Supplementary Information

Ammonium-directed dihydroxylation of 3-aminocyclohex-1-enes: development of a metal-free dihydroxylation protocol

Caroline Aciro, ${ }^{\text {a }}$ Timothy D. W. Claridge, ${ }^{\text {a }}$ Stephen G. Davies, ${ }^{\text {a }}$ * Paul M. Roberts, ${ }^{\text {a }}$ Angela J. Russell ${ }^{\text {a,b }}$ and James E. Thomson ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OXI 3TA, UK.
${ }^{b}$ Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
E-mail: steve.davies@chem.ox.ac.uk

Preparation of the diastereoisomers of 3-N,N-dibenzylamino-5-tert-butyl-cyclohex-1-ene

syn-21 and anti-22 were both prepared from 4-tert-butylcyclohexanol 39, employing literature procedures reported by Ferrier, ${ }^{1}$ Donohoe 2 and Aggarwal, ${ }^{3}$ and other standard chemical transformations. 4-tertButylcyclohexene $\mathbf{4 0}$ was prepared via treatment of $\mathbf{3 9}$ with a solution of POCl_{3} in pyridine in 87% yield. In an alternative and higher yielding synthesis, mesylation of $\mathbf{3 9}$ was achieved in 93% yield, with subsequent DBU mediated elimination giving 40 in quantitative yield. Allylic bromination of $\mathbf{4 0}$ gave $\mathbf{4 1}$ as a mixture of diastereoisomers, and treatment of this crude reaction mixture with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ /acetone gave 5-tert-butyl-3-hydroxycyclohexene as mixture of diastereoisomers 42 and 43.

Reagents and conditions: (i) POCl_{3}, pyridine, $0{ }^{\circ} \mathrm{C}$ to rt, 24 h ; (ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 16 \mathrm{~h}$, then $\mathrm{DBU}, 100{ }^{\circ} \mathrm{C}$, 24 h ; (iii) NBS, benzoyl peroxide, $\mathrm{CCl}_{4}, \Delta, 10 \mathrm{~min}$; (iv) 27% aq acetone, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \Delta, 40 \mathrm{~min}$.
syn-21 was accessed from the diastereomeric mixture of alcohols $\mathbf{4 2}$ and $\mathbf{4 3}$ via oxidation with IBX to give enone 44, and stereoselective reduction with LiAlH_{4} to give syn-42 in 95% de. Formation of the corresponding trichloroacetimidate $\mathbf{4 5}$ was followed by Overman rearrangement to give trichloroacetamide 46. Amide hydrolysis gave 47, with subsequent exhaustive benzylation giving syn-21 in $>98 \%$ de and 2% overall yield from 44.

[^0]

Reagents and conditions: (i) IBX, DMSO, $0^{\circ} \mathrm{C}$ to rt, 10.5 h ; (ii) LiAlH_{4}, THF, $-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (iii) $\mathrm{Cl}_{3} \mathrm{CCN}, \mathrm{DBU}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 75 \mathrm{~h}$; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, p$-xylene, $\Delta, 8.5 \mathrm{~h}$; (v) $\mathrm{NaOH}\left(6 \mathrm{M}\right.$, aq), EtOH, $0^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (vi) BnBr , Hünig's base, DMAP, DCM, rt, 24 h .
anti-22 was accessed from the diastereomeric mixture of alcohols 42 and 43 via acylation with pnitrobenzoyl chloride to give a 69:31 anti:syn diastereoisomeric mixture, which was purified via recrystallisation from EtOH to give 48 in $>98 \%$ de and 36% yield over 3 steps from $\mathbf{4 0}$. Base catalysed hydrolysis of $\mathbf{4 8}$ gave $\mathbf{4 3}$ in $>95 \%$ de. Manipulation of $\mathbf{4 3}$ to 50, followed by hydrolysis, N, N-dibenzylation and column chromatography gave anti-22 in $>98 \%$ de and 30% yield from 43.

Reagents and conditions: (i) p-nitrobenzoyl chloride, pyridine, DMAP, then recrystallisation (EtOH); (ii) $\mathrm{NaOH}, 66 \% \mathrm{MeOH}$ (aq), $\Delta, 30 \mathrm{~min}$; (iii) $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{DBU}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 75 \mathrm{~min}$; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, p$-xylene, $\Delta, 8.5 \mathrm{~h}$; (v) $\mathrm{NaOH}\left(6 \mathrm{M}\right.$, aq), EtOH, $0{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (vi) $\mathrm{BnBr},{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$, DMAP, DCM, rt, 24 h . $\left[\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Experimental

General Experimental

Water was purified by an Elix ${ }^{\circledR}$ UV-10 system. All other solvents were used as supplied (analytical or HPLC grade) without prior purification. Organic layers were dried over MgSO_{4}. Thin layer chromatography was performed on aluminium plates coated with $60 \mathrm{~F}_{254}$ silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO_{4}, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed either on Kieselgel 60 silica on a glass column, or on a Biotage SP4 automated flash column chromatography platform.

Melting points were recorded on a Gallenkamp Hot Stage apparatus and are uncorrected. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as either a thin film on NaCl plates (film) or a KBr disc (KBr), as stated. Selected characteristic peaks are reported in cm^{-1}. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. The field was locked by external referencing to the relevant deuteron resonance. Low-resolution mass spectra were recorded on either a VG MassLab 20-250 or a Micromass Platform 1 spectrometer. Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyalanine, or a Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column ($15 \mathrm{~m} \times 0.25 \mathrm{~mm}$) using amyl acetate as a lock mass.

Method A: $\mathrm{POCl}_{3}(31 \mathrm{~mL}, 332 \mathrm{mmol})$ was added to a stirred solution of 4-tert-butyl-cyclohexanol 39 (10.0 $\mathrm{g}, 64 \mathrm{mmol})$ in pyridine $(77.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then allowed to warm to rt over 24 h before being cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was then quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo. The residue was filtered through a pad of silica gel (eluent $30-40^{\circ} \mathrm{C}$ petrol) to give 40 as a colourless oil $(7.71 \mathrm{~g}, 87 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.08-1.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{A}}\right)$, 1.24-1.35 (1H, m, C(4)H), 1.72-1.88(2H, m, C(5) $\left.H_{\mathrm{B}}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.94-2.16\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{2}, \mathrm{C}(6) H_{\mathrm{B}}\right), 5.61-$ $5.76(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H, \mathrm{C}(2) H)$.

Method B: $\mathrm{MsCl}(74.1 \mathrm{~mL}, 0.96 \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(892 \mathrm{~mL}, 3.2 \mathrm{~mol})$ and DMAP ($\left.1.35 \mathrm{~g}, 53.0 \mathrm{mmol}\right)$ were added sequentially to a stirred solution of 4-tert-butyl-cyclohexanol $39(100 \mathrm{~g}, 0.64 \mathrm{~mol})$ in $\mathrm{DCM}(1.2 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ before being allowed to warm to rt over 24 h . The reaction mixture was then quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 1.5 \mathrm{~L})$. The combined organic extracts were washed sequentially with 1 M aq. $\mathrm{HCl}(1 \mathrm{~L})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~L})$, and brine (1 L), dried, and concentrated in vacuo to give 4-tert-butylcyclohexyl-methanesulfonate as an orange crystalline solid (162 g, 93\%); mp 39$41{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3\right.$), 1.01-2.21(9H, m, C(2) $H_{2}, \mathrm{C}(3) H_{2}, \mathrm{C}(4) H, \mathrm{C}(5) H_{2}$, $\left.\mathrm{C}(6) \mathrm{H}_{2}\right), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 4.52-4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H})$.

4-tert-butylcyclohexyl-methanesulfonate ($28.2 \mathrm{~g}, 120 \mathrm{mmol}$) was dissolved in DBU ($54.1 \mathrm{~mL}, 362 \mathrm{mmol}$) and heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was then allowed to cool to rt before being further cooled to 0 ${ }^{\circ} \mathrm{C}$. $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(100 \mathrm{~mL})$ was then added and the mixture was extracted with $30-40{ }^{\circ} \mathrm{C}$ petrol $(3 \times 500$ $\mathrm{mL})$. The combined organic extracts were washed with $1 \mathrm{M} \mathrm{aq} .\mathrm{HCl}(1 \mathrm{~L})$, dried, and concentrated in vacuo to give 40 as a colourless oil (16.6 g , quant).
(3RS,5RS)- and (3RS,5SR)-3-Bromo-5-tert-butyl-cyclohex-1-ene 41

NBS $(13.0 \mathrm{~g}, 73.1 \mathrm{mmol})$ and $\left(\mathrm{PhCO}_{2}\right)_{2}(14.7 \mathrm{mg}, 0.06 \mathrm{mmol})$ were added sequentially to a stirred solution of $40(9.82 \mathrm{~g}, 71 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(45 \mathrm{~mL})$ and the resultant suspension was heated to $80^{\circ} \mathrm{C}$ for 10 min before being allowed to cool to rt. The suspension was then filtered through Celite ${ }^{\circledR}$ (eluent $\mathrm{Et}_{2} \mathrm{O}$) and concentrated in vacuo to give $\mathbf{4 1}$ as a mixture of diastereoisomers, as a brown oil ($15.4 \mathrm{~g}, 71 \mathrm{mmol})$ that was used without
purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks for major diastereoisomer] $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right)$, 4.95-5.00 $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 5.82-5.95(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H, \mathrm{C}(2) H)$.
(3RS,5RS)- and (3RS,5SR)-3-Hydroxy-5-tert-butyl-cyclohex-1-ene 42 and 43

$\mathrm{Na}_{2} \mathrm{CO}_{3}(14.7 \mathrm{~g}, 138 \mathrm{mmol})$ was added to a stirred solution of $41(15.4 \mathrm{~g}, 71 \mathrm{mmol})$ in 27% aq. acetone (250 mL) and the resultant suspension was heated to $90^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was then allowed to cool to rt and concentrated in vacuo to a volume of approximately 100 mL . The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were washed with brine $(2 \times 100 \mathrm{~mL})$, dried, and concentrated in vacuo to give a mixture of $\mathbf{4 2}$ and $\mathbf{4 3}$ as a yellow oil (11.0 g , quant) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, 4.19-4.33 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H\right), 5.79-5.87$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 5.88-5.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H)$.

(RS)-5-tert-Butyl-cyclohex-2-ene-1-one 44

IBX ($4.54 \mathrm{~g}, 16.2 \mathrm{mmol}$) was added to a stirred solution of a mixture of $\mathbf{4 2}$ and $\mathbf{4 3}(2.5 \mathrm{~g}, 16.2 \mathrm{mmol})$ in DMSO (35 mL) at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at rt for 10.5 h . The reaction mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 100 \mathrm{~mL})$, dried and concentrated in vacuo to give $\mathbf{4 4}$ as a yellow oil (2.47 g , quant) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.76-1.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02(2 \mathrm{H}, \mathrm{m} \mathrm{CH} 2), 2.32-2.62(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 5.98-6.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$, 6.96-7.10 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$.
(3RS,5RS)-3-Hydroxy-5-tert-butyl-cyclohex-1-ene 42

$\mathrm{LiAlH}_{4}(1 \mathrm{M}$ in THF, $17 \mathrm{~mL}, 17.4 \mathrm{mmol})$ was added to a stirred solution of $44(2.65 \mathrm{~g}, 17.4 \mathrm{mmol})$ in THF $(53 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the resultant solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was then allowed to warm to $0^{\circ} \mathrm{C}$ and quenched by the slow addition of crushed ice. The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed sequentially with 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(20$ $\mathrm{mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, dried, and concentrated in vacuo to give $\mathbf{4 2}$ as a brown oil $(2.52 \mathrm{~g}, 94 \%$, $>95 \%$ de) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] $\left.0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe})_{3}\right)$, 4.24-4.33 (1H, m, C(3)H), 5.61-5.68 (1H, m, C(2)H), 5.72-5.79 (1H, m, C(1)H).

DBU ($1.36 \mathrm{~mL}, 9.07 \mathrm{mmol}$) and $\mathrm{Cl}_{3} \mathrm{CCN}(1.14 \mathrm{~mL}, 11.3 \mathrm{mmol})$ were added sequentially to a stirred solution of $42(1.17 \mathrm{~g}, 7.56 \mathrm{mmol})$ in $\mathrm{DCM}(26 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo to give 45 as a brown oil ($771 \mathrm{mg}, 35 \%, 95 \%$ de) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 5.50-5.59(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(3) H), 5.70-5.79(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 5.86-5.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 8.29(1 \mathrm{H}, \mathrm{br} s, \mathrm{~N} H)$.
(3RS,5RS)-3-Trichloroacetamido-5-tert-butyl-cyclohex-1-ene 46

$\mathrm{K}_{2} \mathrm{CO}_{3}$ (79 mg) was added to a stirred solution of $\mathbf{4 5}$ in p-xylene (71 mL) and the resultant suspension was heated to $140^{\circ} \mathrm{C}$ for 8.5 h before being allowed to cool to rt . The reaction mixture was then filtered through a pad of Celite (eluent PhMe) and the filtrate was concentrated in vacuo to give 46 as a brown oil (771 mg , $35 \%,>95 \%$ de $) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) [selected peaks] 0.98 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}$), 4.44-4.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}$), 5.48$5.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 5.91-5.99(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 6.42(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{N} H)$.
(3RS,5RS)-3-Amino-5-tert-butyl-cyclohex-1-ene 47

6 M aq. $\mathrm{NaOH}(2.28 \mathrm{~mL})$ was added dropwise to a stirred solution of $46(771 \mathrm{mg}, 2.58 \mathrm{mmol})$ in EtOH (6.2 mL) at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to rt over 24 h . The reaction mixture was then extracted with $30-40^{\circ} \mathrm{C}$ petrol $/ \mathrm{Et}_{2} \mathrm{O}$ (v:v $4: 1,3 \times 60 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 47 as a brown oil ($110 \mathrm{mg}, 28 \%$) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3\right.$), 1.39-1.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.68-1.79 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.00-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.41-3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 5.70-5.82(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H, \mathrm{C}(2) H)$.

$\mathrm{BnBr}(0.7 \mathrm{~mL}, 5.82 \mathrm{mmol})$, Hünig's base ($1.0 \mathrm{~mL}, 5.82 \mathrm{mmol}$) and DMAP (10 mg) were added sequentially to a stirred solution of $47(110 \mathrm{mg}, 0.72 \mathrm{mmol})$ in $\mathrm{DCM}(12 \mathrm{~mL})$ and the reaction mixture was stirred for 24 h at $\mathrm{rt} .10 \%$ aq. $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent $40-60^{\circ} \mathrm{C}$ petrol) gave syn-21 as a yellow oil ($30 \mathrm{mg}, 13 \%,>98 \%$ de); $\mathrm{v}_{\text {max }}$ (film) 3025, 2961, $2794(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.12-1.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}\right), 1.22-1.33$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 1.73-1.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.94-2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}, \mathrm{C}(6) H_{\mathrm{B}}\right), 3.33-3.41(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H)$, $3.56\left(2 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 5.70-5.76(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 5.78-$ $5.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 7.19-7.42(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.4(C(4)), 27.2\left(\mathrm{CMe}_{3}\right), 27.3(C(6))$, $32.4\left(C \mathrm{Me}_{3}\right), 43.7(C(5)), 53.8\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right)$, $56.6(C(3))$, 126.6 ($p-P h$), 128.1, 128.5 (o-, $\left.m-P h\right), 129.8$ (C(2)), $130.7(C(1)), 140.9(i-P h) ; m / z\left(\mathrm{ESI}^{+}\right) 334\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; H R M S\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ requires 334.2529 ; found 334.2521 . Further elution gave 3 - N, N-dibenzylamino- 6 -tert-butyl-cyclohex-1-ene $(4 \mathrm{mg}){ }^{4} \nu_{\max }(\mathrm{film}) 3020,2959(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.50-1.59(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(5) H_{\mathrm{A}}\right), 1.59-1.65(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H), 1.69-1.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{B}}\right), 1.90-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{2}\right), 3.26-3.32(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C}(3) H), 3.61\left(2 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.70\left(2 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 5.83-5.89(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(2) H), 6.01-6.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 7.19-7.40(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.5(C(5)), 24.3(C(4))$, $28.9\left(\mathrm{CMe}_{3}\right), 33.9\left(\mathrm{CMe}_{3}\right), 44.0(C(6)), 54.1\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 54.3(C(3)), 126.6(C(2)), 127.0(p-\mathrm{Ph}), 128.0$, 129.1 (o-, m-Ph), 130.9 (C(1)), $140.5(i-\mathrm{Ph}) ; m / z\left(\mathrm{ESI}^{+}\right) 334\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 334.2529 ; found 334.2521 .
(3RS,5SR)- 5-tert-butyl-cyclohex-1-en-3-yl p-nitrobenzoate 48

Pyridine (28.7 mL), p-nitrobenzoyl chloride ($19.8 \mathrm{~g}, 107 \mathrm{mmol}$) and DMAP (500 mg) were added sequentially to a stirred solution of 42 and $43(11.0 \mathrm{~g}, 71 \mathrm{mmol})$ in $\mathrm{DCM}(100 \mathrm{~mL})$ and the resulting suspension was stirred at rt for 24 h . The reaction mixture was then poured over crushed ice and the aqueous layer was extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed sequentially with

[^1]3 M aq. $\mathrm{HCl}(3 \times 500 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 500 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 500 \mathrm{~mL})$, dried, and concentrated in vacuo to give a 69:31 mixture of diastereoisomers. Recrystallisation from hot EtOH gave $\mathbf{4 8}$ as a yellow solid ($7.75 \mathrm{~g}, 36 \%$, $>98 \%$ de $) ; \mathrm{mp} 99-100{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.46-1.56$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}\right), 1.62-1.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 1.80-1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 2.08-2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}\right), 2.18-$ $2.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 5.54-5.59(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 5.89-5.96(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 6.11-6.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 8.18-$ 8.23 (2H, d, J 8.3, Ar), 8.27-8.32 (2H, d, J 8.3, Ar).
(3RS,5SR)-3-Hydroxy-5-tert-butyl-cyclohex-1-ene 43

NaOH pellets $(3.73 \mathrm{~g}, 93.3 \mathrm{mmol})$ were added to a stirred solution of $48(6.71 \mathrm{~g}, 22.2 \mathrm{mmol})$ in $66 \% \mathrm{aq}$. $\mathrm{MeOH}(55.7 \mathrm{~mL})$ and the resultant solution was heated to $90^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was allowed to cool to rt and concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo to give 43 as a colourless oil (3.41 g , quant, $>98 \% \mathrm{de}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.28-1.38(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(4) H_{\mathrm{A}}\right), 1.40-1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{C}(5) H), 1.70-1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.90-1.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}\right), 2.07-2.16$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 4.21-4.27(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 5.81-5.87(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 5.91-5.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H)$.
(3RS,5SR)-5-tert-Butyl-cyclohex-1-en-3-yl trichloroacetimidate 49

DBU ($326 \mu \mathrm{~L}, 2.18 \mathrm{mmol}$) and $\mathrm{Cl}_{3} \mathrm{CCN}(273 \mu \mathrm{~L}, 2.72 \mathrm{mmol})$ were added sequentially to a stirred solution of $43(280 \mathrm{mg}, 1.81 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo to give 49 as a brown oil (540 mg , quant, $>98 \%$ de) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.32-1.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}\right), 1.60-1.69$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 1.75-1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 2.14-2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}, \mathrm{C}(6) H_{\mathrm{B}}\right), 5.42-5.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H)$, 5.88-5.95 (1H, m, C(2)H), 6.12-6.18 (1H, m, C(1)H), $8.25(1 \mathrm{H}, \mathrm{br}$ s, NH).

$\mathrm{K}_{2} \mathrm{CO}_{3}(19 \mathrm{mg})$ was added to a stirred solution of 49 in p-xylene $(17 \mathrm{~mL})$ and the resultant suspension was heated to $140^{\circ} \mathrm{C}$ for 8.5 h before being allowed to cool to rt . The reaction mixture was then filtered through a pad of Celite (eluent PhMe) and the filtrate was concentrated in vacuo to give $\mathbf{5 0}$ as a brown oil (500 mg , $93 \%,>98 \% \mathrm{de}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.23-1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}), 1.35-1.46(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(4) H_{\mathrm{A}}\right), 1.77-1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.99-2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.10-2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}\right), 4.45-4.54(1 \mathrm{H}$, br m, C(3)H), 5.70-5.78 (1H, br m, C(2)H), 6.03-6.12 (1H, m, C(1)H), $6.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
(3RS,5SR)-3-Amino-5-tert-butyl-cyclohex-1-ene 51

6 M aq. $\mathrm{NaOH}(0.63 \mathrm{~mL})$ was added dropwise to stirred solution of $50(213 \mathrm{mg}, 0.71 \mathrm{mmol})$ in EtOH (1.7 mL) at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to rt over 24 h . The reaction mixture was then extracted with $30-40^{\circ} \mathrm{C}$ petrol $/ \mathrm{Et}_{2} \mathrm{O}$ ($\mathrm{v}: \mathrm{v} 4: 1,3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 51 as a brown oil ($110 \mathrm{mg}, 63 \%$) that was used without purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3\right.$), 1.39-2.12 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}, \mathrm{C}(5) \mathrm{H}$, $\left.\mathrm{C}(6) H_{2}\right), 3.41-3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 5.70-5.82(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H, \mathrm{C}(2) H)$.
(3RS,5RS)-3-N,N-Dibenzylamino-5-tert-butyl-cyclohex-1-ene anti-22

$\operatorname{BnBr}(0.21 \mathrm{~mL}, 1.78 \mathrm{mmol})$, Hünig's base ($0.31 \mathrm{~mL}, 1.78 \mathrm{mmol}$) and DMAP (10 mg) were added sequentially to a stirred solution of $\mathbf{5 1}(110 \mathrm{mg}, 0.72 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ and the reaction mixture was stirred for 24 h at $\mathrm{rt} .10 \%$ aq. $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$ was added and mixture was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0 \% \rightarrow 100 \%$ EtOAc in $40-60^{\circ} \mathrm{C}$ petrol) gave anti-22 as a yellow oil (119 $\mathrm{mg}, 50 \%,>98 \%$ de $) ; \nu_{\max }(f i l m) 3085,3062,3025,2961,2833,2791(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95$ (9H, s, CMe 3), 1.09-1.20 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}\right), 1.48-1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H), 1.62-1.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 2.08-2.18$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.19-2.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}\right), 3.36-3.43(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(3) H), 3.55(2 \mathrm{H}, \mathrm{d}, J 13.9$,
$\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.91\left(2 \mathrm{H}, \mathrm{d}, J 13.9, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 5.72-5.80(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(2) H), 5.94-6.02(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(1) H), 7.21-7.44(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.4(C(4)), 26.5(C(6)), 27.4\left(\mathrm{CMe}_{3}\right), 32.6\left(\mathrm{CMe}_{3}\right)$, $40.1(C(5)), 52.2(C(3)), 54.7\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 126.6(p-P h), 128.2,128.6(o-, m-P h), 128.7,130.8(C(1), C(2))$, 140.9 (i-Ph); m/z (ESI $) 334\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS (ESI^{+}) $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 334.2529; found 334.2530 .

[^0]: ${ }^{1}$ R. J. Ferrier and N. Prasad, J. Chem. Soc (C), 1967, 1471.
 ${ }^{2}$ T. J. Donohoe, K. Blades, M. Halliwell, P. R. Moore and J. J. G. Winter, J. Org. Chem., 1999, 64, 2980.
 ${ }^{3}$ V. K. Aggarwal and G. Y. Fang, Chem. Commun., 2005, 3448.

[^1]: ${ }^{4}$ The isolation of 3-N,N-dibenzylamino-6-tert-butyl-cyclohex-1-ene from this reaction mixture presumably results from the generation of a minor regioisomer in the allylic bromination reaction of $\mathbf{4 0}$.

