Supporting Information-I

Direct Amino Acid-Catalyzed Cascade Biomimetic Reductive Alkylations: Application to the Asymmetric Synthesis of Hajos-Parrish Ketone Analogues

Dhevalapally B. Ramachary* and Mamillapalli Kishor

School of Chemistry, University of Hyderabad, Central University (P.O.), Hyderabad 500 046, India

ramsc@uohyd.ernet.in

CONTENTS	Page No.
1. General Methods	S2
2. General Procedure	S2-S3
3. Spectral Data	S3-S13
4. Crystal Structure Information for 7i	S14-15
5. Crystal Structure Information for 10a	S16-17

General Methods: The ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. The chemical shifts are reported in ppm downfield to TMS ($\delta = 0$) for ¹H NMR and relative to the central CDCl₃ resonance ($\delta = 77.0$) for ¹³C NMR. In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses. The coupling constants J are given in Hz. Column chromatography was performed using Acme's silica gel (particle size 0.063-0.200 mm). High-resolution mass spectra were recorded on micromass ESI-TOF MS. GCMS mass spectrometry was performed on Shimadzu GCMS-QP2010 mass spectrometer. IR spectra were recorded on JASCO FT/IR-5300 and Thermo Nicolet FT/IR-5700. Elemental analyses were recorded on a Thermo Finnigan Flash EA 1112 analyzer. Mass spectra were recorded on either VG7070H mass spectrometer using EI technique or Shimadzu-LCMS-2010 A mass spectrometer. The X-ray diffraction measurements were carried out at 298 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite monochromated, Mo-K α ($\lambda = 0.71073$ Å) radiation with CAD4 software or the X-ray intensity data were measured at 298 K on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a Mo-K α fine-focus sealed tube (λ = 0.71073 Å). For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of p-anisaldehyde (23 mL), conc. H₂SO₄ (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating.

- \triangleright Because of solubility problem of 2-alkyl-cyclopenatane-1,3-diones 7a-x in CDCl₃, we have used three drops of CD₃OD.
- Due to the keto-enol and enol-enol tautomerism in 2-alkyl or 2-aryl-cyclopentane-1,3-dione compounds, ^{13}C NMR shows some of carbons (2 x CH₂ and 2 x C=0) are poor resolution even after more than 2000 scans in the solvent system of CDCl₃ or CDCl₃ + CD₃OD (three drops).

Materials: All solvents and commercially available chemicals were used as received.

General Experimental Procedures for the Cascade Reactions:

Amino Acid-Catalyzed Cascade Olefination/Hydrogenation Reactions with Cyclopentane-1,3-Dione: In an ordinary glass vial equipped with a magnetic stirring bar, to 0.9 mmol of the aldehyde 2, 0.3 mmol of

CH-acid 1 and 0.3 mmol of Hantzsch ester 3 was added 1.0 mL of solvent, and then the catalyst amino acid 4a (0.015 mmol, 5 mol%) was added and the reaction mixture was stirred at 25 °C for the time indicated in Tables 1 to 3. The crude reaction mixture was directly loaded on silica gel column with or without aqueous work-up and pure cascade products 7 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Amino Acid-Catalyzed Robinson Annulation Reaction: In ordinary glass vial equipped with a magnetic stirring bar, to 0.3 mmol of 2-alkyl-cyclopentane-1,3-diones 7 and 0.9 mmol of methyl vinyl ketone 9 was added 1.0 mL of DMSO solvent, and then the catalyst proline 4a (0.09 mmol, 30 mol%) was added and the

reaction mixture was stirred at 25 °C for 6 days. The crude reaction mixture was worked up with aqueous NH₄Cl solution and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. Pure products 11 and 12 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Amino Acid-Catalyzed One-Pot Double Cascade Olefination/Hydrogenation/Robinson Annulation Reactions: In an ordinary glass vial equipped with a magnetic stirring bar, to 0.9 mmol of the aldehyde 2, 0.3 mmol of CH-acid 1 and 0.3 mmol of Hantzsch ester 3 was added 1.0 mL of dichloromethane, and then the catalyst amino acid 4a (0.015 mmol, 5 mol%) was added and the reaction mixture was stirred at 25 °C for the time indicated in Scheme 3. After evaporation of the solvent completely, to the crude reaction mixture added 0.9 mmol of methyl vinyl ketone 9, 1.0 mL of DMSO solvent and 0.09 mmol of L-proline 4a and the reaction mixture was stirred at room temperature for the 6 days. The crude reaction mixture was worked up with aqueous NH₄Cl solution and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. Pure one-pot products 11 and 12 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

General Procedure for the Direct Organocatalytic One-Pot Synthesis of 2-Alkyl-3-Methoxy-Cyclopent-2-enones 13: In an ordinary glass vial equipped with a magnetic stirring bar, to 0.9 mmol of the aldehyde 2, 0.3 mmol of CH-acid 1 and 0.3 mmol of Hantzsch ester 3 was added 1.0 mL of dichloromethane, and then the catalyst amino acid 4a (0.015 mmol, 5 mol%) was added and the reaction mixture was stirred at 25 °C for the time indicated in Scheme 2. After evaporation of the solvent completely, to the crude reaction mixture added an excess ethereal solution of diazomethane and the reaction mixture was stirred at room temperature for the 0.5 h. After evaporation of the solvent and excess diazomethane completely in fume hood, the crude reaction mixture was directly loaded on silica gel column with or without aqueous work-up and pure one-pot products 13 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

General Procedure for the Dehydration of 7a-Alkyl-3a-Hydroxy-Hexahydro-Indene-1,5-Diones 11: A solution of alcohol compound 11 (0.2 mmol) and 1N HClO₄ (0.4 mmol) in DMSO (1.0 ml) stirred at 90 °C for 0.5 to 1 h. After cooling, the reaction mixture washed with water and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. Pure products 10 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

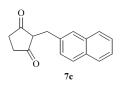
2,2'-Phenylmethylene-bis-[1,3-cyclopentanedione] (6a): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 186 °C; IR (Neat): v_{max} 3376, 2921, 1659, 1547, 1411, 1239 and 1213 cm⁻¹; ¹H NMR (CDCl₃) δ 9.77 (2H, br s, 2 x O-H), 7.21-7.09 (5H, m) [Ar-H]; 5.33 (1H, s, PhC*H*), 2.58 (8H, s, 4 x CH₂); ¹³C NMR

(CDCl₃, DEPT-135) δ 200.1 (2 x C, C=O), 139.6 (C), 128.3 (2 x CH), 126.9 (2 x CH), 126.3 (CH), 118.5 $(2 \times C)$, 30.5 $(4 \times CH_2)$, 30.0 (CH); LCMS m/z 285.00 (M+H⁺), calcd for $C_{17}H_{16}O_4H$ 285.1049; Anal. calcd for C₁₇H₁₆O₄ (284.1049): C, 71.82; H, 5.67. Found: C, 71.731; H, 5.652%.

6g

2,2'-Dicyclopentane-1,3-dione-methyl-2-(3-methyl-but-2-enyloxy)-benzene (6g): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 140 °C; IR (Neat): v_{max} 2924, 2723, 1659, 1590, 1412, 1354, 1275,

1226, 1118, 1020 and 754 cm⁻¹; 1 H NMR (CDCl₃) δ 7.90 (2H, br s, 2 x OH), 7.26 (1H, d, J = 7.2 Hz), 7.13 (1H, t, J = 8.0 Hz), 6.85 (1H, t, J = 7.6 Hz), 6.77 (1H, d, J = 7.0 Hz)


J = 8.0 Hz) [Ar-H]; 5.42 (1H, t, J = 6.4 Hz, olefinic-H), 5.37 (1H, s, PhCH), 4.45 (2H, d, J = 6.8 Hz, OCH₂CH=CMe₂), 2.53 (8H, br s, 4 x CH₂), 1.77 (3H, s, CH₃), 1.70 (3H, s, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 199.4 (2 x C, C=O), 155.8 (C), 137.5 (C), 128.34 (CH), 128.2 (C, OCH₂CH=CMe₂), 127.7 (CH), 120.3 (CH), 119.8 (CH), 117.9 (2 x C), 111.6 (CH), 65.1 (CH₂, OCH₂CH=CMe₂), 30.4 (4 x CH₂), 25.7 (CH), 25.6 (CH₃), 18.1 (CH₃); LCMS m/z 369.00 (M+H $^+$), calcd for $C_{22}H_{24}O_5H$ 369.1624; Anal. calcd for C₂₂H₂₄O₅ (368.1624): C, 71.72; H, 6.57. Found: C, 71.668; H, 6.575%.

2-Benzyl-cyclopentane-1,3-dione (7a): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 180 °C; IR (Neat): v_{max} 2923, 1571, 1565, 1473, 1434, 1396, 1368, 1321 and 1257 cm⁻¹; ¹H NMR [CDCl₃+CD₃OD (three drops)] δ 7.26-7.20 (4H, m), 7.15-7.13 (1H, m) [Ar-H]; 3.46 (2H, s, PhCH₂), 2.46 (4H, s); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 140.0 (C), 128.3 (2 x CH), 128.1 (2 x CH), 125.6

(CH), 117.3 (C), 30.2 (2 x CH₂), 26.7 (CH₂); HRMS m/z 211.0728 (M + Na⁺), calcd for $C_{12}H_{12}O_2Na$ 211.0735.

2-Naphthalen-1-ylmethyl-cyclopentane-1,3-dione (7b): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 205 °C; IR (Neat): v_{max} 2971, 1569, 1365, 1259, 1179 and 779 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 8.23 (1H, d, J = 8.4 Hz), 7.82 (1H, d, J = 7.6 Hz), 7.69 (1H, t, J = 5.2 Hz),

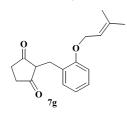
7.51-7.45 (2H, m), 7.36 (2H, m) [Ar-H]; 3.90 (2H, s, ArCH₂), 2.47 (4H, s, 2 x CH₂); ¹³C NMR [CDCl₃+ CD₃OD (three drops), DEPT-135] δ 135.1 (C), 133.5 (C), 131.8 (C), 128.2 (CH), 126.4 (CH), 125.7 (CH), 125.4 (CH), 125.2 (CH), 125.1 (CH), 124.0 (CH), 116.0 (C), 30.1 (2 x CH₂), 24.0 (CH₂); HRMS m/z $261.0882 \text{ (M + Na}^{+})$, calcd for $C_{16}H_{14}O_{2}Na\ 261.0891$.

2-Naphthalen-2-ylmethyl-cyclopentane-1,3-dione (7c): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 220 °C; IR (Neat): v_{max} 2923, 2854, 2658, 1573, 1430, 1376, 1260, 1178, 1034, 818 and 754 cm⁻¹; ${}^{1}H$ NMR [CDCl₃+CD₃OD (three drops)] δ 7.76-7.67 (4H, m), 7.43-7.30 (3H, m) [Ar-

H]; 3.63 (2H, s, ArC H_2), 2.50 (4H, s, 2 x C H_2); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 137.6 (C), 133.4 (C), 131.8 (C), 127.5 (CH), 127.3 (3 x CH), 126.1 (CH), 125.5 (CH), 124.8 (CH), 117.1 (C), 30.2 (2 x CH₂), 26.8 (CH₂); HRMS m/z 261.0880 (M + Na⁺), calcd for $C_{16}H_{14}O_2Na$ 261.0891.

7d

2-(4-Hydroxy-benzyl)-cyclopentane-1,3-dione (7d): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 194 °C; IR (Neat): v_{max} 3243, 1578, 1433, 1366, 1258, 1237, 1174, 1028 and 820 cm⁻¹; ¹H NMR $[CDCl_3 + CD_3OD \text{ (three drops)}] \delta 7.07 \text{ (2H, d, } J = 8.4 \text{ Hz), } 6.69 \text{ (2H, d, } J = 8.4 \text{ Hz)}$ [Ar-H]; 3.36 (2H, s, ArCH₂), 2.46 (4H, s, 2 x CH₂); ¹³C NMR [CDCl₃+CD₃OD (three drops), DEPT-135] δ 154.4 (C), 131.1 (C), 129.1 (2 x CH), 117.7 (C), 114.8 (2 x CH), 30.1 (2 x CH₂), 25.7 (CH₂); HRMS m/z $227.0688 (M + Na^{+})$, calcd for $C_{12}H_{12}O_{3}Na 227.0684$.


7e

2-(3-Hydroxy-benzyl)-cyclopentane-1,3-dione (7e): Purified column chromatography using EtOAc/hexane and isolated as a solid. Mp 160 °C; IR (Neat): v_{max} 3406, 3152, 2924, 1664, 1375, 1262, 1240, 1161 and 692 cm⁻¹; ¹H NMR [CDCl₃] $+ \text{CD}_3\text{OD}$ (three drops)] δ 7.05 (1H, t, J = 8.0 Hz), 6.74 (1H, d, J = 7.6 Hz), 6.71

(1H, br s), 6.62 (1H, dd, J = 8.0, 1.6 Hz) [Ar-H]; 3.38 (2H, s, ArCH₂), 2.46 (4H, s, 2 x CH₂); ¹³C NMR $[CDCl_3 + CD_3OD \text{ (three drops)}, DEPT-135] \delta 156.4 (C), 141.5 (C), 129.1 (CH), 119.8 (CH), 117.2 (C),$ 115.1 (CH), 112.7 (CH), 30.2 (2 x CH₂), 26.5 (CH₂); HRMS m/z 227.0679 (M + Na⁺), calcd for C₁₂H₁₂O₃Na 227.0684.

ó 7f

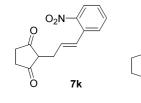
(7f): 2-(2-Hydroxy-benzyl)-cyclopentane-1,3-dione Purified column by chromatography using EtOAc/hexane and isolated as a solid. Mp 156 °C; IR (Neat): v_{max} 3237, 2923, 1727, 1584, 1540, 1372, 1301, 1260, 1174, 1101 and 661 cm⁻¹; ¹H NMR $[CDCl_3 + CD_3OD \text{ (three drops)}] \delta 7.20 \text{ (1H, d, } J = 7.2 \text{ Hz)}, 7.08 \text{ (1H, t, } J = 7.2 \text{ Hz)}, 6.88$ (1H, d, J = 8.0 Hz), 6.81 (1H, t, J = 7.2 Hz) [Ar-H]; 3.42 (2H, s, ArCH₂), 2.47 (4H, s, 2 x CH₂); ¹³C NMR[CDCl₃+CD₃OD (three drops), DEPT-135] & 197.5 (C, C=O), 153.7 (C), 130.6 (CH), 127.7 (CH), 126.6 (C), 120.6 (CH), 117.8 (C), 116.7 (CH), 30.1 (2 x CH₂), 21.7 (CH₂); HRMS m/z 227.0685 (M + Na⁺), calcd for C₁₂H₁₂O₃Na 227.0686.

2-[2-(3-Methyl-but-2-enyloxy)-benzyl]-cyclopentane-1,3-dione (7g): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 95 °C; IR (Neat): v_{max} 2924, 1570, 1432, 1374, 1324, 1262, 1244, 1223, 1190, 1108, 1021 and 753 cm⁻¹; ¹H NMR (CDCl₃) δ 9.22 (1H, s, O-H), 7.35 (1H, dd, J = 7.6, 1.6 Hz), 7.20 (1H, dt, J = 8.0, 1.6 Hz), 6.96 (2H, m) [Ar-H]; 5.59 (1H, t, J = 7.2

Hz, OCH₂CH=CMe₂), 4.65 (2H, d, J = 7.2 Hz, OCH₂CH=CMe₂), 3.45 (2H, s, ArCH₂), 2.45-2.39 (4H, m), 1.86 (3H, s, CH₃), 1.80 (3H, s, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 204.4 (C, C=O), 184.2 (C), 154.6 (C), 141.5 (C), 131.4 (CH), 128.5 (C), 127.7 (CH), 122.5 (CH), 117.7 (CH), 117.5 (C), 112.5 (CH), 66.1 (CH₂, OCH₂CH=CMe₂), 33.7 (CH₂), 26.5 (CH₂), 25.9 (CH₃), 21.2 (CH₂), 18.2 (CH₃); HRMS m/z 295.1299 $(M + Na^{+})$, calcd for $C_{17}H_{20}O_{3}Na$ 295.1310.

2-(3-Nitro-benzyl)-cyclopentane-1,3-dione Purified (7h): column by chromatography using EtOAc/hexane and isolated as a solid. Mp 202 °C; IR (Neat): v_{max} 2922, 1620, 1559, 1523, 1427, 1354, 1295, 1259, 1164, 1084, 1027, 802 and m/z 234.0755, calcd for $C_{12}H_{11}NO_4H$ 234.0766.

716 cm⁻¹; ¹H NMR [CDCl₃+CD₃OD (three drops)] δ 8.09 (1H, s), 8.00 (1H, d, J = 7.6 Hz), 7.62 (1H, d, J = 7.6 Hz), 7.40 (1H, t, J = 8.0 Hz) [Ar-H]; 3.56 (2H, s, ArC H_2), 2.52 (4H, s, 2 x C H_2); ¹³C NMR [CDCl₃+CD₃OD (three drops), DEPT-135] δ 148.1 (C), 142.3 (C), 135.0 (CH), 128.9 (CH), 123.2 (CH), 120.8 (CH), 115.9 (C), 30.3 (2 x CH₂), 26.5 (CH₂); HRMS m/z 256.0591, calcd for C₁₂H₁₁NO₄Na 256.0586.


2-(2-Nitro-benzyl)-cyclopentane-1,3-dione (7i): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 190 °C; IR (Neat): ν_{max} 2550, 1570, 1521, 1339, 1257, 1189, 1036, 844 and 727 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 7.86 (1H, d, *J* = 8.0 Hz), 7.48 (1H, t, *J* = 7.2 Hz), 7.31 (2H, m) [Ar-H]; 3.81 (2H, s, ArCH₂), 2.53 (4H, s, 2 x CH₂); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 149.2 (C), 134.1 (C), 132.5 (CH), 130.8 (CH), 126.6 (CH), 124.0 (CH), 114.4 (C), 30.0 (2 x CH₂), 23.4 (CH₂); HRMS

0 7j

7j'

2-(3-Phenyl-allyl)-cyclopentane-1,3-dione (7j) and **2-(3-Phenyl-propyl)-cyclopentane-1,3-dione (7j'):** Purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (Neat): v_{max} 2928, 1724, 1609, 1520, 1435, 1401, 1375, 1255, 1158, 827 and 751 cm⁻¹; ¹H NMR [CDCl₃+CD₃OD (three drops), 2:1 ratio of O/H product **7j** and completely reduced product **7j'**, major product **7j**] δ 7.30-7.17 (5H, m) [Ar-H]; 6.39 (1H, d, J = 16.0 Hz), 6.29 (1H, td, J = 15.6, 6.8 Hz) [PhCH=CHCH₂]; 3.04 (2H, d, J = 6.0 Hz), 2.48 (4H, s, 2 x CH₂); ¹³C NMR [CDCl₃+CD₃OD (three drops), DEPT-135, 2:1 ratio of O/H product **7j** and completely reduced product **7j'**, major product **7j**] δ 137.5 (C), 130.1 (CH), 128.3 (2 x CH), 126.80 (CH), 126.76 (CH), 125.9 (2 x CH), 115.8 (C), 30.4 (2 x CH₂), 24.3 (CH₂).; ¹H NMR [CDCl₃

+CD₃OD (three drops), 2:1 ratio of O/H product **7j** and completely reduced product **7j'**, minor product **7j'**] δ 7.33-7.10 (5H, m) [Ar-H]; 2.59 (2H, t, J = 8.0 Hz), 2.43 (4H, s, 2 x CH₂), 2.19 (2H, t, J = 8.0 Hz), 1.74 (2H, quintet, J = 8.0 Hz); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135, 2:1 ratio of O/H product **7j** and completely reduced product **7j'**, minor product **7j'**] δ 142.5 (C), 128.4 (CH), 128.1 (2 x CH), 125.5 (2 x CH), 117.8 (C), 35.7 (CH₂), 30.4 (2 x CH₂), 29.4 (CH₂), 20.7 (CH₂); HRMS (Q-top) m/z 215.1016 and 217.1190, calcd for C₁₄H₁₄O₂H 215.1072 and C₁₄H₁₆O₂H 217.1229.

2-[3-(2-Nitro-phenyl)-allyl]-cyclopentane-1,3-dione (7k) and 2-[3-(2-Nitro-phenyl)-propyl]-cyclopentane-1,3-dione (7k'): Purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (Neat): v_{max} 3326, 2927, 1624, 1524, 1344, 1255, 1176 and 750 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD

(three drops), 2:1 ratio of O/H product $7\mathbf{k}$ and completely reduced product $7\mathbf{k'}$, major product $7\mathbf{k}$] δ 7.85 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 8.0 Hz), 7.50 (1H, t, J = 7.2 Hz), 7.32 (1H, t, J = 7.6 Hz) [Ar-H]; 6.83 (1H, d, J = 16.0 Hz), 6.28 (1H, td, J = 15.2, 6.4 Hz) [ArCH=CHCH₂]; 3.11 (2H, d, J = 6.4 Hz), 2.53 (4H, s, 2 x CH₂); 13 C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135, 2:1 ratio of O/H product $7\mathbf{k}$ and completely reduced product $7\mathbf{k'}$, major product $7\mathbf{k}$] δ 147.4 (C), 133.2 (C), 132.9 (CH), 132.8 (CH), 128.5

(CH), 127.4 (CH), 125.0 (CH), 124.2 (CH), 115.0 (C), 30.3 (2 x CH₂), 24.5 (CH₂).; ¹H NMR [CDCl₃ + CD₃OD (three drops), 2:1 ratio of O/H product **7k** and completely reduced product **7k'**, minor product **7k'**] δ 7.85 (1H, d, J = 8.4 Hz), 7.50 (1H, t, J = 7.2 Hz), 7.38 (1H, d, J = 8.0 Hz), 7.32 (1H, t, J = 7.6 Hz) [Ar-H]; 2.84 (2H, t, J = 8.0 Hz), 2.48 (4H, s, 2 x CH₂), 2.23 (2H, t, J = 8.0 Hz), 1.76 (2H, quintet, J = 8.0 Hz); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135, 2:1 ratio of O/H product **7k** and completely reduced product **7k'**, minor product **7k'**] δ 149.1 (C), 137.3 (C), 132.7 (CH), 131.7 (CH), 126.6 (CH), 124.3 (CH), 117.1 (C), 32.3 (CH₂), 30.3 (2 x CH₂), 28.5 (CH₂), 20.6 (CH₂); HRMS (Q-top) m/z 260.0845 and 262.1007, calcd for C₁₄H₁₃NO₄H 260.0923 and C₁₄H₁₅NO₄H 262.1079.

2-Ethyl-cyclopentane-1,3-dione (7l): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 166 °C; IR (Neat): v_{max} 2971, 2931, 1530, 1545, 1348, 1267 and 1108 cm⁻¹; ¹H NMR [CDCl₃+CD₃OD (three drops)] δ 2.46 (4H, s, 2 x CH₂), 2.14 (2H, q, J = 7.2 Hz, CH₂CH₃), 0.99 (3H, t, J = 7.6 Hz, CH₂CH₃); ¹³C NMR [CDCl₃+CD₃OD (three drops), DEPT-135] δ 119.6 (C), 30.1 (2 x CH₂), 14.0 (CH₂), 12.3 (CH₃); HRMS m/z 149.0571 (M + Na⁺), calcd for C₇H₁₀O₂Na 149.0578.

2-Propyl-cyclopentane-1,3-dione (7m): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 174 °C; IR (Neat): v_{max} 2951, 2870, 1547, 1535, 1458, 1473, 1430, 1345, 1258, 1244, 1113 and 998 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.48 (4H, s, 2 x CH₂), 2.10 (2H, t, J = 7.2 Hz, CH₂CH₂CH₃), 1.42 (2H, sextet, J = 7.2 Hz, CH₂CH₂CH₃), 0.88 (3H, t, J = 7.2 Hz, CH₂CH₂CH₃); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 118.2 (C), 30.3 (2 x CH₂), 22.8 (CH₂), 22.1 (CH₂), 13.8 (CH₃); HRMS m/z 141.0922 (M+H⁺), calcd for C₈H₁₂O₂H 141.0915.

2-Butyl-cyclopentane-1,3-dione (7n): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 150 °C; IR (Neat): v_{max} 2930, 2856, 1547, 1530, 1427, 1344, 1279, 1257, 1206, 1119 and 998 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.48 (4H, s, 2 x CH₂), 2.13 (2H, t, J = 7.6 Hz, $CH_2CH_2CH_2CH_3$), 1.40-1.26 (4H, m, $CH_2CH_2CH_2CH_3$), 0.89 (3H, t, J = 7.2 Hz, $CH_2CH_2CH_2CH_3$); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 118.5 (C), 30.2 (2 x CH₂), 30.1 (CH₂), 22.6 (CH₂), 20.7 (CH₂), 13.8 (CH₃); HRMS m/z 155.1078 (M + H⁺), calcd for $C_9H_{14}O_2H$ 155.1072.

2-Pentyl-cyclopentane-1,3-dione (7o): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 136 °C; IR (Neat): v_{max} 2929, 2861, 1531, 1456, 1428, 1342, 1262, 1194, 1122, 999 and 663 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.46 (4H, br s, 2 x C H_2), 2.11 (2H, t, J = 8.0 Hz, C H_2 CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3$), 1.40 (2H, quintet, J = 7.6 Hz, CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3$), 1.33-1.24 (4H, m, CH $_2$ CH $_2$ CH $_2$ CH $_3$), 0.87 (3H, t, J = 6.8 Hz, CH $_2$ CH $_2$ CH $_2$ CH $_3$); ¹³C NMR [CDCl $_3$ + CD $_3$ OD (three drops), DEPT-135] δ 118.5 (C), 31.7 (CH $_2$), 30.3 (2 x CH $_2$), 27.6 (CH $_2$), 22.4 (CH $_2$), 20.9 (CH $_2$), 13.9 (CH $_3$); HRMS m/z 169.1224 (M + H $_3$), calcd for C $_{10}$ H $_{16}$ O $_{2}$ H 169.1228.

7p

2-Hexyl-cyclopentane-1,3-dione (7p): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 240 °C; IR (Neat): v_{max} 2923, 2852, 1531, 1454, 1427, 1348, 1285, 1254, 1123, 1001 and 664 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.48 (4H, s, 2 x CH₂), 2.12 (2H, t, J = 7.2 Hz, CH₂CH₂CH₂CH₂CH₂CH₃),

1.38 (2H, quintet, J = 7.6 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$), 1.33-1.20 (6H, m, $CH_2CH_2CH_2CH_2CH_2CH_3$), $0.86 \text{ (3H, t, } J = 6.8 \text{ Hz, CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\text{);}^{13}\text{C NMR [CDCl}_3 + \text{CD}_3\text{OD (three drops), DEPT-135]} \delta$ 118.4 (C), 31.6 (CH₂), 30.4 (2 x CH₂), 29.2 (CH₂), 27.9 (CH₂), 22.5 (CH₂), 20.9 (CH₂), 13.9 (CH₃); LRMS m/z 183.00 (M + H⁺), calcd for $C_{11}H_{18}O_2H$ 183.1307; Anal. calcd for $C_{11}H_{18}O_2$ (182.1307): C, 72.49; H, 9.95. Found: C, 72.584; H, 9.966%.

7q

2-Heptyl-cyclopentane-1,3-dione (7q): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 128 °C; IR (Neat): v_{max} 2927, 2852, 1532, 1456, 1426, 1344, 1276, 1253, 1123 and 998 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.46 (4H, s, 2 x CH₂), 2.11 (2H, t, J = 8.0 Hz, $CH_2CH_2CH_2CH_2CH_2CH_2CH_3$), quintet, J = 6.8 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$), 1.26 (8H, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 0.87 (3H, t, *J* = 6.8 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃); ¹³C NMR [CDCl₃+ CD₃OD (three drops), DEPT-135] δ 118.3 (C), 31.7 (CH₂), 30.2 (2 x CH₂), 29.4 (CH₂), 29.0 (CH₂), 27.9 (CH_2) , 22.5 (CH_2) , 20.8 (CH_2) , 13.8 (CH_3) ; HRMS m/z 197.1543 $(M + H^+)$, calcd for $C_{12}H_{20}O_2H$ 197.1541.

7r

2-Octyl-cyclopentane-1,3-dione (7r): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 130 °C; IR (Neat): v_{max} 2918, 2850, 1532, 1462, 1428, 1347, 1290, 1261, 1124, 999 and 664 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.46 (4H, s, 2 x CH₂), 2.11 (2H, t, J = 7.2 Hz, (10H, br s, $CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$), 0.87 (3H, t, J = 6.8 Hz, $CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$); ¹³C NMR [CDCl₃+CD₃OD (three drops), DEPT-135] δ 118.4 (C), 31.8 (CH₂), 30.4 (2 x CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 27.9 (CH₂), 22.5 (CH₂), 20.9 (CH₂), 13.9 (CH₃); HRMS m/z 211.1697 (M + H⁺), calcd for $C_{13}H_{22}O_2H$ 211.1698.

2-Isobutyl-cyclopentane-1,3-dione (7s): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 190 °C; IR (Neat): v_{max} 2929, 2496, 1552, 1427, 1350, 1313, 1258, 1124 and 998 cm⁻¹; 1 H NMR [CDCl₃+CD₃OD (three drops)] δ 2.48 (4H, s, 2 x CH_2), 2.00 (2H, d, J = 7.2 Hz, CH_2CHMe_2), 1.80 (1H, m, J = 6.8 Hz, CH_2CHMe_2), 0.85 [6H, d, J = 6.4 Hz, $CH_2CH(CH_3)_2$]; ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-

135] δ 117.4 (C), 30.1 (2 x CH₂), 29.7 (CH₂), 27.2 (CH), 22.2 (2 x CH₃); LRMS m/z 155.00 (M + H⁺), calcd for C₉H₁₄O₂H 155.0994; Anal. calcd for C₉H₁₄O₂ (154.0994): C, 70.10; H, 9.15. Found: C, 70.162; H, 9.180%.

2-(3-Methyl-butyl)-cyclopentane-1,3-dione (7t): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 138 °C; IR (Neat): v_{max} 2924, 2598, 1598, 1555, 1436, 1364, 1289, 1254 and 1128 cm⁻¹; ¹H NMR [CDCl₃+CD₃OD (three drops)] δ 2.47 (4H, s, 2 x C H_2), 2.12 (2H, t, J = 8.0 Hz, C H_2 CH $_2$ CH Me_2), 1.51 (1H, m, J = 6.4 Hz, C H_2 CH $_2$ CH Me_2), 1.28 (2H, td, J = 12.4, 7.2 Hz, C H_2 CH $_2$ CH Me_2), 0.89 (6H, d, J = 6.4 Hz, C H_2 CH $_2$ CH Me_2); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 118.5 (C), 36.7 (CH $_2$), 30.2 (2 x CH $_2$), 27.9 (CH), 22.2 (2 x CH $_3$), 18.8 (CH $_2$); LRMS m/z 169.05 (M + H $^+$), calcd for C $_{10}$ H $_{16}$ O $_2$ H 169.11; Anal. calcd for C $_{10}$ H $_{16}$ O $_2$ (168.1150): C, 71.39; H, 9.59. Found: C, 71.392; H, 9.578%.

(-)-(3*R*)-2-(3,7-Dimethyl-oct-6-enyl)-cyclopentane-1,3-dione (7u): Purified by column chromatography using EtOAc/hexane and isolated as a solid. $[\alpha]_D^{25} = -5.029^\circ$ (c = 1.075 g/100 mL, CHCl₃, 90%); Mp 70 °C; IR (Neat): v_{max} 2922, 1566, 1473, 1368, 1289 and 1256 cm⁻¹; ¹H NMR [CDCl₃] δ 5.08 (1H, d, J = 6.8 Hz), 2.56 (4H, s, 2 x C H_2), 2.30-2.10 (2H, m), 2.08-1.80 (2H, m), 1.67 (3H, s, C H_3), 1.59 (3H, s, C H_3), 1.50-1.30 (3H, m), 1.30-1.20 (1H, m), 1.19-1.10 (1H, m), 0.89 (3H, d, J = 6.4 Hz, C H_3); ¹³C NMR [CDCl₃, DEPT-135] δ 198.5 (C, C=O), 130.9 (C), 125.0 (CH), 118.7 (C), 36.9 (CH₂), 35.0 (CH₂), 32.6 (CH), 30.5 (single sharp peak, 2 x C H_2), 25.7 (C H_3), 25.5 (CH₂), 19.3 (CH₃), 18.7 (CH₂), 17.6 (CH₃); LRMS m/z 237.10 (M + H⁺), calcd for C₁₅H₂₄O₂H 237.18; Anal. calcd for C₁₅H₂₄O₂ (236.1776): C, 76.23; H, 10.24. Found: C, 76.217; H, 10.242%.; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 5.09 (1H, d, J = 6.8 Hz), 2.47 (4H, s, 2 x CH₂), 2.20-2.05 (2H, m), 2.05-1.85 (2H, m), 1.67 (3H, s, CH₃), 1.59 (3H, s, CH₃), 1.50-1.30 (3H, m), 1.30-1.20 (1H, m), 1.19-1.10 (1H, m), 0.90 (3H, d, J = 6.4 Hz, CH₃); ¹³C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 130.8 (C), 125.0 (CH), 118.6 (C), 36.9 (CH₂), 34.8 (CH₂), 32.4 (CH), 30.3 (broad peak, poor resolution, 2 x CH₂), 25.6 (CH₃), 25.4 (CH₂), 19.2 (CH₃), 18.6 (CH₂), 17.5 (CH₃).

(+)-(3*S*)-2-(3,7-Dimethyl-oct-6-enyl)-cyclopentane-1,3-dione (7*v*): Purified by column chromatography using EtOAc/hexane and isolated as a solid. $[\alpha]_D^{25} = +7.463^\circ$ (c = 0.55 g/100 mL, CHCl₃, 96%); Mp 70 °C; IR (Neat): v_{max} 2920, 1622, 1566, 1473, 1368, 1255, 1195, 1127, 904, 826 and 672 cm⁻¹; ¹H NMR [CDCl₃] δ 5.08 (1H, d, J = 6.0 Hz), 2.56 (4H, s, 2 x C H_2), 2.30-2.10 (2H, m), 2.10-1.80 (2H, m), 1.66 (3H, s, CH₃), 1.58 (3H, s, CH₃), 1.50-1.30 (3H, m), 1.30-1.20 (1H, m), 1.20-1.05 (1H, m), 0.90 (3H, d, J = 6.0 Hz, CH₃); ¹³C NMR [CDCl₃, DEPT-135] δ 198.5 (C, C=O), 130.9 (C), 125.0 (CH), 118.7 (C), 36.9 (CH₂), 35.0 (CH₂), 32.5 (CH), 30.5 (2 x CH₂), 25.7 (CH₃), 25.5 (CH₂), 19.3 (CH₃), 18.7 (CH₂), 17.6 (CH₃); LRMS m/z 237.10 (M + H⁺), calcd for C₁₅H₂₄O₂H 237.18; Anal. calcd for C₁₅H₂₄O₂ (236.1776): C, 76.23; H, 10.24. Found: C, 76.240; H, 10.243%.

2-Isopropyl-cyclopentane-1,3-dione (7w): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 216 °C; IR (Neat): v_{max} 2970, 2927, 2522, 1721, 1684, 1549, 1431, 1364, 1340, 1279 and 1120 cm⁻¹; ¹H NMR [CDCl₃+CD₃OD (three drops)] δ 2.74 (1H, heptet, J = 7.2 Hz, $CHMe_2$), 2.46 (4H, s, 2 x CH_2), 1.14 (6H, d, J = 7.2 Hz, 2 x CH_3 , $CHMe_2$); ¹³C NMR [CDCl₃+CD₃OD (three drops), DEPT-135] δ 122.9 (C), 30.3 (2 x CH_2), 22.6 (CH, $CHMe_2$), 20.0 (2 x CH_3 , $CHMe_2$); LRMS m/z 141.05 (M + H⁺), calcd for $C_8H_{12}O_2H$ 141.08; Anal. calcd for $C_8H_{12}O_2$ (140.0837): C, 68.54; H, 8.63. Found: C, 68.578; H, 8.685%.

2-Cyclohexyl-cyclopentane-1,3-dione (7x): Purified by column chromatography using EtOAc/hexane and isolated as a solid. Mp 230 °C; IR (Neat): v_{max} 2930, 2854, 1552, 1440, 1382, 1350, 1282, 1255, 1140, 1096 and 654 cm⁻¹; ¹H NMR [CDCl₃ + CD₃OD (three drops)] δ 2.43 (4H, s, 2 x CH₂), 2.38-2.35 (1H, m), 1.80-1.67 (5H, m), 1.50 (2H, m), 1.26 (3H, m); 13 C NMR [CDCl₃ + CD₃OD (three drops), DEPT-135] δ 122.3 (C), 32.8 (CH), 30.5 (2 x CH₂), 29.7 (2 x CH₂), 26.7 (2 x CH₂), 25.9 (CH₂); LRMS m/z 181.10 (M + H⁺), calcd for $C_{11}H_{16}O_2H$ 181.1150;

(+)-10a

(+)-7a-Benzyl-2,3,7,7a-tetrahydro-6H-indene-1,5-dione (10a): Purified by column chromatography using EtOAc/hexane and isolated as a solid. The ee was determined by chiral-phase HPLC using a Daicel Chiralpak AS-H column (hexane/i-PrOH = 70:30, flow rate 0.5 mL/min, $\lambda = 254$ nm), $t_R = 61.6$ min (major), $t_R = 75.2$ min (minor). $[\alpha]_D^{25} =$

 $+241.3^{\circ}$ (c = 0.80 g/100 mL, CHCl₃, 90.6% ee); Mp 154 °C; IR (Neat): v_{max} 2925, 1729, 1664, 1453, 1406, 1250, 1208, 1077, 754 and 706 cm⁻¹; ¹H NMR (CDCl₃) δ 7.28 (3H, m), 7.08 (2H, m) [Ar-H]; 6.06 (1H, s, olefinic-H), 3.06 (2H, AB q, J = 12.8 Hz), 2.60-2.40 (3H, m), 2.30-2.22 (3H, m), 2.10-2.01 (1H, m), 1.84 (1H, dt, J = 13.6, 6.0 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 217.5 (C, C=O), 198.0 (C, C=O), 169.2 (C), 135.5 (C), 129.6 (2 x CH), 128.6 (2 x CH), 127.5 (CH), 125.1 (CH), 54.1 (C), 42.4 (CH₂), 36.9 (CH₂), 32.8 (CH_2) , 29.2 (CH_2) , 28.1 (CH_2) ; LRMS m/z 241.00 $(M + H^+)$, calcd for $C_{16}H_{16}O_2H$ 241.1150; Anal. calcd for C₁₆H₁₆O₂ (240.1150): C, 79.97; H, 6.71. Found: C, 79.924; H, 6.718%.

Anal. calcd for C₁₁H₁₆O₂ (180.1150): C, 73.30; H, 8.95. Found: C, 73.365; H, 8.919%.

(-)-7a-Benzyl-2,3,7,7a-tetrahydro-6H-indene-1,5-dione (10a): Purified by column chromatography using EtOAc/hexane and isolated as a solid. The ee was determined by chiral-phase HPLC using a Daicel Chiralpak AS-H column (hexane/i-PrOH = 70:30, flow rate 0.5 mL/min, $\lambda = 254$ nm), $t_R = 61.6$ min (minor), $t_R = 75.2$ min (major). $[\alpha]_D^{25} = 293.6^{\circ}$ (c = 0.960 g/100 mL, CHCl₃, 90.2% ee).

(+)-7a-Ethyl-2,3,7,7a-tetrahydro-6H-indene-1,5-dione (10l): Purified by column chromatography using EtOAc/hexane and isolated as an oil. The ee was determined by chiral-phase HPLC using a Daicel Chiralpak AS-H column (hexane/i-PrOH = 70:30, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_R = 62.0$ min (minor), $t_R = 89.0$ min (major). $[\alpha]_D^{25} =$

 $+125.8^{\circ}$ (c = 0.16 g/100 mL, CHCl₃, 90% ee); IR (Neat): v_{max} 2973, 2953, 1732, 1658, 1651, 1465, 1364, 1217, 1147 and 1086 cm⁻¹; ¹H NMR (CDCl₃) δ 5.98 (1H, s, olefinic-H), 3.10-2.93 (1H, m), 2.85-2.67 (2H, m), 2.47-2.38 (2H, m), 2.27 (1H, ddd, J = 14.0, 4.8, 2.4 Hz), 1.79-1.70 (4H, m), 0.98 (3H, t, J = 7.2 Hz, CH₂CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 215.8 (C, C=O), 198.1 (C, C=O), 170.1 (C), 124.1 (CH), 52.6 (C), 35.8 (CH₂), 32.6 (CH₂), 27.1 (CH₂), 26.9 (CH₂), 25.8 (CH₂), 8.9 (CH₃); LRMS m/z 179.00 (M + H $^+$),

calcd for C₁₁H₁₄O₂H 179.0994; Anal. calcd for C₁₁H₁₄O₂ (178.0994): C, 74.13; H, 7.92. Found: C, 74.195; H, 7.928%.

(+)-7a-Propyl-2,3,7,7a-tetrahydro-6H-indene-1,5-dione (10m): Purified by column chromatography using EtOAc/hexane and isolated as an oil. The ee was determined by 10m chiral-phase HPLC using a Daicel Chiralpak AS-H column (hexane/i-PrOH = 70:30, flow rate 1.0 mL/min, $\lambda = 254 \text{ nm}$, $t_R = 25.0 \text{ min (major)}$, $t_R = 36.1 \text{ min (minor)}$. $[\alpha]_D^{25} = +225.83^{\circ}$ (c = 0.36 g/100 mL, CHCl₃, 94% ee); IR (Neat): v_{max} 2960, 2933, 2873, 1741, 1666, 1443, 1357, 1211 and 1089 cm⁻¹; ¹H NMR (CDCl₃) δ 5.98 (1H, s, olefinic-H), 3.05-2.90 (1H, m), 2.85-2.65 (2H, m), 2.54-2.38 (2H, m), 2.28-2.23 (1H, m), 1.80-1.60 (3H, m), 1.45-1.32 (3H, m), 0.91 (3H, t, J = 7.2 Hz, CH₂C H_3); ¹³C NMR (CDCl₃, DEPT-135) δ 216.1 (C, C=O), 198.2 (C, C=O), 170.1 (C), 124.1 (CH), 52.5 (C), 36.5 (CH₂), 35.9 (CH₂), 32.7 (CH₂), 27.0 (CH₂), 26.6 (CH₂), 17.9 (CH₂), 14.3 (CH₃); LRMS m/z 193.00 (M + H⁺), calcd for C₁₂H₁₆O₂H 193.1150; Anal. calcd for C₁₂H₁₆O₂ (192.1150): C, 74.97; H, 8.39. Found: C, 74.885; H, 8.406%.

(+)-7a-Butyl-2,3,7,7a-tetrahydro-6H-indene-1,5-dione (10n): Purified by column chromatography using EtOAc/hexane and isolated as an oil. The ee was determined by chiral-phase HPLC using a Daicel Chiralpak AS-H column (hexane/i-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm), t_R = 20.0 min (major), t_R = 25.2 min (minor). $[\alpha]_D^{25}$ =

rate 1.0 mL/min, λ = 254 nm), t_R = 20.0 min (major), t_R = 25.2 min (minor). [α]_D²⁵ = +148.3° (c = 0.32 g/100 mL, CHCl₃, 94.3% ee); IR (Neat): v_{max} 2957, 2933, 2869, 1742, 1666, 1461, 1358, 1246, 1209 and 1095 cm⁻¹; ¹H NMR (CDCl₃) δ 5.98 (1H, s, olefinic-H), 3.03-2.93 (1H, m), 2.85-2.67 (2H, m), 2.53-2.37 (2H, m), 2.25 (1H, dd, J = 14.2, 5.2 Hz), 1.80-1.62 (4H, m), 1.40-1.24 (4H, m), 0.90 (3H, t, J = 7.2 Hz, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 216.0 (C, C=O), 198.2 (C, C=O), 170.1 (C), 124.1 (CH), 52.4 (C), 35.9 (CH₂), 34.1 (CH₂), 32.8 (CH₂), 27.0 (CH₂), 26.59 (CH₂), 26.57 (CH₂), 23.0 (CH₂), 13.8 (CH₃); LRMS m/z 207.00 (M + H⁺), calcd for C₁₃H₁₈O₂H 207.1307; Anal. calcd for C₁₃H₁₈O₂ (206.1307): C, 75.69; H, 8.80. Found: C, 75.613; H, 8.794%.

7a-Ethyl-3a-hydroxy-hexahydro-indene-1,5-dione (11l): Purified by column chromatography using EtOAc/hexane and isolated as an oil. IR (Neat): v_{max} 3456 (O-H), 2967, 2883, 1721, 1714, 1464, 1411, 1292, 1231, 1138 and 1062 cm⁻¹; ¹H NMR (CDCl₃) δ 2.65-2.46 (4H, m), 2.40-2.22 (3H, m), 2.20-2.08 (2H, m), 2.05-1.94 (1H, m), 1.85-1.76 (2H, m), 1.74-1.64 (1H, m), 0.97 (3H, t, J = 7.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 217.2 (C, C=O), 209.6 (C, C=O), 82.3 (C, C-OH), 55.3 (C), 51.1 (CH₂), 37.1 (CH₂), 34.3 (CH₂), 33.2 (CH₂), 25.8 (CH₂), 22.9 (CH₂), 8.2 (CH₃); LRMS m/z 197.00 (M + H⁺), calcd for C₁₁H₁₆O₃H 197.1099; Anal. calcd for C₁₁H₁₆O₃ (196.1099): C, 67.32; H, 8.22. Found: C, 67.347; H, 8.259%.

ŌН 11m

3a-Hydroxy-7a-propyl-hexahydro-indene-1,5-dione (11m): Purified by column chromatography using EtOAc/hexane and isolated as an oil. IR (Neat): v_{max} 3448 (O-H), 2960, 2930, 1720, 1715, 1414, 1211 and 1094 cm⁻¹; ¹H NMR (CDCl₃) δ 2.63-2.46 (4H, m), 2.39-2.24 (3H, m), 2.20-2.05 (2H, m), 2.00-1.94 (1H, m), 1.95-1.75 (1H, m), 1.70-1.56 (2H,

m), 1.48-1.33 (2H, m), 0.94 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 217.4 (C, C=O), 209.4 (C, C=O), 82.3 (C, C-OH), 55.3 (C), 51.0 (CH₂), 37.2 (CH₂), 34.3 (CH₂), 33.2 (CH₂), 32.5 (CH₂), 26.4 (CH₂), 17.1 (CH₂), 14.8 (CH₃); LRMS m/z 211.00 (M + H⁺), calcd for $C_{12}H_{18}O_3H$ 211.1256; Anal. calcd for C₁₂H₁₈O₃ (210.1256): C, 68.54; H, 8.63. Found: C, 68.526; H, 8.619%.

ŌН 11n

7a-Butyl-3a-hydroxy-hexahydro-indene-1,5-dione (11n): Purified by chromatography using EtOAc/hexane and isolated as an oil. IR (Neat): v_{max} 3452 (O-H), 2957, 2868, 1720, 1715, 1651, 1413, 129, 1178 and 1099 cm⁻¹; ¹H NMR (CDCl₃) δ 2.94 (1H, br s, O-H), 2.63-2.45 (3H, m), 2.40-2.26 (3H, m), 2.21-2.07 (2H, m), 2.00-1.93 (1H, m), 1.87-1.77 (1H, m), 1.73-1.53 (2H, m), 1.43-1.21 (4H, m), 0.91 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 217.4 (C, C=O), 209.6 (C, C=O), 82.2 (C, C-OH), 55.2 (C), 51.0 (CH₂), 37.2 (CH₂), 34.3 (CH₂), 33.2 (CH₂), 30.0 (CH₂), 26.4 (CH₂), 25.8 (CH₂), 23.4 (CH₂), 13.9 (CH₃); LRMS m/z 225.00 (M + H^{+}), calcd for $C_{13}H_{20}O_{3}H$ 224.1412; Anal. calcd for $C_{13}H_{20}O_{3}$ (224.1412): C, 69.61; H, 8.99. Found: C, 69.690; H, 8.969%.

2-Benzyl-2-(3-oxo-butyl)-cyclopentane-1,3-dione (12a): Purified by chromatography using EtOAc/hexane and isolated as a solid. Mp 114 °C. IR (Neat): ν_{max} 2922, 2852, 1721, 1713, 1448, 1407, 1374, 1167, 758 and 707 cm⁻¹; ¹H NMR (CDCl₃) δ 12a 7.24-7.21 (3H, m), 7.04-7.01 (2H, m) [Ph-H]; 2.93 (2H, s, CH_2Ph), 2.54 (2H, AB q, J =6.8 Hz), 2.45 (2H, t, J = 7.2 Hz), 2.10 (3H, s, CH₃), 2.00 (2H, t, J = 7.2 Hz), 1.96 (2H, AB q, J = 6.8 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 217.1 (2 x C, C=O), 207.6 (C, C=O), 135.1 (C), 129.7 (2 x CH), 128.6 (2 x CH), 127.3 (CH), 61.1 (C), 42.9 (CH₂), 37.8 (CH₂), 36.3 (2 x CH₂), 29.9 (CH₃), 28.4 (CH₂); LRMS m/z 259.00 (M + H $^{+}$), calcd for $C_{16}H_{18}O_{3}H$ 259.1256; Anal. calcd for $C_{16}H_{18}O_{3}$ (258.1256): C, 74.39; H, 7.02. Found: C, 74.403; H, 7.073%.

2-Ethyl-2-(3-oxo-butyl)-cyclopentane-1,3-dione (12l): Purified chromatography using EtOAc/hexane and isolated as an oil. IR (Neat): v_{max} 2971, 2927, 1720, 1713, 1418, 1364, 1255, 1170 and 1089 cm⁻¹; ¹H NMR (CDCl₃) δ 2.88-2.66 (4H, m), 2.42 (2H, t, J = 6.8 Hz), 2.10 (3H, s, CH₃), 1.88 (2H, t, J = 7.2 Hz), 1.65 (2H, q, J =

7.2 Hz), 0.80 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 216.1 (2 x C, C=O), 207.9 (C, C=O), 59.7 (C), 37.5 (CH₂), 35.6 (2 x CH₂), 29.9 (CH₃), 28.0 (CH₂), 26.4 (CH₂), 8.7 (CH₃); LRMS m/z 197.00 (M

 $+ H^{+}$), calcd for $C_{11}H_{16}O_{3}H$ 197.1099; Anal. calcd for $C_{11}H_{16}O_{3}$ (196.1099): C, 67.32; H, 8.22. Found: C, 67.322; H, 8.217%.

2-(3-Oxo-butyl)-2-propyl-cyclopentane-1,3-dione (12m): Purified by column chromatography using EtOAc/hexane and isolated as an oil. IR (Neat): IR (Neat): v_{max} 12m 2962, 2932, 2875, 1720, 1715, 1420, 1364, 1170 and 1098 cm⁻¹; ¹H NMR (CDCl₃) δ 2.82-2.64 (4H, m),

2.42 (2H, t, J = 7.2 Hz), 2.09 (3H, s, CH₃), 1.88 (2H, t, J = 7.2 Hz), 1.58 (2H, m), 1.16 (2H, m), 0.84 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 216.3 (2 x C, C=O), 207.8 (C, C=O), 59.4 (C), 37.6 (CH₂), 37.1 (CH₂), 35.6 (2 x CH₂), 29.9 (CH₃), 27.1 (CH₂), 17.8 (CH₂), 14.3 (CH₃); LRMS m/z 211.00 (M + H $^+$), calcd for $C_{12}H_{18}O_3H$ 211.1256; Anal. calcd for $C_{12}H_{18}O_3$ (210.1256): C, 68.54; H, 8.63. Found: C, 68.549; H, 8.658%.

12n

2-Butyl-2-(3-oxo-butyl)-cyclopentane-1,3-dione (12n): chromatography using EtOAc/hexane and isolated as an oil. IR (Neat): v_{max} 2958, 2932, 2870, 1720, 1715, 1652, 1420, 1366, 1170 and 1100 cm $^{-1}$; ¹H NMR (CDCl₃) δ 2.85-2.65 (4H, m), 2.42 (2H, t, J = 7.2 Hz), 2.09 (3H, s, CH₃), 1.88 (2H, t, J = 7.2 Hz), 1.58 (2H, t, J = 7.2 Hz)m), 1.30-1.20 (2H, m), 1.13-1.07 (2H, m), 0.84 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃,

DEPT-135) & 216.3 (2 x C, C=O), 207.8 (C, C=O), 59.3 (C), 37.6 (CH₂), 35.6 (2 x CH₂), 34.8 (CH₂), 29.9 (CH_3) , 27.1 (CH_2) , 26.5 (CH_2) , 23.0 (CH_2) , 13.6 (CH_3) ; LRMS m/z 225.00 $(M + H^+)$, calcd for $C_{13}H_{20}O_3H$ 225.1412; Anal. calcd for C₁₃H₂₀O₃ (224.1412): C, 69.61; H, 8.99. Found: C, 69.626; H, 9.015%.

OCH₃ 13a

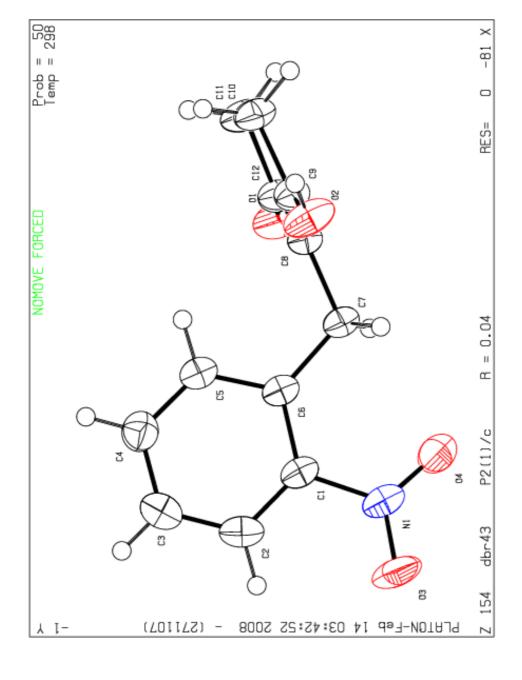
2-Benzyl-3-methoxy-cyclopent-2-enone (13a): Purified by column chromatography using EtOAc/hexane and isolated as oil. IR (Neat): v_{max} 3027, 2919, 1685, 1623 (C=O), 1358, 1258, 1087, 1041 and 962 cm⁻¹; ¹H NMR (CDCl₃) δ 7.26-7.20 (4H, m), 7.17-7.13 (1H, m) [Ar-H]; 3.92 (3H, s, OC H_3), 3.45 (2H, s, PhC H_2), 2.64 (2H, t, J = 4.8 Hz), 2.44 (2H, m); ¹³C NMR (CDCl₃, DEPT-135) δ 204.1 (C, C=O), 185.0 (C), 140.1 (C), 128.4 (2 x CH), 128.1 (2 x CH), 125.7 (CH), 119.8 (C), 56.4 (CH₃, OCH₃), 33.4 (CH₂), 27.1 (CH₂), 24.5 (CH₂); LCMS m/z 203.10 (M + H $^{+}$), calcd for $C_{13}H_{14}O_2H$ 203.0994; Anal. calcd for $C_{13}H_{14}O_2$ (202.0994): C, 77.20; H, 6.98. Found: C, 77.334; H,

OCH₃ 131

6.966%.

2-Ethyl-3-methoxy-cyclopent-2-enone (131): Purified by column chromatography using EtOAc/hexane and isolated as oil. IR (Neat): v_{max} 3471, 2966, 1683, 1621 (C=O), 1614, 1462, 1360, 1268, 1123, 1016, 914 and 618 cm⁻¹; ¹H NMR (CDCl₃) δ 3.95 (3H, s, OCH₃), 2.66 (2H, br t, J = 4.4 Hz), 2.43 (2H, br t, J = 4.4 Hz), 2.14 (2H, q, J = 7.6 Hz, CH_2CH_3), 0.98 (3H, t, J = 7.6 Hz, CH_2CH_3); ¹³C NMR (CDCl₃, DEPT-135) δ 204.8 (C, C=O), 184.3 (C), 122.1 (C), $56.2 \text{ (CH}_3, \text{ OCH}_3), 33.4 \text{ (CH}_2), 24.4 \text{ (CH}_2), 14.4 \text{ (CH}_2), 12.5 \text{ (CH}_3); LCMS m/z 141.15 \text{ (M} + \text{H}^+), calcd for the second of the second of$ $C_8H_{12}O_2H$ 141.0837; Anal. calcd for $C_8H_{12}O_2$ (140.0837): C, 68.54; H, 8.63. Found: C, 68.536; H, 8.613%.

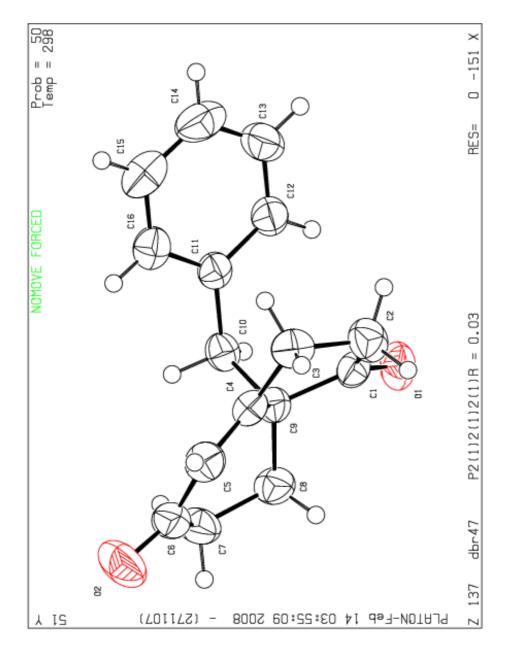
2-Isopropyl-3-methoxy-cyclopent-2-enone (13w): Purified by column chromatography

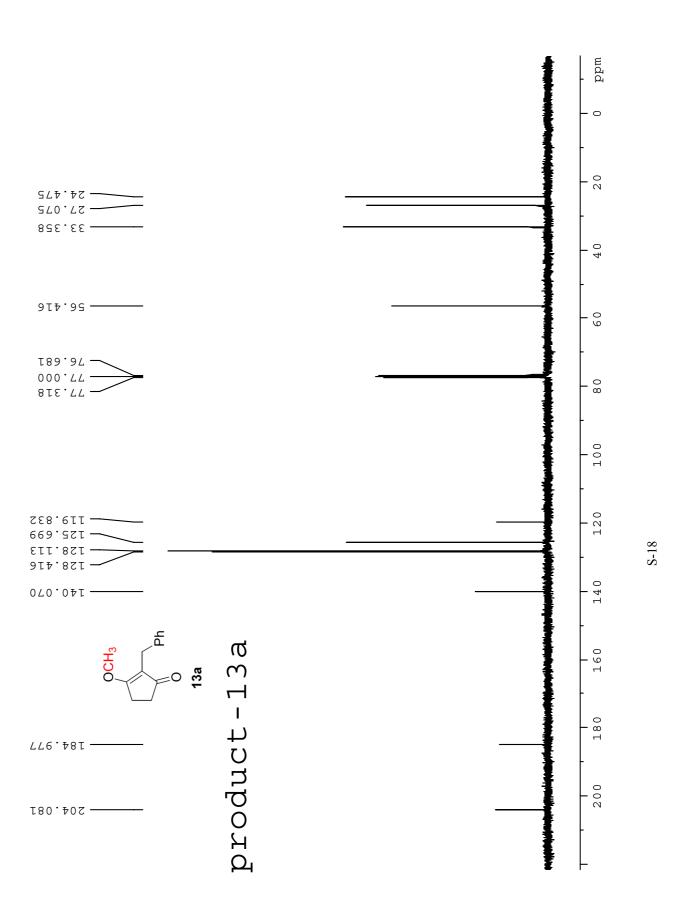


using EtOAc/hexane and isolated as oil. IR (Neat): v_{max} 2960, 1681, 1612 (C=O), 1463, 1375, 1352, 1278, 1248, 1060 and 1033 cm⁻¹; ¹H NMR (CDCl₃) δ 3.92 (3H, s, OCH₃), 2.74 (1H, heptet, J = 7.2 Hz, CHMe₂), 2.64-2.62 (2H, m), 2.41-2.39 (2H, m), 1.11 (6H, d, J = 7.2Hz, 2 x CH₃, CHMe₂); ¹³C NMR [CDCl₃, DEPT-135] δ 204.4 (C, C=O), 184.0 (C), 125.7 (C), 56.1 (CH₃, OCH₃), 33.5 (CH₂), 24.1 (CH₂), 22.8 (CH), 20.1 (2 x CH₃); LCMS m/z 155.10 (M + H⁺), calcd for $C_9H_{14}O_2H$ 155.0994; Anal. calcd for $C_9H_{14}O_2$ (154.0994): C, 70.10; H, 9.15. Found: C, 70.070; H, 9.164%.

Datablock: dbr43 (Product 7i)

Wavelength=0.71073 c=7.924(3) (6)gamma=90	Reported	1040.8(6)	P2(1)/c	٠٠	C12 H11 N O4	C12 H11 N O4	233.22	1.488	4	0.113	488.0		13,15,9	2007	0.942,0.998)= 25.840	wR2 (reflections) = $0.1157(2007)$	
C-C = 0.0028 A 805(4) b=12.994(5) =90 beta=110.696		1040.7(7)	P 21/c	-P 2ybc	C12 H11 N O4	C12 H11 N O4	233.22	1.488	4	0.113	488.0	488.28	13,15,9	2008	0.976,0.998	0.951	Correction method= AbsCorr=EMPIRICAL	s= Ratio = Theta(max)=		Npar= 155
Bond precision: Cell: a=10.8 Temperature.298 K		Volume	Space group	Hall group	Moiety formula	Sum formula	Mr	Dx,g cm-3	Z	Mu (mm-1)	F000	F000'	h,k,lmax	Nref	Tmin, Tmax	Tmin'	Correction method	Data completeness= Ratio = 1.000	R(reflections) = 0.0422(1390)	S = 1.021


Datablock dbr43 - ellipsoid plot



Datablock: dbr47 (Product 10a)

Wavelength=0.71073	C=15.178(2)	gamma=90		Reported	1279.8(3)	P2(1)2(1)2(٠.	٠.	C16 H16 O2	240.29	1.247	4	0.081	512.0		8,14,18	1326	0.953,0.984			= 25.000	wR2(reflections)= 0.0880(1326)		
C-C = 0.0029 A	a=7.0365(9) b=11.9831(16)	a=90 beta=90	X	Calculated	1279.8(3)	P 21 21 21	P 2ac 2ab	C16 H16 O2	C16 H16 O2	240.29	1.247	4	0.081	512.0	512.24	8,14,18	1327 (2261)	0.969,0.984	0.953	1= AbsCorr=MULTI-SCAN	3 = 1.00(0.59) Theta(max) = 25.000		Npar= 163	
Bond precision:	Cell: a=7.	alpha=90	Temperature: 298 K		Volume	Space group	Hall group	Moiety formula	Sum formula	Mr	Dx,g cm-3	Z	Mu (mm-1)	F000	F000'	h,k,lmax	Nref	Tmin, Tmax	Tmin'	Correction method=	Data completeness=	R(reflections) = 0.0332(1258)	S = 1.061	

Datablock dbr47 - ellipsoid plot

