A novel heterotrifunctional peptide-based cross-linking reagent for facile access to bioconjugates. Applications to peptide fluorescent labelling and immobilisation

Guillaume Clavé,^{a, b} Hervé Boutal,^c Antoine Hoang,^d François Perraut,^e Hervé Volland,^c Pierre-Yves Renard^{*a, b, f} and Anthony Romieu^{*a, b}

- ^a Equipe de Chimie Bio-Organique, COBRA CNRS UMR 6014, rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France. E-mail: <u>pierre-yves.renard@univ-rouen.fr</u> or <u>anthony.romieu@univ-rouen.fr</u>; Fax: +33 2-35-52-29-59
- ^b Université de Rouen, Place Emile Blondel, 76821 Mont-Saint-Aignan, France
- ^c CEA, iBiTecS, Laboratoire d'Etudes et de Recherches en Immuno-analyse, Gif sur Yvette, F-91191, France
- ^d Laboratoire de Fonctionnalisation Chimique de Microcomposants, Commissariat à l'Energie Atomique, 17 rue des Martyrs, F-38054 Grenoble, France
- ^e Laboratoire d'Imagerie et des Systèmes d'Acquisition, Commissariat à l'Energie Atomique, 17 rue des Martyrs, F-38054 Grenoble, France

^{*f*} Institut Universitaire de France

Supporting Information

Experimental : Detailed synthetic procedures for compounds 4, 7, 8, 9, 10, 11, 12, 13 and	A.3
¹ H NMR spectrum of A recorded in CDCl ₃ .	10
¹³ C NMR spectrum of A recorded in CDCl ₃	11
ESI-MS spectrum of A recorded in the negative mode.	11
ESI-MS spectrum of A recorded in the positive mode.	12
¹ H NMR spectrum of B recorded in CDCl ₃ .	13
¹³ C NMR spectrum of B recorded in CDCl ₃ .	14
ESI-MS spectrum of B recorded in the positive mode	14
¹ H NMR spectrum of C recorded in D ₂ O	15
¹³ C NMR spectrum of C recorded in D ₂ O	16
ESI-MS spectrum of C recorded in the positive mode	16
¹ H NMR spectrum of 5 recorded in CDCl ₃	17
¹³ C NMR spectrum of 5 recorded in CDCl ₃	18
ESI-MS spectrum of 5 recorded in the positive mode.	18
RP-HPLC elution profile of 5 (system A)	19
ESI-MS spectrum of 19 recorded in the negative mode. ^a	20
RP-HPLC elution profile of 19 (system B). ^a	21
UV-visible absorption of 19 in deionised water at 25° C (concentration = 4.2 μ M)	21
ESI-MS spectrum of fluorescent substance P-tripod 23 recorded in the positive mode. ^a	22

Experimental : Detailed synthetic procedures for compounds 4, 7, 8, 9, 10, 11, 12, 13 and A

2-(2-(2-Azidoethoxy)ethoxy)ethanol (7)¹. 2-(2-(2-Chloroethoxy)ethoxy)ethanol **6** (1.29 mL, 8.9 mmol) was added to a suspension of NaN₃ (0.70 g, 10.7 mmol) and NaI (0.14 g, 0.93 mmol) in dry EtOH. The resulting yellow mixture was refluxed for 5 days under an argon atmosphere. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 9 : 1, v/v). The mixture was filtered over Celite[®] 545 to remove sodium salts and evaporated to dryness. The resulting oily residue was dissolved in CH₂Cl₂ (*ca.* 10 mL) and stored at 4 °C for 1 h. After filtration over a cotton bowl and concentration, 1.8 g (10.7 mmol) of compound **7** was obtained as colorless oil (quantitative yield). *R*_f (CH₂Cl₂-MeOH, 9 : 1, v/v) 0.69; IR (neat): v_{max} 935, 1118, 1287, 1346, 1453, 2110, 2874, 2915, 3390 (broad) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.63 (t, *J* = 6.0 Hz, 1H, OH), 3.43 (t, *J* = 4.9 Hz, 2H), 3.61-3.77 (m, 10H).

(2-(2-Azidoethoxy)ethoxy)acetic acid (8)². 2-(2-(2-Azidoethoxy)ethoxy)ethanol 7 (1.56 g, 8.9 mmol) was dissolved in acetone (90 mL) and the resulting solution was cooled to 4 °C. Freshly prepared 3 M Jones' reagent (8.9 mL) was added dropwise (a green precipitate immediately formed) and the resulting reaction mixture was stirred at room temperature for 1 h. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 9 : 1, v/v) and quenched by addition of propan-2-ol (*ca.* 4 mL). After 15 min, further amount of acetone (100 mL) was added and the green precipitate of Cr(III) salts was removed by filtration over Celite[®] 545. The filtrate was evaporated to dryness. The resulting oily residue was immediately purified by chromatography on a silica gel column with a step gradient of MeOH (0-5%) in CH₂Cl₂ as the mobile phase, giving 1.53 g (8.1 mmol) of carboxylic acid **8** as a yellow oil (yield 91%). *R*_f (CH₂Cl₂-MeOH, 9 : 1, v/v) 0.23; ¹H NMR (300 MHz, CDCl₃): δ 3.43 (t, *J* = 4.9 Hz, 2H), 3.66-3.80 (m, 6H), 4.19 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃): δ 50.7, 68.6, 70.2, 70.6, 71.4, 174.2.

(2-(2-Aminoethoxy)ethoxy)acetic acid (9)³. (2-(2-Azidoethoxy)ethoxy)acetic acid 8 (1.53 g, 8.2 mmol) was dissolved in EtOH (150 mL) and the solution was cooled to 4 °C. Pd-C (0.32 g, 10% Pd) was added and the resulting reaction mixture was stirred at room temperature for 12 h under an H₂ atmosphere. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 8 : 2, v/v) and the mixture was filtered over Celite[®] 545 to remove Pd-C. The filtrate was evaporated to dryness and the resulting oily residue was dried under vacuum to give 1.3 g (8.2 mmol) of amino acid 9 as a yellow oil (quantitative yield). $R_{\rm f}$ (CH₂Cl₂-MeOH, 8 : 2, v/v) 0.0; Spectroscopic data are identical to that reported in the literature.

 $(10)^4$. (2-(2-(tert-Butyloxycarbonyl)aminoethoxy)ethoxy)acetic (2 - (2 acid Aminoethoxy)ethoxy)acetic acid 9 (0.7 g, 4.3 mmol) was dissolved in a mixture of THF-H₂O (2 : 1, v/v, 15 mL). Freshly prepared 2 M aq. NaOH solution (6.5 mL) was added and the solution was cooled to 4 °C. Boc₂O (1.4 g, 6.4 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 7 : 3, v/v) and acidified by adding 1 M aq. KHSO₄ solution (*ca.* 3.5 mL). The mixture was evaporated close to dryness. H₂O (30 mL) was added and the solution was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic extracts were dried over Na₂SO₄. filtrated and evaporated to dryness. The resulting oily residue was purified by chromatography on a silica gel column with a step gradient of MeOH (0-3%) in CH₂Cl₂ as the mobile phase, giving 0.71 g (2.7 mmol, yield 63%) of protected amino acid 10 as a colorless oil. $R_{\rm f}$ (CH₂Cl₂-MeOH, 7 : 3, v/v) 0.21; ¹H NMR (300 MHz, CDCl₃): δ 1.44 (s, 9H), 3.34 (bm, 2H), 3.50-3.77 (m, 6H), 4.17 (s, 2H), 4.97, (bs, 1H, NH).

(2-(2-Aminoethoxy)ethoxy)acetic acid methyl ester (11). (2-(2-Aminoethoxy)ethoxy)acetic acid 9 (0.70 g, 3.35 mmol) was suspended in 2,2-dimethoxypropane (30.9 mL) and 37% HCl (3.35 mL) was added. The resulting reaction mixture was stirred at room temperature for 1 h. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH-TEA, 80 : 20 : 2, v/v/v) and the mixture was evaporated to dryness. Deionised water (10 mL) was added and the resulting aq. solution was lyophilised thrice to give 714 mg (3.35 mmol) of methyl ester 11 as a yellow oil (quantitative yield). This compound was used in the next step without further purification. $R_{\rm f}$ (CH₂Cl₂-MeOH-TEA, 80 : 20 : 2, v/v/v) 0.46; ¹H NMR (300 MHz, CD₃CN + 5% D₂O): δ 3.08 (t, J = 5.3 Hz, 2H), 3.56-3.76 (m, 11H), 4.13 (s, 2H); MS (ESI+): m/z 178.20 [M + H]⁺, calcd for C₇H₁₅NO₄ 177.20.

Boc-protected amino-PEG-acid spacer (A). mixture of (2-(2-(tert-А butyloxycarbonyl)aminoethoxy)ethoxy)acetic acid 10 (0.15 g, 0.83 mmol) and (2-(2aminoethoxy)ethoxy)acetic acid methyl ester 11 (0.23 g, 0.87 mmol) was dissolved in dry CH₃CN. DIEA (0.44 mL, 2.5 mmol) and BOP reagent (0.37 g, 0.83 mmol) were sequentially added and the resulting reaction mixture was stirred at room temperature overnight under an argon atmosphere. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 8 : 2, v/v) and the mixture was evaporated to dryness. Thereafter, the resulting residue was taken up in ethyl acetate, washed with 10% aq. citric acid, sat. aq. NaHCO₃, brine, dried over Na₂SO₄, filtrated and evaporated to dryness. The orange oily residue was dissolved in MeOH (5 mL) and the solution was cooled to 4 °C. 1 M aq. LiOH (0.83 mL) was added and the reaction mixture was stirred at room temperature for 30 min. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 8 : 2, v/v) and acidified with 1 M aq. KHSO₄ solution (*ca.* 1 mL). The solution was evaporated to dryness without warming and the resulting residue was purified by chromatography on a silica gel column with a step gradient of MeOH (0-50%) in CH_2Cl_2 as the mobile phase. 0.17 g (0.42 mmol, overall yield for the two steps 51%) of N-Boc pseudo-PEG linker A was obtained as a colorless oil. R_f (CH₂Cl₂-MeOH, 8 : 2, v/v) 0.54; IR (neat): v_{max} 559, 666, 771, 843, 1114 (broad), 1251, 1367, 1455, 1538, 1666 (broad), 2930, 3352 (broad) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ1.43 (s, 9H), 3.30 (bm, 2H), 3.47-3.66 (m, 14H), 4.01 (s, 2H), 4.04 (s, 2H), 5.16 (bs, 1H, NH), 7.34 (bs, 1H, NH); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 28.5$ (3C), 38.7, 40.3, 70.1 (2C), 70.4 (2C), 70.6 (2C), 70.9 (2C), 79.5, 156.3, 170.9 (2C); MS (ESI+): m/z 431.27 [M + Na]⁺, 453.27 [M + 2Na - H]⁺; MS (ESI-): m/z407.47 [M - H]⁻, calcd for $C_{17}H_{32}N_2O_9$ 408.45.

N-Phthaloyl protected aminooxyacetic acid (12)⁵.

(a) Synthesis of full-protected aminooxyacetic acid derivative: *N*-Hydroxyphthalimide (1.7 g, 10.3 mmol) was dissolved in dry NMP (24 mL). Anhydrous K₂CO₃ (2.1 g, 15.5 mmol) was then added and the resulting mixture was stirred at 40 °C under an argon atmosphere for 10 min. tert-Butyl bromoacetate (1.5 mL, 10.3 mmol) was then slowly added and the temperature increased to 50 °C for 3 h. The reaction was checked for completion by TLC (100% CH₂Cl₂). Precipitation of the desired product was achieved by adding cold deionised water. The solid was collected by filtration and washed with cold deionised water until the solid remains colorless. The resulting white solid was then dissolved in CH₂Cl₂, evaporated to give dryness. Residual water was removed by lyophilisation to *tert*-butyl phthalimidooxyacetate as a white powder (2.3 g, 8.3 mmol, yield 81%). R_f (100% CH₂Cl₂) 0.7; ¹H NMR (300 MHz, CDCl₃): δ 1.49 (s, 9H, tBu), 4.71 (s, 2H, CH₂), 7.74-7.86 (m, 4H, phthalimide); ¹³C NMR (75.5 MHz, CDCl₃): δ 28.2, 73.6, 83.2, 123.8, 129.0, 134.8, 163.2, 166.5.

(b) Removal of *tert*-butyl ester: *tert*-Butyl phthalimimidooxyacetate (2.3 g, 8.3 mmol) was dissolved in dry CH_2Cl_2 (20 mL) and the mixture was cooled to 0 °C. TFA (6.16 mL, 83

mmol) was then added dropwise and the reaction mixture was stirred at room temperature for 1 h under an argon atmosphere. The reaction was checked for completion by TLC (100% CH₂Cl₂). Further amount of TFA was added (1.05 mL, 16.6 mmol) and the mixture was stirred again for 20 min. Thereafter, the mixture was concentred under reduced pressure and the resulting residue was co-evaporated thrice with chloroform (3 x 10 mL). Finally, 10 mL of deionised water was added and the aq. solution was lyophilised to give phthalimimidooxyacetic acid **12** as a white powder (1.8 g, 8.3 mmol, quantitative yield). $R_{\rm f}$ (100% CH₂Cl₂) 0.17; ¹H NMR (300 MHz, CDCl₃): δ 4.77 (s, 2H, CH₂), 7.83 (s, 4H, phthalimide); ¹³C NMR (75.5 MHz, CDCl₃): δ 74.0, 124.3, 129.9, 135.9, 164.1, 168.3.

Synthesis of full-protected heterotrifunctional reagent (4).

The highly convergent synthetic strategy based on solution phase peptide couplings and developed for the preparation of *N*-Phthaloyl aminooxy heterotrifunctional cross-linking reagent **5** was used:

Scheme S1 Reagents and conditions: a) DCC (1.2 equiv), HOBt.H₂O (1.2 equiv), CH₃CN-DMF (1 : 1, v/v), rt, 2 h; b) Boc-Lys-OH (1 equiv), DMF, rt, 2 h, 50%. DCC = N,N-dicyclohexylcarbodiimide, HOBt.H₂O = hydroxybenzotriazole monohydrate.

 $(S1)^{6}$. (9-Fluorenylmethoxycarbonyl)aminooxyacetic Carboxymethoxylamine acid hemihydrochloride (0.5 g, 4.6 mmol) was dissolved in an aq. solution of Na₂CO₃ (1.2 g in 20 mL) and the resulting solution was cooled to 4 °C. Then 9-fluorenylmethyl chloroformate (1.31 g, 5.0 mmol) in 1,4-dioxane (10 mL) was added dropwise and the reaction mixture was stirred at room temperature overnight. The reaction mixture was partially evaporated, acidified to pH 4-5 with 5% aq. HCl (ca. 5 mL); the crude product quickly precipitated. It was collected by filtration and washed with deionised water and pentane. Residual water was removed by lyophilisation to give 1.05 g of crude product. Further purification by chromatography on a silica gel column was undertaken with a step gradient of MeOH (0-50%) in CH₂Cl₂ as the mobile phase, giving 0.677 g (2.2 mmol, yield 47%) of Fmoc-Aoaa-OH S1 as a white foam. ¹H NMR (300 MHz, CD₃OD): δ 4.22-4.27 (m, 3H), 4.44 (d, J = 6.8Hz, 2H), 7.29-7.42 (m, 4H), 7.64 (d, J = 7.5 Hz, 2H), 7.80 (d, J = 7.5 Hz, 2H); HPLC (system B): $t_{\rm R} = 17.8$ min, purity 94%.

 N^{α} -(*tert*-Butyloxycarbonyl)- N^{ε} -[(9-fluorenylmethoxycarbonyl)aminooxyacetyl]-L-lysine (S2). Fmoc-Aoaa-OH S1 (230 mg, 0.73 mmol) was dissolved in a mixture of dry CH₃CN-DMF (1:1, v/v, 9 mL). Hydroxybenzotriazole monohydrate (119 mg, 0.88 mmol) and DCC (182 mg, 0.88 mmol) were sequentially added and the resulting reaction mixture was stirred at room temperature for 2 h under an argon atmosphere. Thereafter, a solution of N^{α} -Boc-Llysine (180 mg, 0.73 mmol) in dry DMF (2 mL) was added and the resulting reaction mixture was stirred at room temperature. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH 8 : 2, v/v). After 2 h, the mixture was evaporated to dryness. The resulting residue was taken up with ethyl acetate, washed by 10% aq. citric acid, deionised water, dried over Na₂SO₄, filtrated, concentrated by rotator evaporation, then purified by chromatography on a silica gel column with a step gradient of ethyl acetate (0-80%) in CH₂Cl₂ as the mobile phase, giving 296 mg (0.36 mmol, yield 50 %) of lysine building block **S2** as a white foam. R_f 0.59 (CH₂Cl₂-MeOH, 8 : 2, v/v); ¹H NMR (300 MHz, CD₃CN): δ 1.37-1.83 (m, 15H), 3.17-3.19 (d, *J* = 6.0 Hz, 2H), 4.00 (m, 1H), 4.04 (s, 2H), 4.26 (t, *J* = 6.8 Hz, 1H), 4.49 (d, *J* = 6.8 Hz, 2H), 5.61 (bd, *J* = 7.5 Hz, 1H, NH), 7.31-7.44 (m, 4H), 7.51 (bs, 1H, NH), 7.63 (d, *J* = 7.5 Hz, 2H), 7.83 (d, *J* = 7.5 Hz, 2H), 8.9 (bs, 1H, NH); ¹³C NMR (75.5 MHz, CD₃CN): δ 23.5, 28.5 (3C), 29.5, 31.6, 38.9, 47.7, 54.2, 68.0, 76.3, 79.8, 120.9 (2C), 126.0 (2C), 128.1 (2C), 128.7 (2C), 142.1 (2C), 144.6 (2C), 156.7, 158.9, 169.3, 174.5; HPLC (system B): t_R = 21.2 min, purity 95%; UV-visible (recorded during the HPLC analysis) λ_{max} = 216, 262, 293 nm; MS (MALDI-TOF, positive mode): *m*/*z* 564.57 [M + Na]⁺, 580.55 [M + K]⁺, calcd for C₂₈H₃₅N₃O₈ 541.61.

Scheme S2 Reagents and conditions: a) DCC (1.2 equiv), HOBt.H₂O (1.2 equiv), CH₃CN-DMF (2 : 1, v/v), rt, 2 h; b) DIEA (2 equiv), DCC (2 equiv), rt, overnight, 88% (a+b); c) 15% TFA, CH₂Cl₂, 4 °C to rt, 90 min, quant. yield; d) DCC (1.2 equiv), HOBt.H₂O (1.2 equiv), CH₃CN, rt, 2 h; e) DIEA (2.5 equiv), DCC (0.3 equiv), rt, overnight then acetic acid (1.9 equiv), 61% after RP-HPLC purification; f) 11% TFA, CH₂Cl₂, 4 °C to rt, 1 h, quant. yield; g) DSC (2.5 equiv), TEA (1 equiv), DMF, rt, 90 min, 74% after RP-HPLC purification. DSC = N,N'-disuccinimidyl carbonate, TEA = triethylamine.

 N^{α} -(*tert*-Butyloxycarbonyl)- N^{ε} -[(9-fluorenylmethoxycarbonyl)aminooxyacetyl]-L-lysinyl-S-(ethylthio)-L-cysteine carboxamide (S3). Lysine building block S2 (0.196 g, 0.36 mmol) was dissolved in a mixture of dry CH₃CN-DMF (2 : 1, v/v, 3 mL). Hydroxybenzotriazole monohydrate (58.4 mg, 0.43 mmol) and DCC (89.1 mg, 0.43 mmol) were sequentially added and the resulting reaction mixture was stirred at room temprature for 2 h under an argon atmosphere. Thereafter, a solution of TFA salt of H-Cys(SEt)-OH C (106.0 mg, 0.36 mmol) in dry DMF (1 mL) was added and the resulting reaction mixture was stirred at room temperature under an argon atmosphere. The reaction was checked for completion by RP-HPLC (system B) and TLC (CH₂Cl₂-MeOH, 8 : 2, v/v). After 2, 4 and 6 h of stirring, DIEA (31 µL, 0.18 mmol) was added and a further amount of DCC (44.9 mg, 0.18 mmol) was added after 6 h. The round-bottom flask was stored at -20 °C overnight. Thereafter, further amounts of DIEA (31 µL, 0.18 mmol) and DCC (44.9 mg, 0.18 mmol,) were added. After 2 h, the reaction was checked to completion and the mixture was evaporated to dryness. The resulting residue was taken up with ethyl acetate, successively washed with 10% aq. citric acid, sat. NaHCO₃, deionised water, dried over Na₂SO₄ and evaporated to dryness. The resulting residue was purified by chromatography on a silica gel column with a step gradient of MeOH (0-10%) in CH₂Cl₂ as the mobile phase, giving 222 mg (0.31 mmol, yield 88%) of full-protected dipeptide S3 as a white foam. $R_{\rm f}$ (CH₂Cl₂-MeOH, 8 : 2, v/v) 0.60; IR (KBr): v_{max} 586 (broad), 621, 741, 760, 861, 1045, 1118, 1167, 1254, 1367, 1392, 1451, 1516 (broad), 1666 (broad), 2868, 2928, 3068, 3312 (broad) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.26-1.31 (t, 3H, J = 7.1 Hz, CH₃(SEt) Cys), 1.42 (s, 9H, tBu) 1.51-1.92 (m, 6H, CH₂ β , δ , γ Lys), 2.65-2.72 (q, 2H, J = 7.5 Hz, CH₂(SEt) Cys), 3.08-3.10 (d, 2H, J = 6.0 Hz, CH₂ β Cys), 3.26-3.33 (m, 2H, CH₂ ε Lys), 4.04-4.06 (t, J = 6.0 Hz, 1H, CH α Lys), 4.20-4.25 (t, J = 7.2Hz, 1H, CH Fmoc), 4.33 (s, 2H), 4.49-4.51 (d, 1H, J = 6.4 Hz, CH₂ Fmoc), 4.71-4.78 (q, J = 6.4 Hz, 1H, CH α Cys), 7.26-7.78 (m, 8H, CH Fmoc); ¹³C NMR (75.5 MHz, CDCl₃): δ 14.2, 22.3, 28.6, 30.1, 32.4, 38.0, 39.3, 46.7, 52.3, 52.2, 68.0, 76.1, 80.8, 120.3, 125.1, 127.4, 128.1, 141.4, 143.3, 156.4, 158.6, 169.0, 172.6, 172.8. MS (MALDI-TOF, positive mode): m/z 726.77 $[M + Na]^+$, 742.74 $[M + K]^+$, calcd for C₃₃H₄₅N₅O₈S₂ 703.88.

N^{ϵ} -[(9-Fluorenylmethoxycarbonyl)aminooxyacetyl]-L-lysinyl-S-(ethylthio)-L-cysteine

carboxamide (S4). Dipeptide S3 (191 mg, 0.27 mmol) was dissolved in dry CH₂Cl₂ (7 mL) and the solution was cooled to 4 °C. TFA (1.2 mL, 16.6 mmol) was added dropwise and the resulting reaction mixture was stirred at room temperature for 90 min. The reaction was checked for completion by TLC (CH₂Cl₂-MeOH, 9 : 1, v/v) and the mixture was evaporated to dryness. The resulting oily residue was dissolved in deionised water and lyophilised to give the dipeptide building block S4 as a white amorphous powder (199 mg, 0.27 mmol, quantitative yield). This compound was used in the next coupling reaction step without further purification. R_f (CH₂Cl₂-MeOH, 9 : 1, v/v) 0.14; IR (KBr): v_{max} 740, 1117, 1257, 1456, 1506, 1538, 1558, 1652, 1689, 1717, 1732, 2103, 2351, 2928, 3288 cm⁻¹; ¹H NMR (300 MHz, CD₃OD): δ 1.26-1.28 (t, 3H, J = 3.8 Hz, CH₃(SEt) Cys), 1.40-1.56 (m, 4H, CH₂ β , γ Lys), 1.83-1.90 (m, 2H, CH₂ δ Lys), 2.67-2.74 (q, 2H, J = 7.2 Hz, CH₂(SEt) Cys), 2.93-2.96 (d, 2H, J = 9.4 Hz, CH₂ β Cys), 3.20-3.28 (m, 2H, CH₂ ε Lys), 3.84-3.88 (t, J = 6.0 Hz, 1H, CH α Lys), 4.23 (s, 3H, CH Fmoc, CH₂), 4.46-4.48 (d, 2H, J = 6.4 Hz, CH₂ Fmoc), 4.63-4.68 (q, J = 4.9 Hz, 1H, CH α Cys), 7.26-7.78 (m, 8H, CH Fmoc), 8.32 (bs, 1H, NH); ¹³C NMR (75.5 MHz, CD₃OD): δ14.7, 22.3, 30.7, 32.2, 33.2, 39.5, 41.0, 48.2, 53.9, 54.2, 68.6, 76.5, 121.0, 126.0, 128.2, 129.0, 142.7, 144.8, 170.2, 171.2; MS (MALDI-TOF, positive mode): m/z $604.70 [M + H]^+$, $626.68 [M + Na]^+$, $642.66 [M + K^+]$, calcd for $C_{28}H_{37}N_5O_6S_2$ 603.76.

PEG-peptide (S5).

(a) Coupling reaction: Boc-protected amino-PEG-acid spacer A (78 mg, 0.19 mmol) was dissolved in dry CH₃CN (2 mL). Hydroxybenzotriazole monohydrate (31 mg, 0.23 mmol) and DCC (47.3 mg, 0.23 mmol) were sequentially added and the resulting reaction mixture was stirred at room temperature for 2 h under an argon atmosphere. Thereafter, TFA salt of dipeptide S4 (136 mg, 0.19 mmol) was added and the resulting reaction mixture was stirred at room temperature for 2 h. The round-bottom flask was stored at -20 °C overnight. Thereafter, DIEA (32 µL, 0.19 mmol) was added. The reaction was checked for competion by RP-HPLC (system B). After 3, 5 and 7 h of stirring, DIEA (16 µL, 95 µmol) was added a further amount of DCC (12 mg, 58 µmol) was added after 3 h. Finally, reaction was quenched by the addition of acetic acid (21 µL, 360 µmol) and the round-bottom flask was stored at -20 °C overnight. After dilution in a mixture of CH_3CN-H_2O (2 : 1, v/v, 2 mL), the crude coupling product was purified by RP-HPLC (system D, 3 injections, $t_{\rm R} = 35.8-27.2$ min). The product-containing fractions were lyophilised to give the coupling product as a white amorphous powder (119 mg, 0.12 mmol, yield 61%). ¹H NMR (300 MHz, CDCl₃): δ 1.25-1.30 (t, 3H, J = 7.1 Hz, CH₃(SEt) Cys), 1.43 (s, 9H, tBu), 1.52-1.90 (m, 4H, CH₂ γ, δLys), 2.32 (bs, 2H, CH₂ βLys), 2.64-2.69 (q, 2H, J = 7.2 Hz, CH₂(SEt) Cys), 2.97-3.16 (m, 2H, CH₂ β Cys), 3.30 (s, 2H, CH₂ linker), 3.45-3.65 (m, 11H, CH₂ *ε* Lys + 4 x CH₂ linker), 4.0 (s, 3H, CH₂ linker + CH Fmoc), 4.21-4.25 (q, J = 6.8 Hz, 1H, CH α Lys), 4.34 (s, 2H, CH₂), 4.44-4.50 (d, 2H, J = 10.0 Hz, CH₂ Fmoc), 4.70-4.72 (q, 1H, J = 2.3 Hz CH α Cys), 5.23 (bs, 1H, NH), 6.08 (bs, 1H, NH), 6.9 (bs, 1H, NH), 7.26-7.77 (m, 8H, CH Fmoc); ¹³C NMR (75.5 MHz, CDCl₃): δ14.4, 22.6, 28.5, 28.7, 31.0, 31.6, 32.5, 38.7, 38.8, 39.5, 40.5, 52.5, 53.3, 53.6, 70.0, 70.2, 70.5, 70.5, 70.6, 71.0, 71.1, 77.8, 79.5, 124.1, 128.6, 135.2, 156.1, 163.8, 167.1, 170.4, 170.7, 171.9; HPLC (system B): $t_{\rm R}$ = 20.8 min, purity 86%; MS (MALDI-TOF, positive mode): m/z $1016.66 \,[\text{M} + \text{Na}]^+$, calcd for C₄₅H₆₇N₇O₁₄S₂ 994.20.

(b) Removal of Boc group: Full-protected pseudo-peptide (62 mg, 62 µmol) was dissolved in dry CH₂Cl₂ (3 mL). The resulting solution was cooled to 4 °C and TFA (368 µL, 4.96 mmol) was added dropwise. The resulting reaction mixture was stirred at room temperature for 1 h. The reaction was checked for completion by RP-HPLC (system B) and the mixture was evaporated to dryness. Deionised water was added and the resulting solution was lyophilised to give the PEG-peptide **S5** as a white foam (83 mg, 82 µmol, yield 86%). This compound was used in the next step without further purification. HPLC (system B): $t_{\rm R} = 16.5$ min, purity 88%. MS (MALDI-TOF, positive mode): m/z 894.64 [M + H]⁺, calcd for C₄₀H₅₉N₇O₁₂S₂ 894.08.

Full-protected heterotrifunctional cross-linker (4). TFA salt of PEG-peptide **S5** (36 mg, 36.7 µmol) was dissolved in dry DMF (500 µL). TEA (5 µL, 36.7 µmol) and 50 µL of a solution of DSC reagent in dry DMF (24 mg, 91.8 µmol) were sequentially added and the resulting reaction mixture was stirred at room temperature for 90 min. The reaction was checked for completion by RP-HPLC (system B). Finally, the reaction mixture was quenched by dilution with aq. TFA 0.1% (pH 2, 4 mL) and purified by RP-HPLC (system E, 2 injections, $t_{\rm R} = 31.3$ -32.7 min). The product-containing fractions were lyophilised to give 4 as a white amorphous powder (25 mg, 24.2 µmol, yield 74%). ¹H NMR (300 MHz, CDCl₃): δ 1.24-1.27 (t, 3H, J = 7.1 Hz, CH₃(SEt) Cys), 1.32-1.90 (m, 6H, CH₂ β , γ , δ Lys), 2.63-2.69 (q, 2H, J = 7.1 Hz, CH₂(SEt) Cys), 2.81 (s, 4H, 2 x CH₂ succinimide), 2.24-3.28 (m, 2H, CH₂ β Cys), 3.24-3.69 (m, 11H, 5 x CH₂ linker + CH₂ ε Lys), 4.22-4.27 (t, 1H, CH Fmoc), 4.32 (s, 2H, CH₂), 4.51-4.53 (d, 2H, J = 6.4 Hz, CH₂ Fmoc), 4.58-4.66 (q, J = 7.5 Hz, 1H, CH α Lys), 4.70-4.76 (q, 1H, J = 6.0 Hz CH α Cys), 6.17 (bs, 1H, NH), 6.83 (s, 1H, NH), 7.27-7.83 (m, 8H, CH Fmoc), 9.2 (bs, 1H, NH); HPLC (system B): $t_{\rm R} = 18.5$ min, purity 97%; MS

(MALDI-TOF, positive mode): m/z 1035.69 [M + H]⁺, 1057.71 [M + Na]⁺, 1073.68 [M + K]⁺, calcd for C₄₅H₆₂N₈O₁₆S₂ 1035.17.

References

- 1 S. S. Iyer, A. S. Anderson, S. Reed, B. Swanson and J. G. Schmidt, *Tetrahedron Lett.*, 2004, **45**, 4285.
- 2 H. Kato, C. Boettcher and A. Hirsch, Eur. J. Org. Chem., 2007, 2659.
- 3 C. Visintin, A. E. Aliev, D. Riddall, D. Baker, M. Okuyama, P. M. Hoi, R. Hiley and D. L. Selwood, *Org. Lett.*, 2005, 7, 1699.
- 4 Y. Zhang, M.-K. So, A. M. Loening, H. Yao, S. S. Gambhir and J. Rao, *Angew. Chem. Int. Ed.*, 2006, **45**, 4936.
- 5 U.S. Pat., 2006016752, 2006.
- 6 L. Cipolla, M. Rescigno, A. Leone, F. Peri, B. La Ferla and F. Nicotra, *Bioorg. Med. Chem.*, 2002, **10**, 1639.

Boc-protected amino-PEG-acid spacer A

¹H NMR spectrum of **A** recorded in CDCl₃.

¹³C NMR spectrum of A recorded in CDCl₃.

ESI-MS spectrum of A recorded in the negative mode.

ESI-MS spectrum of A recorded in the positive mode.

Aminooxy-containing lysine building block B

¹H NMR spectrum of **B** recorded in CDCl₃.

¹³C NMR spectrum of **B** recorded in CDCl₃.

ESI-MS spectrum of **B** recorded in the positive mode.

Cysteine building block C (TFA salt)

 1 H NMR spectrum of C recorded in D₂O.

 13 C NMR spectrum of C recorded in D₂O.

ESI-MS spectrum of **C** recorded in the positive mode.

Heterotrifunctional cross-linking reagent 5

¹H NMR spectrum of **5** recorded in CDCl₃.

¹³C NMR spectrum of **5** recorded in CDCl₃.

ESI-MS spectrum of **5** recorded in the positive mode.

RP-HPLC elution profile of **5** (system A).

R6G-WS labeled aminooxy reagent 19

ESI-MS spectrum of **19** recorded in the negative mode.^a

^{*a*}Under our ionisation conditions, the aminooxy group of **19** was converted into the corresponding alcohol (ΔM of -15.0 Da). Such degradation reaction has been already reported by Bruné *et al.* (*Rapid. Commun. Mass Spectrom.* 2000, **14**, 2158) for the mass analysis of (aminooxy)acetyl peptides involved in oxime ligation reactions.

RP-HPLC elution profile of **19** (system B).^{*a*}

^aPartial cleavage of Boc group was occurred during the HPLC analysis due to the acidity of aq. mobile phase.

UV-visible absorption of **19** in deionised water at 25°C (concentration = $4.2 \mu M$).

ESI-MS spectrum of fluorescent substance P-tripod 23 recorded in the positive mode.^a

^{*a*}Only the doubly charged hydrated ion of **23** ($[M + 2H_2O + 2H]^{2+}$: *m/z* calcd mass 1347.10, found 1347.47) was observed under our ionisation conditions. Production of such solvated ions through ESI ionisation has been already reported especially for peptidyl biopolymers (see: Rodriguez-Cruz *et al. J. Am. Soc. Mass Spectrom.*, 1999, **10**, 958 and Wyttenbach *et al. Int. J. Mass Spectrom.*, 2005, **240**, 221).