Synthesis of spiroacetal-triazoles as privileged natural product-like scaffolds using "click chemistry"

Ka Wai Choi and Margaret A. Brimble*

Department of Chemistry, University of Auckland, 23 Symonds St, Auckland, New Zealand TEL: +64 9 3737599 ext. 88259; FAX: +64 9 3737422; Email: m.brimble@auckland.ac.nz

Supplementary Information

General

Experiments requiring anhydrous conditions were performed under a dry nitrogen or argon atmosphere using oven- or flame-dried apparatus and standard techniques in handling air- and/or moisture-sensitive materials unless otherwise stated. Anhydrous dichloromethane (CH₂Cl₂) and triethylamine (NEt₃) were distilled from calcium hydride; anhydrous tetrahydrofuran (THF) was distilled from sodium wire; anhydrous dry toluene was distilled from sodium wire. Solvents used (except for Et₂O) for reactions, work-up extractions and chromatographic purifications were distilled, unless otherwise stated. Commercial reagents were analytical grade or were purified by standard procedures prior to use.¹ Separation of mixtures was performed by flash chromatography using Kieselgel S 63-100 µm (Riedel-de-Hahn) silica gel with the indicated eluent. Mass spectra were recorded on a VG-70SE mass spectrometer at a nominal accelerating voltage of 70 eV for low resolution and at a nominal resolution of 5000 to 10000 as appropriate for high resolution. Ionisation was effected using electron impact (EI^+), fast atom bombardment (FAB⁺) using 3-nitrobenzyl alcohol as the matrix or chemical ionisation (CI⁺) using ammonia as a carrier gas. Major and significant fragments are quoted in the form x (y), where x is the mass to charge ratio (m/z) and y is the percentage abundance relative to the base peak (100%). Infrared spectra were obtained using a Perkin Elmer Spectrum 1000 Fourier Transform Infrared spectrometer as a thin film between sodium chloride plates. Absorption peaks are reported as wavenumbers (ν , cm⁻¹). NMR spectra were recorded on either a Bruker DRX300 spectrophotometer operating at 300 MHz for ¹H nuclei and 75 MHz for ¹³C nuclei. or on a Bruker DRX400 spectrophotometer operating at 400 MHz for ¹H nuclei and 100 MHz for ¹³C nuclei, at ambient temperature. ¹H NMR chemical shifts are reported in parts per million (ppm) relative to the tetramethylsilane peak ($\delta 0.00$ ppm). ¹H NMR values are reported as chemical shift δ , relative integral, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quintet; m, multiplet), coupling constant (J, Hz) and assignment. Coupling constants were taken directly from the spectra. 13 C NMR chemical shifts are reported in ppm relative to the chloroform peak (δ 77.0 ppm). ¹³C NMR values are reported as chemical shifts δ , multiplicity and assignment. Assignments were made with the aid of DEPT, COSY, HSQC, HMBC and NOESY experiments.

Synthesis of triazole 14a-g

General procedures for 1,3-dipolar cycloaddition of azide 5a to alkynes 6

Method A: For terminal alkynes with catalysis by Cul•[P(OEt)₃]

To a solution of azide **5a** and alkyne **6** (50.0–100 μ L) in anhydrous toluene (250–500 μ L) under an atmosphere of argon was added CuI•[P(OEt)₃] (0.10–0.12 equiv.). The resulting mixture was heated to reflux for 1 h. After cooling to room temperature, the mixture was purified directly by flash chromatography using hexane–EtOAc as eluent to give the spiroacetal containing a 1,4-disubstituted triazole substituent.

Method B: For symmetrical internal alkynes

A solution of azide **5a** and alkyne **6** (100 μ L) in anhydrous toluene (500 μ L) was heated to reflux for 1 h. The reaction mixture was purified directly by flash chromatography using hexane–EtOAc as eluent to give the spiroacetal containing a 1,4,5-trisubstituted triazole substituent.

Method C: For trimethylsilylacetylene

A solution of azide **5a** and trimethylsilylacetylene **6** (50.0–100 μ L) in anhydrous toluene (500 μ L) was heated at 110 °C in a sealed vessel. If the cycloaddition was not complete in 18 h (TLC), a second portion of trimethylsilylacetylene (50.0–100 μ L) was added and the mixture was heated at 110 °C overnight. The reaction mixture was purified directly by flash chromatography using hexane–EtOAc as eluent to give the spiroacetal containing a 1,4,5-trisubstituted triazole substituent.

4-[2''-(Benzyloxy)ethyl]-1-{(2'S*,6'S*,8'S*)-8'-(*tert*-butyldiphenylsilyloxymethyl)-1',7'dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole (14a)

Method A: The *title compound* **14a** (39.3 mg, 98%) was prepared as a pale yellow oil from azide **5a** (30.0 mg, 64.4 μ mmol), 1-(benzyloxy)but-3-yne (**6a**, 100 μ L) and CuI•[P(OEt)₃] (2.53 mg, 7.10 μ mol) in toluene (500 μ L) using the general procedure (method A) described above. Purification was carried out by flash chromatography using hexane–EtOAc (19:1, 7:3 to 1:1) as eluent. HRMS (FAB): found MH⁺, 626.3413, C₃₇H₄₈N₃O₄Si requires 626.3414. ν_{max} (film)/cm⁻¹: 2931 (C–H), 1455,

1427, 1222 (C–O), 1112 (C–O), 979, 702. $\delta_{\rm H}$ (400 MHz; CDCl₃): 1.06 (9 H, s, OSiPh₂'Bu), 1.25–1.31 (1 H, m, 9'-H_A), 1.42–1.51 (1 H, m, 11'-H_A), 1.54–1.62 (3 H, m, 5'-H_A, 9'-H_B and 10'-H_B), 1.70–1.81 (3 H, m, 4'-H_A, 5'-H_B and 11'-H_B), 1.81–1.96 (2 H, m, 3'-H_A and 10'-H_B), 2.05–2.18 (2 H, m, 3'-H_B and 4'-H_B), 3.08 (2 H, t, $J_{1",2"}$ 6.7, 1"-H), 3.63 (1 H, dd, J_{AB} 10.5 and $J_{8'-CH_2,8'}$ 4.0, 8'-*CH_A*H_BO), 3.72 (1 H, dd, J_{AB} 10.5 and $J_{8'-CH_2,8'}$ 4.0, 8'-*CH_A*H_BO), 3.72 (1 H, dd, J_{AB} 10.5 and $J_{8'CH_2,8'}$ 6.3, 8'-*CH_A*H_BO), 3.79 (2 H, t, $J_{2",1"}$ 6.7, 2"-H), 3.87–3.94 (1 H, m, 8'-H), 4.55 (2 H, s, O*CH*₂Ph), 6.01 (1 H, dd, $J_{2'ax,3'ax}$ 11.1 and $J_{2'ax,3'ay}$ 2.4, 2'-H_{ax}), 7.27–7.34 (5 H, m, O*CH*₂*Ph*), 7.34–7.43 (6 H, m, O*SiPh*₂'Bu), 7.54 (1 H, s, 5-H), 7.72–7.75 (4 H, m, O*SiPh*₂'Bu). $\delta_{\rm C}$ (75 MHz; CDCl₃): 18.0 (CH₂, C-4'), 18.1 (CH₂, C-10'), 19.2 (C, O*SiPh*₂'*Bu*), 26.5 (CH₂, C-9'), 26.6 (CH₂, C-1''), 26.8 (CH₃, O*SiPh*₂'*Bu*), 30.8 (CH₂, C-3'), 34.5 (CH₂, C-5'), 34.6 (CH₂, C-11'), 67.2 (CH₂, 8'-CH₂O), 69.1 (CH₂, C-2''), 71.0 (CH, C-8'), 73.0 (CH₂, O*CH*₂*Ph*), 81.0 (CH, C-2'), 98.8 (C, C-6'), 119.9 (CH, C-5), 127.6 (CH, O*SiPh*₂'*Bu*), 133.6 (C, O*SiPh*₂'*Bu*), 133.7 (C, O*SiPh*₂'*Bu*), 135.6 (CH, O*SiPh*₂'*Bu*), 138.2 (C, O*CH*₂*Ph*), 144.8 (C, C-4). *m/z* (FAB): 626 (MH⁺, 6%), 423 (C₂₆H₃₅O₃Si, 55), 405 (31), 386 (M – OSiPh_2'Bu, 8), 239 (SiPh₂'*Bu*, 12), 207 (54), 204 (51), 197 (35), 154 (19), 135 (100), 105 (22), 91 (83).

1-{(2'S*,6'S*,8'S*)-8'-(*tert*-Butyldiphenylsilyloxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-4-hydroxymethyl-1*H*-1,2,3-triazole (14b)

Method A: The *title compound* **14b** (13.9 mg, 83%) was prepared as a pale yellow oil from azide **5a** (15.0 mg, 32.2 µmol), prop-2-yn-1-ol (**6b**, 100 µL) and CuI•[P(OEt)₃] (1.15 mg, 3.22 µmol) in toluene (500 µL) using the general procedure (method A) described above. Purification was carried out by flash chromatography using hexane–EtOAc (9:1 to 3:2) as eluent. HRMS (FAB): found MH⁺, 522.2797, C₂₉H₄₀N₃O₄Si requires 522.2788. v_{max} (film)/cm⁻¹: 3369 (O–H), 2930 (C–H), 2856, 1428, 1222, 1112 (C–O), 1091 (C–O), 980, 703. $\delta_{\rm H}$ (300 MHz; CDCl₃): 1.07 (9 H, s, OSiPh₂'*Bu*), 1.29–1.36 (1 H, m, 9'-H_A), 1.41–1.51 (1 H, m, 11'-H_A), 1.51–1.64 (3 H, m, 5'-H_A, 9'-H_B and 10'-H_A), 1.68–1.87 (5 H, m, 4'-H_A, 5'-H_B, 10'-H_B, 11'-H_B and OH), 1.87–1.99 (1 H, m, 3'-H_A), 2.07–2.21 (2 H, m, 3'-H_B and 4'-H_B), 3.63 (1 H, dd, J_{AB} 10.5 and $J_{8'-CH_2,8'}$ 4.2, 8'-CH₄H_BO), 3.83 (1 H, dd, J_{AB} 10.5 and $J_{8'-CH_2,8'}$ 4.2, 8'-CH₄H_BO), 6.03 (1 H, dd, $J_{2'ax,3'ax}$ 11.0 and $J_{2'ax,3'ax}$ 2.4, 2'-H_{ax}), 7.34–7.45 (6 H, m, Ph), 7.68 (1 H, s, 5-H), 7.70–7.76 (4 H, m, Ph). $\delta_{\rm C}$ (75 MHz; CDCl₃): 18.0 (CH₂, C-4'), 18.2 (CH₂, C-10'), 19.2 (C, OSiPh₂'*Bu*), 26.5 (CH₂, C-9'), 26.8 (CH₃, OSiPh₂'*Bu*), 30.9 (CH₂, C-3'), 34.5 (CH₂, C-5'), 34.6 (CH₂, C-11'), 56.7 (CH₂, 4-CH₂OH), 67.1 (CH₂, 8'-CH₂O), 71.2 (CH, C-8'), 81.2 (CH, C-2'), 98.9 (C, C-6'), 119.9 (CH, C-5), 127.6 (CH, Ph), 129.6 (CH, Ph), 133.6 (C, Ph), 133.7 (C, Ph), 135.6 (CH, Ph), 135.6 (CH, Ph), 147.2 (C, C-

4). *m/z* (FAB): 522 (MH⁺, 3%), 464 (M – 'Bu, 7), 423 (C₂₆H₃₅O₃Si, 82), 365 (11), 239 (SiPh₂'Bu, 9), 207 (31), 199 (38), 197 (35), 137 (29), 135 (100).

1-{(2'S*,6'S*,8'S*)-8'-(*tert*-Butyldiphenylsilyloxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-4-phenyl-1*H*-1,2,3-triazole (14c)

Method A: The title compound 14c (14.2 mg, 96%) was prepared as a pale yellow oil from azide 5a (12.0 mg, 25.8 µmol), phenylacetylene (6c, 50.0 µL) and CuI•[P(OEt)₃] (1.07 mg, 3.00 µmol) in toluene (250 µL) using the general procedure (method A) described above. Purification was carried out by flash chromatography using hexane-EtOAc (99:1 to 19:1) as eluent. HRMS (FAB): found MH⁺, 568.3001, $C_{34}H_{42}N_3O_3Si$ requires 568.2996. v_{max} (film)/cm⁻¹: 2932 (C–H), 2857, 1428, 1390, 1220, 1112 (C–O), 1074 (C–O), 1024, 979, 702. $\delta_{\rm H}$ (300 MHz; CDCl₃): 1.08 (9 H, s, OSiPh₂^tBu), 1.27–1.34 (1 H, m, 9'-H_A), 1.44–1.55 (1 H, m, 11'-H_A), 1.56–1.65 (3 H, m, 5'-H_A, 9'-H_B and 10'-H_A), 1.73–1.89 (4 H, m, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_B), 1.92–2.04 (1 H, m, 3'-H_A), 2.10–2.26 (2 H, m, 3'-H_B and 4'-H_B), 3.65 (1 H, dd, J_{AB} 10.5 and J_{8'-CH_{2,8'} 4.2, 8'-CH_AH_BO), 3.74 (1 H, dd, J_{AB} 10.5 and J_{8'-CH_{2,8'} 6.3,}} 8'-CH_AH_BO), 3.89–3.98 (1 H, m, 8'-H), 6.01 (1 H, dd, J_{2'x,3'x} 11.1 and J_{2'x,3'm} 2.4, 2'-H_{ax}), 7.32–7.47 (9 H, m, OSiPh₂^tBu and Ph), 7.72–7.78 (4 H, m, OSiPh₂^tBu), 7.84–7.89 (2 H, m, Ph), 7.90 (1 H, s, 5-H). δ_C (75 MHz; CDCl₃): 18.0 (CH₂, C-4'), 18.2 (CH₂, C-10'), 19.3 (C, OSiPh₂^tBu), 26.5 (CH₂, C-9'), 26.8 (CH₃, OSiPh₂^tBu), 31.1 (CH₂, C-3'), 34.5 (CH₂, C-5'), 34.6 (CH₂, C-11'), 67.2 (CH₂, 8'-CH₂O), 71.2 (CH, C-8'), 81.2 (CH, C-2'), 99.0 (C, C-6'), 117.7 (CH, C-5), 125.8 (CH, Ph), 127.7 (CH, OSiPh2'Bu), 128.1 (CH, Ph), 128.8 (CH, Ph), 129.6 (CH, OSiPh2'Bu), 129.6 (CH, OSiPh2'Bu), 130.8 (C, Ph), 133.7 (C, OSiPh₂^tBu), 135.6 (CH, OSiPh₂^tBu), 135.7 (CH, OSiPh₂^tBu), 147.5 (C, C-4). m/z (FAB): 568 (MH⁺, 3%), 510 (M – ^{*t*}Bu, 7), 423 (C₂₆H₃₅O₃Si, 45), 239 (SiPh₂^{*t*}Bu, 8), 207 (38), 199 (31), 197 (37), 137 (21), 135 (100), 121 (16), 91 (18).

Ethyl 1-{(2'*S**,6'*S**,8'*S**)-8'-(*tert*-butyldiphenylsilyloxymethyl)-1',7'dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole-4-carboxylate (14d)

Method A: The *title compound* **14d** (9.00 mg, 84%) was prepared as a pale yellow oil from azide **5a** (9.00 mg, 19.3 µmol), ethyl propiolate (**6d**, 50.0 µL) and CuI•[P(OEt)₃] (0.71 mg, 2.00 µmol) in toluene (250 µL) using the general procedure (method A) described above. Purification was carried out by flash chromatography using hexane–EtOAc (19:1 to 9:1) as eluent. HRMS (FAB): found MH⁺, 564.2892, C₃₁H₄₂N₃O₅Si requires 564.2894. v_{max} (film)/cm⁻¹: 2932 (C–H), 1742 (C=O), 1428, 1221 (C–O), 1113 (C–O), 980, 703. $\delta_{\rm H}$ (300 MHz; CDCl₃): 1.06 (9 H, s, OSiPh₂^{*i*}Bu), 1.28–1.35 (1 H, m, 9'-H_A), 1.42 (3 H, t, $J_{\rm CH_3,CH_2}$ 7.1, OCH₂*CH*₃), 1.46–1.55 (1 H, m, 11'-H_A), 1.55–1.65 (3 H, m, 5'-H_A, 9'-H_B and 10'-H_A), 1.69–1.92 (5 H, m, 3'-H_A, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_B), 2.11–2.23 (2 H, m, 3'-H_B and

4'-H_B), 3.62 (1 H, dd, J_{AB} 10.5 and $J_{8'-CH_2,8'}$ 4.2, 8'-*CH*_AH_BO), 3.72 (1 H, dd, J_{AB} 10.5 and $J_{8-CH_2,8'}$ 6.3, 8'-CH_AH_BO), 3.82–3.89 (1 H, m, 8'-H), 4.45 (2 H, t, J_{CH_2,CH_3} 7.1, O*CH*₂CH₃), 6.07 (1 H, dd, $J_{2'ax,3'ax}$ 10.9 and $J_{2'ax,3'eq}$ 2.2, 2'-H_{ax}), 7.34–7.44 (6 H, m, Ph), 7.69–7.75 (4 H, m, Ph), 8.25 (1 H, s, 5-H). & (75 MHz; CDCl₃): 14.1 (CH₃, OCH₂*CH*₃), 17.8 (CH₂, C-4'), 18.1 (CH₂, C-10'), 19.2 (C, OSiPh₂^{*i*}*Bu*), 26.4 (CH₂, C-9'), 26.8 (CH₃, OSiPh₂^{*i*}*Bu*), 31.2 (CH₂, C-3'), 34.4 (CH₂, C-5'), 34.5 (CH₂, C-11'), 61.2 (CH₂, O*CH*₂CH₃), 67.1 (CH₂, 8'-CH₂O), 71.3 (CH, C-8'), 81.6 (CH, C-2'), 99.2 (C, C-6'), 125.7 (CH, C-5), 127.6 (CH, Ph), 129.6 (CH, Ph), 133.6 (C, Ph), 133.6 (C, Ph), 135.6 (CH, Ph), 135.6 (CH, Ph), 140.0 (C, C-4), 160.9 (C, C=O). *m*/*z* (FAB): 564 (MH⁺, 0.5%), 518 (M – OEt, 2), 506 (M – ^{*i*}Bu, 5), 486 (M – Ph, 2), 423 (C₂₆H₃₅O₃Si, 69), 365 (18), 239 (SiPh₂^{*i*}Bu, 10), 207 (49), 199 (34), 197 (32), 135 (100), 121 (22).

Dimethyl 1-{(2'S*,6'S*,8'S*)-8'-(*tert*-butyldiphenylsilyloxymethyl)-1',7'dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole-4,5-dicarboxylate (14e)

Method B: The *title compound* 14e (8.30 mg, 78%) was prepared as a pale yellow oil from azide 5a (8.20 mg, 17.6 μ mol) and dimethyl acetylenedicarboxylate (6e, 100 μ L) in toluene (500 μ L) using the general procedure (method B) described above. Purification was carried out by flash chromatography using hexane-EtOAc (19:1 to 9:1) as eluent. HRMS (FAB): found $[M - {}^{t}Bu]^{+}$, 550.2010, C₂₈H₃₂N₃O₇Si requires 550.2010. ν_{max} (film)/cm⁻¹: 2929 (C–H), 1741 (C=O), 1428, 1098 (C–O), 703. $\delta_{\rm H}$ (400 MHz; CDCl₃): 1.07 (9 H, s, OSiPh₂^tBu), 1.27–1.33 (1 H, m, 9'-H_A), 1.41–1.51 (1 H, m, 11'-H_A), 1.54–1.80 (7 H, m, 4'-H_A, 5'-H_A, 5'-H_B, 9'-H_B, 10'-H_A, 10'-H_B and 11'-H_B), 2.03– 2.27 (3 H, m, 3'-H_A, 3'-H_B and 4'-H_B), 3.60 (1 H, dd, J_{AB} 10.3 and J_{8'-CH2,8'} 4.8, 8'-CH_AH_BO), 3.71 (1 H, dd, J_{AB} 10.3 and J_{8'-CH2.8'} 5.8, 8'-CH_AH_BO), 3.77–3.83 (1 H, m, 8'-H), 3.96 (6 H, s, 2 x OMe), 6.18 (1 H, dd, $J_{2'_{ax},3'_{ax}}$ 10.6 and $J_{2'_{ax},3'_{eq}}$ 3.0, 2'-H_{ax}), 7.34–7.44 (6 H, m, Ph), 7.68–7.74 (4 H, m, Ph). δ_{C} (100 MHz; CDCl₃): 17.5 (CH₂, C-4'), 17.8 (CH₂, C-10'), 19.3 (C, OSiPh₂^tBu), 26.6 (CH₂, C-9'), 26.8 (CH₃, OSiPh₂[']Bu), 30.4 (CH₂, C-3'), 34.4 (CH₂, C-5'), 34.7 (CH₂, C-11'), 52.6 (CH₃, OMe), 53.4 (CH₃, OMe), 66.9 (CH₂, 8'-CH₂O), 71.0 (CH, C-8'), 82.8 (CH, C-2'), 99.4 (C, C-6'), 127.6 (CH, Ph), 129.6 (CH, Ph), 129.6 (CH, Ph), 131.8 (C, C-5), 133.5 (C, Ph), 133.6 (C, Ph), 135.6 (CH, Ph), 135.6 (CH, Ph), 138.0 (C, C-4), 160.1 (C, C=O), 160.3 (C, C=O). m/z (FAB): 550 ([M – ^tBu]⁺, 2%), 423 (C₂₆H₃₅O₃Si, 52), 207 (42), 199 (35), 197 (33), 137 (23), 135 (100).

1-{(2'S*,6'S*,8'S*)-8'-(*tert*-Butyldiphenylsilyloxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-4-(trimethylsilyl)-1*H*-1,2,3-triazole (14f)

Method C: The *title compound* **14f** (7.80 mg, 64%) was prepared as a pale yellow oil from azide 5a (10.1 mg, 21.6 μ mmol) and trimethylsilylacetylene (6f, 2 x 100 μ L) in toluene (500 μ L) using the general procedure (method C) described above. Purification was carried out by flash chromatography using hexane-EtOAc (99:1 to 9:1) as eluent. Unreacted azide 5a (3.60 mg, 36%) was also recovered. HRMS (FAB): found MH⁺, 564.3079, $C_{31}H_{46}N_3O_3Si_2$ requires 564.3078. ν_{max} (film)/cm⁻¹: 2951 (C–H), 1428, 1249 (C–O), 1113 (C–O), 980, 842, 702. $\delta_{\rm H}$ (300 MHz; CDCl₃): 0.34 (9 H, s, OSiMe₃), 1.07 (9 H, s, OSiPh₂^tBu), 1.26–1.34 (1 H, m, 9'-H_A), 1.40–1.53 (1 H, m, 11'-H_A), 1.53–1.64 (3 H, m, 5'-H_A, 9'-H_B and 10'-H_A), 1.70–1.80 (3 H, m, 4'-H_A, 5'-H_B and 11'-H_B), 1.80–1.99 (2 H, m, 3'-H_A and 10'-H_B), 2.06–2.25 (2 H, m, 3'-H_B and 4'-H_B), 3.63 (1 H, dd, J_{AB} 10.5 and J_{8'}. _{CH2.8'} 4.2, 8'-CH_AH_BO), 3.72 (1 H, dd, J_{AB} 10.5 and J_{8'-CH2.8'} 6.3, 8'-CH_AH_BO), 3.88–3.96 (1 H, m, 8'-H), 6.11 (1 H, dd, J_{2'ax,3'ax} 11.0 and J_{2'ax,3'eq} 2.5, 2'-H_{ax}), 7.35–7.43 (6 H, m, Ph), 7.66 (1 H, s, 5-H), 7.70–7.76 (4 H, m, Ph). δ_C (75 MHz; CDCl₃): -1.1 (CH₃, SiMe₃), 18.1 (CH₂, C-4'), 18.2 (CH₂, C-10'), 19.2 (C, OSiPh₂^tBu), 26.5 (CH₂, C-9'), 26.8 (CH₃, OSiPh₂^tBu), 31.2 (CH₂, C-3'), 34.6 (CH₂, C-5'), 34.7 (CH₂, C-11'), 67.2 (CH₂, 8'-CH₂O), 71.1 (CH, C-8'), 80.7 (CH, C-2'), 98.9 (C, C-6'), 126.9 (CH, C-5), 127.6 (CH, Ph), 129.6 (CH, Ph), 129.6 (CH, Ph), 133.7 (C, Ph), 135.6 (CH, Ph), 135.7 (CH, Ph), 146.1 (C, C-4). *m/z* (FAB): 564 (MH⁺, 4%), 423 (C₂₆H₃₅O₃Si, 74), 405 (15), 239 (SiPh₂^{*t*}Bu, 10), 207 (37), 197 (36), 142 (23), 135 (100), 73 (52).

Ethyl 1-{(2'S*,6'S*,8'S*)-8'-(*tert*-butyldiphenylsilyloxymethyl)-1',7'dioxaspiro[5.5]undecan-2'-yl}-4-(trimethylsilyl)-1*H*-1,2,3-triazole-5-carboxylate (14g)

Method C: The *title compound* **14g** (9.10 mg, 84%) was prepared as a pale yellow oil from azide **5a** (8.00 mg, 17.2 µmol) and ethyl 3-(trimethylsilyl)propiolate (**6g**, 2 x 50.0 µL) in toluene (500 µL) using the general procedure (method C) described above. Purification was carried out by flash chromatography using hexane–EtOAc (97:3, 19:1 to 9:1) as eluent. HRMS (FAB): found MH⁺, 636.3293, C₃₄H₅₀N₃O₅Si₂ requires 636.3289. v_{max} (film)/cm⁻¹: 2955 (C–H), 2857, 1728 (C=O), 1428, 1192, 1112 (C–O), 1079 (C–O), 847, 703. $\delta_{\rm H}$ (300 MHz; CDCl₃): 0.39 (9 H, s, SiMe₃), 1.08 (9 H, s, OSiPh₂'Bu), 1.30–1.40 (1 H, m, 9'-H_A), 1.36 (3 H, t, $J_{\rm CH_3,CH_2}$ 7.2, OCH₂CH₃), 1.41–1.49 (1 H, m, 11'-H_A), 1.50–1.61(1 H, m, 10'-H_A), 1.62–1.84 (6 H, m, 4'-H_A, 5'-H_A, 5'-H_B, 9'-H_B, 10'-H_B and 11'-H_B), 1.94–2.03 (1 H, m, 3'-H_A), 2.03–2.21 (1 H, m, 4'-H_B), 2.51–2.66 (1 H, m, 3'-H_B), 3.66 (1 H, dd, J_{AB} 10.0 and $J_{8'-CH_2,8'}$ 5.6, 8'-CH_AH_BO), 3.83 (1 H, dd, J_{AB} 10.0 and $J_{8'-CH_2,8'}$ 4.9, 8'-CH_AH_BO), 4.02–4.11 (1 H, m, 8'-H), 4.28–4.44 (2 H, m, OCH₂CH₃), 6.65 (1 H, dd, $J_{2'ax,3'ax}$ 11.3 and $J_{2'ax,3'eq}$ 2.6, 2'-H_{ax}), 7.35–7.46 (6 H, m, Ph), 7.74–7.80 (4 H, m, Ph). $\delta_{\rm C}$ (75 MHz; CDCl₃): -1.1 (CH₃, SiMe₃), 14.2 (CH₃,

OCH₂*C*H₃), 18.1 (CH₂, C-4' and C-10'), 19.3 (C, OSiPh₂^{*i*}*Bu*), 26.8 (CH₃, OSiPh₂^{*i*}*Bu*), 27.1 (CH₂, C-9'), 29.7 (CH₂, C-3'), 34.8 (CH₂, C-5'), 35.0 (CH₂, C-11'), 61.8 (CH₂, OCH₂CH₃), 67.1 (CH₂, 8'-CH₂O), 70.4 (CH, C-8'), 80.3 (CH, C-2'), 99.0 (C, C-6'), 127.5 (CH, Ph), 129.5 (CH, Ph), 129.5 (CH, Ph), 133.1 (C, C-5), 133.8 (C, Ph), 134.0 (C, Ph), 135.7 (CH, Ph), 135.7 (CH, Ph), 150.1 (C, C-4), 159.8 (C, C=O). *m/z* (FAB): 636 (MH⁺, 1%), 578 (M – ^{*i*}Bu, 3), 558 (M – Ph, 1), 423 (C₂₆H₃₅O₃Si, 39), 214 (22), 207 (27), 199 (33), 197 (38), 135 (100), 73 (45).

Synthesis of triazole 7a-g

General procedures for deprotection of silyl protected spiroacetal-triazoles 14

Method A: Desilylation using TBAF

To a solution of TBDPS-protected triazole 14 in anhydrous THF (1.0 mL) under an atmosphere of argon at room temperature was added activated molecular sieves (0.20 g) and TBAF solution (1.0 mol L⁻¹ in THF, 2.0–10 equiv.). After 1–3 h, saturated NH₄Cl solution (1 mL) was added. The aqueous phase was extracted with Et₂O (3 x 2 mL) and the combined organic extracts were concentrated *in vacuo*. Purification by flash chromatography using the appropriate eluent yielded hydroxymethyl spiroacetal-triazole 7.

Method B: Desilylation using HF•pyridine

To a solution of TBDPS-protected triazole 14 in anhydrous THF (1.0–2.0 mL) in a plastic vial under an atmosphere of argon was added HF•pyridine (1.5–3.4 μ L per micromole of triazole) and the mixture was stirred at room temperature. If the desilylation was not complete within 18 h (TLC), a second portion of HF•pyridine (1.3–2.0 μ L per micromole of triazole) was added and the mixture was stirred at room temperature for another 18 h. Saturated NaHCO₃ solution (4 mL) was added dropwise. The aqueous phase was extracted with Et₂O (4 x 4 mL) and the combined organic extracts were concentrated *in vacuo*. Purification by flash chromatography using the appropriate eluent yielded hydroxymethyl spiroacetal-triazole 7.

Method C: Desilylation using 3HF•NEt₃

A solution of TBDPS-protected triazole 14 and $3HF \cdot NEt_3$ (2.0–3.0 µL per micromole of triazole) in anhydrous THF (300 µL–1.0 mL) was stirred at room temperature under an atmosphere of argon. If the desilylation was not complete within 18 h (TLC), a second portion of $3HF \cdot NEt_3$ (2.0–2.5 µL per micromole of triazole) was added and the mixture was stirred at room temperature for another 18 h. Saturated NaHCO₃ solution (4 mL) was added dropwise. The aqueous phase was extracted with Et_2O (4 x 4 mL) and the combined organic extracts were concentrated *in vacuo*. Purification by flash chromatography using the appropriate eluent yielded hydroxymethyl spiroacetal-triazole 7.

Method D: Desilylation using 3HF•NEt₃ and buffered with NEt₃

A solution of TBDPS-protected triazole 14, $3HF \cdot NEt_3$ (2.0 µL per micromole of triazole) and NEt₃ (2.5 µL per micromole of triazole) in anhydrous THF (700 µL) was stirred at 40 °C for 48 h under an atmosphere of argon. A second portion of $3HF \cdot NEt_3$ (1.0 µL micromole of triazole) and NEt₃ (1.3 µL per micromole of triazole) were added and the mixture was stirred at 40 °C for 18 h. Saturated NaHCO₃ solution (2 mL) was added dropwise. The aqueous phase was extracted with EtOAc (3 x 3 mL) and the combined organic extracts were concentrated *in vacuo*. Purification by flash chromatography using hexane–EtOAc as eluent yielded hydroxymethyl spiroacetal-triazole 7.

4-[2''-(Benzyloxy)ethyl]-1-{(2'S*,6'S*,8'S*)-8'-(hydroxymethyl)-1',7'dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole (7a)

Method C: The *title compound* **7a** (13.7 mg, 99%) was prepared as a pale yellow oil from TBDPS-protected triazole **14a** (22.3 mg, 35.6 µmol) and 3HF•NEt₃ (2 x 72.0 µL) in anhydrous THF (1.0 mL) using the general procedure (method C) described above. Purification was carried out by flash chromatography using hexane–EtOAc (9:1, 1:1 to 0:1) as eluent. HRMS (FAB): found MH⁺, 388.2244, C₂₁H₃₀N₃O₄ requires 388.2236. ν_{max} (film)/cm⁻¹: 3400 (O–H), 2942 (C–H), 2870, 1455, 1387, 1223 (C–O), 1099 (C–O), 1048, 980, 737. $\delta_{\rm H}$ (400 MHz; CDCl₃): 1.33–1.42 (1 H, m, 9'-H_A), 1.42–1.52 (2 H, m, 9'-H_B and 11'-H_A), 1.53–1.62 (2 H, m, 5'-H_A and 10'-H_A), 1.72–1.87 (5 H, m, 4'-H_A, 5'-H_B, 10'-H_B, 11'-H_B and OH), 1.87–2.04 (1 H, m, 3'-H_A), 2.06–2.16 (2 H, m, 3'-H_B and 4'-H_B), 3.06 (2 H, t, $J_{1'',2''}$ 6.6, 1''-H), 3.56 (1 H, dd, J_{AB} 11.6 and $J_{8'CH_2,8'}$ 6.2, 8'-*CH*₄H_BO), 3.69 (1 H, dd, J_{AB} 11.6 and $J_{8'CH_2,8'}$ 6.2, 8'-*CH*₄H_BO), 3.69 (1 H, dd, J_{AB} 11.6 and $J_{8'CH_2,8'}$ 6.2, 8'-*CH*₄H_BO), 3.69 (1 H, dd, J_{AB} 11.6 and $J_{8'CH_2,8'}$ 6.2, 8'-*CH*₄H_BO), 3.69 (1 H, dd, J_{AB} 11.6 cm $J_{2'ax,3'eq}$ 2.3, 2'-H_{ax}), 7.27–7.36 (5 H, m, Ph). $\delta_{\rm C}$ (100 MHz; CDCl₃): 17.9 (CH₂, C-10'), 18.1 (CH₂, C-4'), 26.0 (CH₂, C-9'), 26.6 (CH₂, C-1''), 30.8 (CH₂, C-3'),

34.4 (CH₂, C-5'), 34.7 (CH₂, C-11'), 66.0 (CH₂, 8'-CH₂O), 69.1 (CH₂, C-2"), 70.7 (CH, C-8'), 73.0 (CH₂, OCH₂Ph), 81.0 (CH, C-2'), 98.9 (C, C-6'), 119.9 (CH, C-5), 127.6 (CH, Ph), 127.7 (CH, Ph), 128.4 (CH, Ph), 138.2 (C, Ph), 145.0 (C, C-4). *m/z* (FAB): 388 (MH⁺, 8%), 204 (100), 186 (87), 185 (C₁₀H₁₇O₃, 45), 121 (18), 99 (23), 91 (51).

1-{(2'*S**,6'*S**,8'*S**)-8'-(Hydroxymethyl)-1',7'-dioxaspiro[5.5]undecan-2-yl}-4hydroxymethyl-1*H*-1,2,3-triazole (7b)

Method B: The *title compound* **7b** (4.80 mg, 71%) was prepared as a pale yellow oil from TBDPS-protected triazole **14b** (12.5 mg, 24.0 µmol) and HF•pyridine (60.0 µL) in anhydrous THF (1.5 mL) using the general procedure (method B) described above. Purification was carried out by flash chromatography using hexane–Et₂O–MeOH (4:1:0, 0:1:0 to 0:19:1) as eluent. HRMS (FAB): found MH⁺, 284.1618, C₁₃H₂₂N₃O₄ requires 284.1610. v_{max} (film)/cm⁻¹: 3375 (O–H), 2933 (C–H), 2872, 1456, 1440, 1223 (C–O), 1099 (C–O), 1047, 1017, 979. $\delta_{\rm H}$ (300 MHz; CDCl₃): 1.33–1.43 (1 H, m, 9'-H_A), 1.46–1.64 (4 H, m, 5'-H_A, 9'-H_B, 10'-H_A and 11'-H_A), 1.70–1.95 (5 H, m, 3'-H_A, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_B), 2.05–2.21 (3 H, m, 3'-H_B, 4'-H_B and OH), 2.46 (1 H, br s, OH), 3.57 (1 H, dd, J_{AB} 11.6 and $J_{8'-CH_2,8'}$ 6.3, 8'-CH_AH_BO), 3.69 (1 H, dd, J_{AB} 11.6 and $J_{8'-CH_2,8'}$ 3.3, 8'-CH_AH_BO), 3.82–3.90 (1 H, m, 8'-H), 4.81 (2 H, s, 4-CH₂OH), 5.97 (1 H, dd, $J_{2'ax,3'ax}$ 11.0 and $J_{2'ax,3'cq}$ 2.3, 2'-H_{ax}), 7.74 (1 H, s, 5-H). $\delta_{\rm C}$ (100 MHz; CDCl₃): 17.9 (CH₂, C-10'), 18.0 (CH₂, C-4'), 26.0 (CH₂, C-9'), 30.8 (CH₂, C-3'), 34.4 (CH₂, C-5'), 34.6 (CH₂, C-11'), 56.6 (CH₂, 4-CH₂OH), 66.0 (CH₂, 8'-CH₂O), 70.8 (CH, C-8'), 81.2 (CH, C-2'), 99.0 (C, C-6'), 119.9 (CH, C-5), 147.4 (C, C-4). *m/z* (FAB): 284 (MH⁺, 12%), 185 (C₁₀H₇O₃, 45), 155 (40), 149 (37), 138 (52), 137 (100), 120 (20), 91 (26).

1-{(2'S*,6'S*,8'S*)-8'-(Hydroxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-4-phenyl-1*H*-1,2,3-triazole (7c)

Method A: The *title compound* **7c** (7.10 mg, 81%) was prepared as a pale yellow oil from TBDPS-protected triazole **14c** (15.0 mg, 26.4 µmol) and TBAF solution (264 µL, 264 µmol) in anhydrous THF (1.0 mL) using the general procedure (method A) described above. Purification was carried out by flash chromatography using hexane–EtOAc (9:1 to 7:3) as eluent. HRMS (EI): found $M^{+\bullet}$, 329.1735, $C_{18}H_{23}N_3O_3$ requires 329.1739. ν_{max} (film)/cm⁻¹: 3389 (O–H), 2944 (C–H), 2873, 1438, 1391, 1234, 1202 (C–O), 1076 (C–O), 1046, 1019, 978, 766, 695. δ_{H} (300 MHz; CDCl₃): 1.39–1.47 (1 H, m, 9'-H_A), 1.47–1.68 (4 H, m, 5'-H_A, 9'-H_B, 10'-H_A and 11'-H_A), 1.74–1.97 (4 H, m, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_B), 1.98–2.11 (2 H, m, 3'-H_A and OH), 2.11–2.26 (2 H, m, 3'-H_B and 4'-H_B), 3.57–3.67 (1 H, m, 8'-CH_AH_BO), 3.72 (1 H, d, J_{AB} 11.3, 8'-CH_AH_BO), 3.86–3.95 (1 H, m, 8'-H), 6.03 (1 H,

dd, $J_{2'_{ax},3'_{ax}}$ 11.0 and $J_{2'_{ax},3'_{eq}}$ 2.4, 2'-H_{ax}), 7.30–7.36 (1 H, m, Ph), 7.40–7.46 (2 H, m, Ph), 7.84–7.88 (2 H, m, Ph), 7.95 (1 H, s, 5-H). δ_{C} (100 MHz; CDCl₃): 17.9 (CH₂, C-10'), 18.1 (CH₂, C-4'), 26.0 (CH₂, C-9'), 31.0 (CH₂, C-3'), 34.4 (CH₂, C-5'), 34.7 (CH₂, C-11'), 66.0 (CH₂, 8'-CH₂O), 70.8 (CH, C-8'), 81.3 (CH, C-2'), 99.1 (C, C-6'), 117.7 (CH, C-5), 125.8 (CH, Ph), 128.1 (CH, Ph), 128.8 (CH, Ph), 130.6 (C, Ph), 147.6 (C, C-4). *m/z* (EI): 329 (M^{+•}, 4%), 298 (M – CH₂OH, 2), 185 (C₁₀H₁₇O₃, 55), 145 (100), 128 (15), 121 (22), 117 (18), 99 (36), 71 (25), 57 (15), 55 (29), 43 (15), 41 (26).

Ethyl 1-{(2'*S**,6'*S**,8'*S**)-8'-(hydroxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole-4-carboxylate (7d)

Method B: The *title compound* **7d** (3.50 mg, 70%) was prepared as a pale yellow oil from TBDPS-protected triazole **14d** (8.70 mg, 15.4 µmol) and HF•pyridine (2 x 50.0 µL) in anhydrous THF (1.0 mL) using the general procedure (method B) described above. Purification was carried out by flash chromatography using hexane–EtOAc (9:1 to 1:4) as eluent. HRMS (EI): found M^{+•}, 325.1638, $C_{15}H_{23}N_3O_5$ requires 325.1638. v_{max} (film)/cm⁻¹: 3412 (O–H), 2941 (C–H), 1733 (C=O), 1376, 1222 (C–O), 1044 (C–O), 980. $\delta_{\rm H}$ (300 MHz; CDCl₃): 1.38–1.45 (1 H, m, 9'-H_A), 1.42 (3 H, t, *J*_{CH₃,CH₂ 7.1, OCH₂*CH*₃), 1.48–1.58 (2 H, m, 9'-H_B and 11'-H_A), 1.58–1.66 (2 H, m, 5'-H_A and 10'-H_A), 1.73–1.94 (6 H, m, 3'-H_A, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_A), 1.59–2.17 (1 H, m, 4'-H_B), 2.17–2.28 (1 H, m, 3'-H_B), 3.52–3.63 (1 H, m, 8'-*CH*₄H_BO), 3.63–3.76 (1 H, m, 8'-*CH*_A*H*_BO), 3.79–3.88 (1 H, m, 8'-H), 4.44 (2 H, t, *J*_{CH₂,CH₃): 14.3 (CH₃, OCH₂*CH*₃), 17.8 (CH₂, C-10'), 17.9 (CH₂, C-4'), 25.9 (CH₂, C-9'), 31.2 (CH₂, C-3'), 34.4 (CH₂, C-5'), 34.6 (CH₂, C-11'), 61.3 (CH₂, OC*H*₂CH₃), 65.9 (CH₂, 8'-CH₂O), 70.9 (CH, C-8'), 81.7 (CH, C-2'), 99.3 (C, C-6'), 125.7 (CH, C-5), 140.2 (C, C-4), 160.8 (C, C=O). *m/z* (EI): 325 (M^{+•}, 5%), 294 (M – CH₂OH, 2), 280 (M – OEt, 3), 252 (M – CO₂Et, 2), 185 (C₁₀H₁₇O₃, 43), 156 (60), 128 (100), 114 (25), 99 (69), 96 (67), 70 (49), 55 (47), 41 (50).}}

Dimethyl 1-{(2'S*,6'S*,8'S*)-8'-(hydroxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole-4,5-dicarboxylate (7e)

Method C: The *title compound* 7e (3.50 mg, 69%) was prepared as a pale yellow oil from TBDPS-protected triazole 14e (8.30 mg, 13.7 mmol) and 3HF•NEt₃ (3 x 34 µL) in anhydrous THF (300 µL) using the general procedure (method C) described above. Purification was carried out by flash chromatography using hexane–EtOAc (4:1, 1:1 to 0:1) as eluent followed by PLC using Et₂O as eluent. HRMS (FAB): found MH⁺, 370.1615, C₁₆H₂₄N₃O₇ requires 370.1614. ν_{max} (film)/cm⁻¹: 3439br (O–H), 2953 (C–H), 1739 (C=O), 1462, 1290, 1258, 1229, 1204 (C–O), 1105 (C–O), 984. $\delta_{\rm H}$

(400 MHz; CDCl₃): 1.31–1.39 (1 H, m, 9'-H_A), 1.45–1.55 (2 H, m, 9'-H_B and 11'-H_A), 1.55–1.65 (2 H, m, 5'-H_A and 10'-H_A), 1.68–1.90 (5 H, m, 4'-H_A, 5'-H_B, 10'-H_B, 11'-H_B and OH), 2.05–2.19 (2 H, m, 3'-H_A and 4'-H_B), 2.28–2.40 (1 H, m, 3'-H_B), 3.56–3.60 (1 H, m, 8'-*CH*_AH_BO), 3.68 (1 H, d, J_{AB} 11.7, 8'-CH_AH_BO), 3.76–3.82 (1 H, m, 8'-H), 3.97 (3 H, s, OMe), 4.00 (3 H, s, OMe), 6.15 (1 H, dd, $J_{2'ax,3'ax}$ 11.2 and $J_{2'ax,3'eq}$ 2.7, 2'-H_{ax}). δ_{C} (100 MHz; CDCl₃): 17.8 (2 x CH₂, C-4' and C-10'), 26.0 (CH₂, C-9'), 30.1 (CH₂, C-3'), 34.3 (CH₂, C-5'), 34.6 (CH₂, C-11'), 52.6 (CH₃, OMe), 53.6 (CH₃, OMe), 66.0 (CH₂, 8'-CH₂O), 71.0 (CH, C-8'), 82.2 (CH, C-2'), 99.5 (C, C-6'), 131.5 (C, C-5), 138.5 (C, C-4), 159.9 (C, C=O), 160.3 (C, C=O). *m*/*z* (FAB): 370 (MH⁺, 3%), 354 (M – Me, 2), 185 (C₁₀H₁₇O₃, 100), 149 (61), 137 (29), 127 (27), 121 (18), 95 (18), 85 (41), 71 (76).

1-{(2'S*,6'S*,8'S*)-8'-(Hydroxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3triazole (7f)

Method C: The *title compound* **7f** (3.00 mg, 86%) was prepared as a pale yellow oil from TBDPS-protected triazole **14f** (7.80 mg, 13.8 µmol) and 3HF•NEt₃ (41.0 µL) in anhydrous THF (300 µL) using the general procedure (method C) described above. Purification was carried out by flash chromatography using hexane–EtOAc (4:1, 1:1 to 0:1) as eluent. HRMS (EI): found M⁺⁺, 253.1427, C₁₂H₁₉N₃O₃ requires 253.1426. v_{max} (film)/cm⁻¹: 3390 (O–H), 2944 (C–H), 2873, 1456, 1387, 1220, 1201 (C–O), 1066 (C–O), 1047, 979. $\delta_{\rm H}$ (400 MHz; CDCl₃): 1.34–1.43 (1 H, m, 9'-H_A), 1.44–1.64 (4 H, m, 5'-H_A, 9'-H_B, 10'-H_A and 11'-H_A), 1.72–1.86 (4 H, m, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_B), 1.88–2.03 (2 H, m, 3'-H_A and OH), 2.07–2.21 (2 H, m, 3'-H_B and 4'-H_B), 3.58 (1 H, dd, $J_{\rm AB}$ 11.3 and $J_{8'-CH_2,8'}$ 6.2, 8'-*CH*₄H_BO), 3.71 (1 H, d, $J_{\rm AB}$ 11.3, 8'-*C*H_A*H*_BO), 3.85–3.91 (1 H, m, 8'-H), 6.03 (1 H, dd, $J_{2'ax,3'ax}$ 11.0 and $J_{2'ax,3'eq}$ 2.5, 2'-H_{ax}), 7.74 (1 H, d, $J_{4,5}$ 9.7, 4-H), 7.74 (1 H, d, $J_{5,4}$ 9.7, 5-H). $\delta_{\rm C}$ (100 MHz; CDCl₃): 17.9 (CH₂, C-10'), 18.1 (CH₂, C-4'), 26.0 (CH₂, C-9'), 30.9 (CH₂, C-3'), 34.4 (CH₂, C-5'), 34.6 (CH₂, C-11'), 66.0 (CH₂, 8'-CH₂O), 70.8 (CH, C-8'), 81.1 (CH, C-2'), 99.0 (C, C-6'), 121.5 (CH, C-5), 133.7 (CH, C-4). *m/z* (EI): 253 (M⁺⁺, 9%), 222 (M – CH₂OH, 7), 185 (C₁₀H₁₇O₃, 29), 156 (57), 128 (100), 109 (20), 99 (39), 97 (62), 95 (32), 80 (27), 70 (64), 67 (40), 55 (50), 41 (94).

Ethyl 1-{(2'*S**,6'*S**,8'*S**)-8'-(hydroxymethyl)-1',7'-dioxaspiro[5.5]undecan-2'-yl}-1*H*-1,2,3-triazole-5-carboxylate (7g)

Method D: The *title compound* **7g** (2.40 mg, 93%) was prepared as a pale yellow oil from TBDPS-protected triazole **14g** (5.00 mg, 7.86 μ mol), 3HF•NEt₃ (16.0 + 8.00 μ L) and NEt₃ (20.0 + 10.0 μ L) in anhydrous THF (700 μ L) using the general procedure (method D) described above. Purification was carried out by flash chromatography using hexane–EtOAc (4:1, 3:2 to 1:4) as eluent.

HRMS (EI): found $M^{+\bullet}$, 325.1636, $C_{15}H_{23}N_3O_5$ requires 325.1638. v_{max} (film)/cm⁻¹: 3411br (O–H), 2925 (C–H), 2853, 1732 (C=O), 1309, 1258, 1194 (C–O), 1082 (C–O), 984. δ_H (300 MHz; CDCl₃): 1.29–1.36 (1 H, m, 9'-H_A), 1.40 (3 H, t, J_{CH_3,CH_2} 7.1, OCH₂*CH*₃), 1.44–1.70 (4 H, m, 5'-H_A, 9'-H_B, 10'-H_A and 11'-H_A), 1.71–1.89 (4 H, m, 4'-H_A, 5'-H_B, 10'-H_B and 11'-H_B), 1.93–2.01 (1 H, m, 3'-H_A), 2.09–2.24 (2 H, m, 4'-H_B and OH), 2.53–2.68 (1 H, m, 3'-H_B), 3.59 (1 H, dd, J_{AB} 11.6 and $J_{8'-CH_2,8'}$ 6.5, 8'-*CH*₄H_BO), 3.75 (1 H, dd, J_{AB} 11.6 and $J_{8'-CH_2,8'}$ 3.3, 8'-CH_AH_BO), 3.95–4.14 (1 H, m, 8'-H), 4.4 (2 H, q, J_{CH_2,CH_3} 7.1, OCH₂CH₃), 6.74 (1 H, dd, $J_{2'ax,3'ax}$ 11.4 and $J_{2'ax,3'aq}$ 2.5, 2'-H_{ax}), 8.14 (1 H, s, 4-H). δ_C (100 MHz; CDCl₃): 14.1 (CH₃, OCH₂*CH*₃), 18.2 (CH₂, C-10'), 18.3 (CH₂, C-4'), 26.3 (CH₂, C-9'), 29.6 (CH₂, C-3'), 34.6 (CH₂, C-5' or C-11'), 34.6 (CH₂, C-5' or C-11'), 62.1 (CH₂, OCH₂CH₃), 66.4 (CH₂, 8'-CH₂O), 70.8 (CH, C-8'), 79.8 (CH, C-2'), 99.4 (C, C-6'), 127.6 (C, C-5), 137.9 (CH, C-4), 158.6 (C, C=O). *m/z* (EI): 325 (M^{+•}, 2%), 252 (M – CO₂Et, 11), 185 (C₁₀H₁₇O₃, 3), 184 (34), 156 (35), 153 (30), 142 (56), 128 (100), 99 (93), 97 (64), 95 (57), 71 (52), 70 (48), 67 (40), 55 (71), 41 (66).

Reference

1. W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals*, 4th edn., Pergamon, Oxford, UK, 1997.