Supplementary Data A

The product formed in $0.3 \mathrm{M} \mathrm{NH}_{3}$ and $0.3 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ containing $1 \times 10^{-4} \mathrm{M}$ OPA was after 45 min acidified by addition of acetic acid to pH 4.7 . The characteristic absorption band of OPA was rapidly formed, but decreased with time (Fig. A1). The rate of that decreases with a rate constant $\mathrm{k}_{\mathrm{obs}}=1.2 \times 10^{-2} \mathrm{~s}^{-1}$ were practically identical with the $\mathrm{k}_{\mathrm{obs}}=1.3 \times 10^{-2} \mathrm{~s}$ ${ }^{1}$ obtained for the rate of hydration (Fig. A2). The later was determined, when a solution of OPA was added to an acetate buffer of pH 4.7. This indicates that the conversition of product $\mathbf{9}$ results in a generation of the unhydrated form of OPA, 1. The conversion of $\mathbf{9}$ to OPA thus involves initial formation of the unhydrated form $\mathbf{1}$ as the rate determining step.

Fig. A1 Time dependence of absorbance at $260 \mathrm{~nm}(\bullet)$ in a solution obtained after acidification of $1 \times 10^{-4} \mathrm{M} \mathrm{OPA}$ in $0.3 \mathrm{M} \mathrm{NH}_{3} 0.3 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{pH} 9.3)$ left to reach equilibrium. After 45 min the pH was adjusted by aacetic acid to pH 4.7 . The dependence of absorbances compared with the dependence of absorbance at 260 nm in a solution of $1 \times 10^{-4} \mathrm{M}$ OPA OPA added directly to an acetate buffer pH 4.7 (■).

Fig. A2 Plot of logarithm of the absorbance of 260 nm as a function of time, recorded after acidification of the solution of the product of the reation of $1 \times 10^{-4} \mathrm{M} \mathrm{OPA}$ in 0.3 M $\mathrm{NH}_{3} 0.3 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(\mathbf{\Delta})$. For comparison a similar plot obtained after addition of a stock solution of OPA in acetonitrile to an aqueous solution of an acetate buffer pH 47 (■).

Supplementary Data B

Fig. B1 First order kinetics of the fast reaction of OPA with ammonia followed using changes of absorbance at 250 nm in solutions containing $1 \times 10^{-4} \mathrm{M} \mathrm{OPA}$ and 0.001 M
NH_{3} in a solution containing $0.001 \mathrm{M} \mathrm{NH}_{4}{ }^{+} \mathrm{Cl}$ at $\mathrm{pH} 9.3(\bullet)$ and $0.01 \mathrm{M} \mathrm{NH}_{4}{ }^{+} \mathrm{Cl}$ at pH 8.3 (■).

Supplementary Data C

Fig. C1 Comparison of the dependence of the current i_{1} in a solution of $1 \times 10^{-4} \mathrm{M}$ OPA in ammonia-ammonium chloride buffers at constant $\left[\mathrm{NH}_{3}\right]$ on pH (left axis, \bullet) with the pH -dependence of the initial rate $\left(v_{\mathrm{o}}\right)$ of the fast reaction of OPA with NH_{3} (right axis, \llbracket).

The rate of formation of the imine in the fast reaction is controlled by the rate of dehydration of OPA.

Supplementary Data D

Fast reaction of OPA with 2-aminoethanol

Fig. D1 Time dependence of absorbance in a solution containing $1 \times 10^{-4} \mathrm{M} \mathrm{OPA}$ in the presence of 0.005 M 2-aminoethanol and 0.005 M protonated form of the amine. absorbance at $235 \mathrm{~nm}, \bullet$ absorbance at 285 nm .

Fig. D2 Dependence of logarithm of absorbance on time in a solution of $1 \times 10^{-4} \mathrm{M}$ OPA in a buffer containing 0.005 M 2-aminoethanol and 0.005 M of its protonated form at pH 9.5. absorbance at 235 nm ; • absorbance at 285 nm .

