Supporting Information

The first cyclic monomeric 3-alkylpyridinium alkaloid from natural sources: identification, synthesis, and biological activity

Christoph Timm,¹ Christian Volk,¹ Florenz Sasse², and Matthias Köck¹*

 ¹ Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, D-27570 Bremerhaven, Germany
² Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, D-38124 Braunschweig, Germany

* To whom correspondence should be addressed: mkoeck@awi.de

Table of contents:

Figure S1:	MS/MS spectra of 5 , 6 , and 8	S2
Figure S2:	HPLC chromatogram of 5 and 6	S2
Figure S3:	HPLC comparison of the crude extract and synthetic 5	S3
Figure S4:	MS/MS spectra of the natural product and synthetic 5	S4

Figure S1: MS/MS spectra of the linear 3-APAs **6** and **8** and the cyclic monomeric 3-APA (5). The fragmentation pattern of the cyclic monomer (5) is identical to linear monomeric 3-APA with terminal double bond (6).

Figure S2: HPLC chromatogram of the cyclic monomer (5) and the linear isomer (6).

Figure S3: Comparison of the HPLC chromatograms of the crude extract of *Haliclona viscosa* (A), synthetic **5** (B), and a mixture of both (A+B).

Figure S4: Comparison of the MS/MS spectra of the natural product (from the MS of the crude extract of *Haliclona viscosa*) and synthetic **5**.