2 = (6.71 \pm 0.06) \times 10^1 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1d⁻ with 2d (DMSO, Verkade's base, 20 °C, stopped-flow, 400 nm)

 $k_2 = (1.10 \pm 0.01) \times 10^2 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1d⁻ with 6c (DMSO, Verkade's base, 20 °C, stopped-flow, 400 nm)

 $k_2 = (2.34 \pm 0.01) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1d⁻ with 5c (DMSO, Verkade's base, 20 °C, stopped-flow, 400 nm)

 $k_2 = (5.53 \pm 0.22) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1d⁻ with 6d (DMSO, Verkade's base, 20 °C, stopped-flow, 350 nm)

 $k_2 = (9.27 \pm 0.41) \times 10^4 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1d⁻ with 3b (DMSO, Verkade's base, 20 °C, stopped-flow, 640 nm)

 $k_2 = (2.85 \pm 0.04) \times 10^6 \text{ M}^{-1} \text{s}^{-1}$

Reaction of 1d⁻ with 3a (DMSO, Verkade's base, 20 °C, stopped-flow, 640 nm)

 $k_2 = (6.58 \pm 1.31) \times 10^6 \text{ M}^{-1} \text{s}^{-1}$

NMR spectra

7

9

13