Supplementary Information

Ammonium-directed dihydroxylation: metal-free synthesis of the diastereoisomers of 3-amino-cyclohexane-1,2-diol
Caroline Aciro, ${ }^{\text {a }}$ Stephen G. Davies, ${ }^{\text {a }}$ * Paul M. Roberts, ${ }^{\text {a }}$ Angela J. Russell, ${ }^{\text {a,b }}$ Andrew D. Smith ${ }^{\text {a }}$ and James E. Thomson ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OXI 3TA, UK.
${ }^{b}$ Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
E-mail: steve.davies@chem.ox.ac.uk

Experimental

General Experimental

Reactions involving moisture-sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs and co-workers. ${ }^{1}$ Water was purified by an Elix ${ }^{\circledR}$ UV-10 system. All other solvents were used as supplied (analytical or HPLC grade) without prior purification. Organic layers were dried over MgSO_{4}. Thin layer chromatography was performed on aluminium plates coated with $60 \mathrm{~F}_{254}$ silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO_{4}, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed either on Kieselgel 60 silica on a glass column, or on a Biotage SP4 automated flash column chromatography platform.

Melting points were recorded on a Gallenkamp Hot Stage apparatus and are uncorrected. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as either a thin film on NaCl plates (film) or a KBr disc (KBr), as stated. Selected characteristic peaks are reported in cm^{-1}. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. The field was locked by external referencing to the relevant deuteron resonance. Low-resolution mass spectra were recorded on either a VG MassLab 20-250 or a Micromass Platform 1 spectrometer. Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyalanine, or a Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column ($15 \mathrm{~m} \times 0.25 \mathrm{~mm}$) using amyl acetate as a lock mass.

[^0]
$\mathrm{Ac}_{2} \mathrm{O}(0.26 \mathrm{~mL}, 2.74 \mathrm{mmol})$ and DMAP (50 mg) were added sequentially to a stirred solution of $\mathbf{3}(851 \mathrm{mg}$, $1.83 \mathrm{mmol},>98 \% \mathrm{de}$) in DCM/pyridine ($1: 1,40 \mathrm{~mL}$). The resultant solution was stirred at rt for 24 h before being cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with DCM $(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed sequentially with 10% aq. $\mathrm{CuSO}_{4}(2 \times 100 \mathrm{~mL}), 0.1 \mathrm{M}$ aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried, and concentrated in vacuo to give 10 as a colourless oil (928 mg , quant, $>98 \%$ de); $v_{\text {max }}$ (film) $2944(\mathrm{C}-\mathrm{H}), 1746(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.47-1.88 (6H, m, C(4) $\left.\mathrm{H}_{2}, \mathrm{C}(5) \mathrm{H}_{2}, \mathrm{C}(6) H_{2}\right), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$, 2.94-3.04 (1H, m, C(3)H), $3.64\left(4 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 4.60-4.65(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(1) H), 5.05-5.09(1 \mathrm{H}$, br m, C(2)H), 7.13-7.51 (12H, m, Ar, Ph), 7.64 ($2 \mathrm{H}, \mathrm{d}, J 7.6, A r$); $\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 19.5, 21.2, 21.8, 22.8, $26.2\left(C(4), C(5), C(6), ~ C O M e, ~ \mathrm{ArCH}_{3}\right), 53.6(C(3)), 55.0\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 71.1(C(2)), 78.1(C(1)), 126.8$, 127.8, 128.2, 128.4, 129.8, 133.7, 140.2, 144.7 (Ar, Ph), 169.7 (C=O); m/z (ESI $\left.{ }^{+}\right) 508$ ([M+H] $\left.{ }^{+}, 100 \%\right), 396$ (50\%); $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 508.2152; found 508.2153.
(1RS,2SR,3SR)-3-N,N-dibenzylaminocyclohexane-1,2-diol 11

Method A: $\mathrm{CaCO}_{3}(1.88 \mathrm{~g}, 18.8 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{1 0}(9.93 \mathrm{~g}, 18.8 \mathrm{mmol}, 90 \% \mathrm{de})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(6: 1,236 \mathrm{~mL})$ and the resultant suspension was heated at reflux for 48 h . The reaction mixture was concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added to the residue and the mixture was extracted with DCM $(3 \times 200 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg})$ was added. The resulting suspension was stirred at rt for 16 h then concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times$ $100 \mathrm{~mL})$. The combined organic extracts were washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \times 250 \mathrm{~mL})$ and brine (250 mL), dried, and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $5 \% \rightarrow 100 \%$ EtOAc in $40-60^{\circ} \mathrm{C}$ petrol) gave 14 as a pale yellow solid ($215 \mathrm{mg}, 4 \%,>98 \%$ de); mp 103-104 ${ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) 3449(\mathrm{O}-\mathrm{H}), 2936(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.22-1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.57-$ $1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{2}\right), 1.88-2.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.41(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.91-3.05(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(3) H), 3.44\left(2 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J 10.1,3.0, \mathrm{C}(2) H), 3.88(2 \mathrm{H}, \mathrm{d}, J 13.4$, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.14(1 \mathrm{H}, \mathrm{q}, J 3.0, \mathrm{C}(1) H), 7.24-7.49(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.5(C(5)), 22.1$
(C(4)), $29.6(C(6)), 53.1,53.6\left(\mathrm{~N}_{(}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right)$, $57.4(C(3)), 68.3(C(1)), 71.0(C(2)), 128.2(p-\mathrm{Ph}), 128.5,128.9$ (o-, m-Ph), 139.3 (i-Ph); m/z (ESI ${ }^{+}$) $312\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS ($\left.\mathrm{ESI}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 312.1958; found 312.1950. Further elution gave 11 as a pale yellow solid ($3.48 \mathrm{~g}, 60 \%$, $>98 \% \mathrm{de}$); mp 62$63{ }^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) 3416(\mathrm{O}-\mathrm{H}), 2936(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.07-1.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{A}}\right), 1.52-1.82$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{2}, \mathrm{C}(5) H_{\mathrm{B}}, \mathrm{C}(6) H_{2}\right), 2.55-2.64(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 2.80(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 3.42(1 \mathrm{H}$, ddd,$J 11.4$, 5.0, 2.7, C(1)H), $3.81\left(2 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.93\left(2 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.25-4.29(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(2) H), 7.22-7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.0,22.1(C(4), C(5)), 28.4(C(6)), 55.1$ $\left(\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 60.6(C(3)), 71.5,71.8(C(1), C(2)), 126.8(p-P h), 128.3,128.4(o, m-P h), 140.6(i-P h) ; m / z$ $\left(\mathrm{ESI}^{+}\right) 312\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 312.1958; found 312.1956. Further elution gave 5 as a viscous, pale yellow oil ($760 \mathrm{mg}, 13 \%,>98 \% \mathrm{de}$).

Method B: KOAc ($216 \mathrm{mg}, 2.21 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{1 0}$ ($747 \mathrm{mg}, 1.47 \mathrm{mmol},>98 \%$ de) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(6: 1,40 \mathrm{~mL})$ and the resultant suspension was heated at reflux for 48 h . The reaction mixture was then concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added to the residue and the mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added. The resulting suspension was stirred at rt for 16 h then concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times 50$ $\mathrm{mL})$. The combined organic extracts were washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried, and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $5 \% \rightarrow 100 \%$ EtOAc in $40-60^{\circ} \mathrm{C}$ petrol) gave 4 as a colourless oil ($16 \mathrm{mg}, 4 \%,>98 \%$ de). Further elution gave 11 as a pale yellow solid ($337 \mathrm{mg}, 74 \%,>98 \%$ de). Further elution gave $\mathbf{5}$ as a viscous, pale yellow oil ($31 \mathrm{mg}, 7 \%,>98 \% \mathrm{de}$).
(1RS,2RS,3RS)-1-Acetoxy-2-hydroxy-3-N,N-dibenzylaminocyclohexane 15

A stirred solution of $4(5.79 \mathrm{~g}, 19.8 \mathrm{mmol})$ in $\mathrm{AcOH}(15 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 24 h before being allowed to cool to rt. 0.1 M aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times$ 100 mL). The combined organic extracts were washed with $0.1 \mathrm{M} \mathrm{aq} . \mathrm{NaHCO}_{3}(5 \times 100 \mathrm{~mL})$, dried and concentrated in vacuo to give 15 as a yellow solid (6.98 g , quant, $>98 \% \mathrm{de}$); $\mathrm{mp} 57-58{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{KBr}) 3456$ $(\mathrm{O}-\mathrm{H}), 2937(\mathrm{C}-\mathrm{H}), 1717(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.42-1.86 (6H, m, C(4) $\left.\mathrm{H}_{2}, \mathrm{C}(5) \mathrm{H}_{2}, \mathrm{C}(6) \mathrm{H}_{2}\right), 1.92$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.88-2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.75\left(2 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.84$ $\left(2 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.06(1 \mathrm{H}, \operatorname{app} \mathrm{t}, J 3.2, \mathrm{C}(2) H), 4.98-5.02(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 7.19-7.44(10 \mathrm{H}, \mathrm{m}$,
$P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.2,23.0,24.6(C(4), C(5), C(6)), 21.1(\mathrm{COMe}), 54.8\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 57.5(C(3))$, 68.0 ($C(2)$), 72.5 ($C(1)$), 126.9 ($p-P h$) 128.3, 128.6 ($o-, m-P h$), 140.1 ($i-P h$), 170.1 (COMe); m/z (ESI^{+}) 354 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 354.2064; found 354.2059.
(1RS,2RS,3RS)-1-Acetoxy-2-methanesulphonyloxy-3-N,N-dibenzylaminocyclohexane 16

$\mathrm{Et}_{3} \mathrm{~N}(96 \mu \mathrm{~L}, 0.69 \mathrm{mmol})$, DMAP $(5 \mathrm{mg})$ and $\mathrm{MsCl}(27 \mu \mathrm{~L}, 0.34 \mathrm{mmol})$ were added sequentially to a stirred solution of $\mathbf{1 5}(81 \mathrm{mg}, 0.23 \mathrm{mmol}) \mathrm{DCM}(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 48 h , after which time $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the solution was allowed to warm to rt . The mixture was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed sequentially with $10 \% \mathrm{aq}$. $\mathrm{CuSO}_{4}(3 \times 30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and 0.1 M aq. $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$, dried, and concentrated in vacuo to give 16 as a colourless oil (99 mg , quant, $>98 \%$ de); $v_{\text {max }}(\mathrm{film}) 3028,2940(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 1.44-1.95\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{2}, \mathrm{C}(5) \mathrm{H}_{2}, \mathrm{C}(6) H_{2}, \mathrm{COMe}\right), 2.98-3.04(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.07(3 \mathrm{H}, \mathrm{s}$, SMe), $3.73\left(2 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right)$, 2.85-3.92 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right)$, 4.94-4.99 (1H, br m, C(2)H), 5.06-5.12 (1H, br m, C(1)H), 7.14-7.49 (10H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 20.2,22.3,24.5(C(4), C(5)$, $C(6)), 20.7(\mathrm{COMe}), 38.9(\mathrm{SMe}), 53.8(C(3)), 54.7\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 70.1(C(1)), 78.7(C(2)), 126.9(p-P h)$, 128.2, 128.4 ($o-, m-\mathrm{Ph}), 140.1$ ($i-\mathrm{Ph}$), 169.5 (COMe); m/z (ESI $) 432$ ($[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$); HRMS (ESI $\left.{ }^{+}\right)$ $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 432.1839; found 432.1839.

(1RS,2SR,3RS)-1,2-Epoxy-3-N,N-dibenzylamino-cyclohexane 17

$\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added to a stirred solution of $\mathbf{1 6}(126 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$. The resultant suspension was stirred for 16 h at rt before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried, and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0 \% \rightarrow 100 \%$, EtOAc in $40-60^{\circ} \mathrm{C}$ petrol) gave 17 as a white solid (39 mg , $46 \%,>98 \%$ de $) ; m p 48-49{ }^{\circ} \mathrm{C}$; $v_{\max }($ film $) 3061,2937(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.16-1.36(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(4) H_{\mathrm{A}}, \mathrm{C}(5) H_{\mathrm{A}}\right), 1.39-1.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{B}}\right), 1.57-1.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.73-1.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}\right), 2.05-$ $2.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.99-3.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.21-3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 3.25-3.30(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 3.75$ $\left(4 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 7.23-7.49(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.1(C(5)), 22.2(C(4)), 25.2$
$(C(6))$, $53.1(C(3)), 53.5(C(1)), 54.8\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 55.6(C(2)), 127.0(p-P h), 128.3,128.4,(o-, m,-P h)$, 139.9 (i-Ph); m/z (ESI $\left.{ }^{+}\right) 294\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; H R M S\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 294.1852; found 294.1849.
(1RS,2RS,3SR)-3-N,N-dibenzylaminocyclohexane-1,2-diol 18

Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.24 \mathrm{~mL})$ in $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~mL})$ was added to a stirred solution of $\mathbf{1 7}(266 \mathrm{mg}, 0.91 \mathrm{mmol})$ in 1,4-dioxane (1 mL) and the resultant mixture was stirred at rt for 16 h before being concentrated in vacuo. 0.1 M aq. NaHCO 3 was added and the mixture was extracted with $\mathrm{Et} 2 \mathrm{O}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with 0.1 M aq. $\mathrm{NaHCO} 3(3 \times 40 \mathrm{~mL})$, dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0 \% \rightarrow 100 \% \mathrm{EtOAc}$ in $40-60{ }^{\circ} \mathrm{C}$ petrol) gave 18 as a pale yellow solid ($124 \mathrm{mg}, 44 \%,>98 \%$ de); mp $72-73{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{KBr}) 3417(\mathrm{O}-\mathrm{H}), 3061,3027,2938$ $(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.11-2.00 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{2}, \mathrm{C}(5) H_{2}, \mathrm{C}(6) H_{2}\right), 2.37-2.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.02$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.31-3.48\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.69-3.98\left(4 \mathrm{H}\right.$, br m$\left., \mathrm{C}(1) H, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}, \mathrm{OH}\right)$, 7.23-7.41 (10H, m, Ph); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 21.6, 21.7, 31.5 (C(4), C(5), C(6)), $53.7\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 55.0$ $(C(1)), 61.2(C(3)), 74.7(C(2)), 127.3(p-P h), 128.4,128.6(o, m-P h), 139.2(i-P h) ; m / z\left(\mathrm{ESI}^{+}\right) 312\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, $100 \%)$; $\mathrm{HRMS} \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 312.1958; found 312.1962.
(1RS,2RS,3SR)-1-p-Toluenesulphonyloxy-2-hydroxy-3-N,N-dibenzylaminocyclohexane 19

TsOH ($800 \mathrm{mg}, 4.21 \mathrm{mmol}$) was added to a stirred solution of $17(273 \mathrm{mg}, 0.93 \mathrm{mmol})$ in DCM (10 mL) and the reaction mixture was then stirred at rt for $16 \mathrm{~h} .0 .1 \mathrm{M} \mathrm{aq} . \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with 0.1 M aq. $\mathrm{NaHCO}_{3}(5 \times 40 \mathrm{~mL})$, dried and concentrated in vacuo to give 19 as a white solid (472 mg , quant, $>98 \% \mathrm{de}$); $\mathrm{mp} 95-97^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) 3442(\mathrm{O}-\mathrm{H}), 2950(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.08-1.37 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}, \mathrm{C}(5) H_{\mathrm{A}}\right), 1.41-1.54\left(1 \mathrm{H}, \operatorname{app} q d J 12.0,4.0 \mathrm{C}(6) H_{\mathrm{A}}\right), 1.75-1.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{B}}\right)$, 1.87-1.96(1H, m, C(4) $\left.H_{\mathrm{B}}\right), 2.02-2.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.38-2.47(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H, \operatorname{ArMe}), 3.36(2 \mathrm{H}, \mathrm{d}, J$ 13.3, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.58(2 \mathrm{H}$, app t, $J 9.6, \mathrm{C}(2) H, \mathrm{OH}), 3.83\left(2 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.34(1 \mathrm{H}$, ddd, J 11.6, 8.5, 4.8, C(1)H), 7.21-7.34 (12H, m, $A r, P h), 7.82(2 H, d, J 8.0, A r) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.4$, 21.6, $31.0(C(4), C(5), C(6), A r M e), 53.6\left(N\left(C H_{2} \mathrm{Ph}\right)_{2}\right), 61.8(C(3)), 71.3(C(2)), 84.9(C(1)), 127.4,127.8$,
128.5, 128.9, 129.5, $138.7(\mathrm{Ar}, \mathrm{Ph}) ; m / z\left(\mathrm{ESI}^{+}\right) 466\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \mathrm{HRMS}^{\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)}$ requires 466.2047; found 466.2045.
(1RS,2RS,3SR)-1-Trichloroacetoxy-2-hydroxy-3- N, N-dibenzylaminocyclohexane 20

$\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}(59 \mathrm{mg}, 0.358 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{1 7}(70 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ and the reaction mixture was stirred at rt for $16 \mathrm{~h} .0 .1 \mathrm{M} \mathrm{aq} . \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with 0.1 M aq. $\mathrm{NaHCO}_{3}(5 \times 40 \mathrm{~mL})$, dried and concentrated in vacuo to give an 80:20 mixture of 20:21 as a yellow oil ($83 \mathrm{mg}, 77 \%$); $v_{\text {max }}(f i l m) 3419(\mathrm{O}-\mathrm{H}), 2940(\mathrm{C}-\mathrm{H}), 1762(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 456$ ($\left.[\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 313(79 \%)$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{22} \mathrm{H}_{25}{ }^{35} \mathrm{Cl}_{3} \mathrm{NO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 456.0895; found 456.0895. Data for 20: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.21-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}_{\mathrm{A}}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.79-1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{2}\right), 1.98-$ $2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}\right), 2.06-2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.48-2.59(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.33-3.50(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.76(1 \mathrm{H}$, app $\mathrm{t}, J 9.6, \mathrm{C}(2) H), 3.89-3.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.69(1 \mathrm{H}, \mathrm{ddd}, J 11.4,9.1$, 5.1, $\mathrm{C}(1) H), 7.21-7.39(10 \mathrm{H}, \mathrm{m}, P h) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.3,21.3(C(4), C(5)), 28.7(C(6)), 53.5$ $\left(\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{\mathrm{A}}\right), 55.3\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{\mathrm{B}}\right), 61.6(C(3)), 71.0(C(2)), 82.1(C(1)), 90.0\left(C C l_{3}\right), 127.6(p-\mathrm{Ph}), 128.7$, 129.0 (o-, m-Ph), 138.3 (i-Ph), $161.4\left(\mathrm{COCCl}_{3}\right)$.
$\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added to a stirred solution of an $80: 20$ mixture of $\mathbf{2 0}: 21(83 \mathrm{mg}, 0.18 \mathrm{mmol})$ in MeOH $(10 \mathrm{~mL})$ and the resultant suspension was stirred at rt for 16 h before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ was added and the mixture was extracted with DCM $(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried and concentrated in vacuo to give an $80: 20$ mixture of $\mathbf{1 8 : 5}$ as a colourless oil (57 mg , quant).
(1RS,2RS,3SR)-1-Dichloroacetoxy-2-hydroxy-3-N,N-dibenzylaminocyclohexane 22

$\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}(0.07 \mathrm{~mL}, 0.86 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{1 7}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ in DCM (2 $\mathrm{mL})$ and the reaction mixture was stirred at rt for 16 h .0 .1 M aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic
extracts were washed with $0.1 \mathrm{M} \mathrm{aq} . \mathrm{NaHCO}_{3}(5 \times 40 \mathrm{~mL})$, dried and concentrated in vacuo to give a $75: 25$ mixture of 22:23 ($50 \mathrm{mg}, 70 \%$).

Data for 22: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.12-2.17 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{2}, \mathrm{C}(5) H_{2}, \mathrm{C}(6) H_{2}\right)$, 2.52-2.66 (1H, m, $\left.\mathrm{C}(3) H\right)$, 3.43-3.57 ($2 \mathrm{H}, \mathrm{d}, J$ 13.3, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right)$, 3.69-3.80 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H\right)$, 3.95-4.05 ($2 \mathrm{H}, \mathrm{d}, J$ 13.3, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.60-4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H), 5.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right), 7.22-7.57(10 \mathrm{H}, \mathrm{m}, P h)$.

Data for 23: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 4.33-4.42 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H$) 5.46-5.51 (1H, m, C(2)H), $5.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right)$.
$\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added to a stirred solution of a $75: 25$ mixture of 22:23 $(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in MeOH $(10 \mathrm{~mL})$ and the resultant suspension was stirred at rt for 16 h before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ was added and the mixture was extracted with $\mathrm{DCM}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried and concentrated in vacuo to give a $75: 25$ mixture of $\mathbf{1 8 : 5}$ as a colourless oil (37 mg , quant).
(1RS,2RS,3SR)-1-Trifluoroacetoxy-2-hydroxy-3-N,N-dibenzylaminocyclohexane 24

$\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}(39 \mu \mathrm{~L}, 0.53 \mathrm{mmol})$ was added to a stirred solution of $17(31 \mathrm{mg}, 0.106 \mathrm{mmol},>98 \% \mathrm{de})$ in DCM $(2 \mathrm{~mL})$ and the reaction mixture was stirred at rt for $16 \mathrm{~h} .0 .1 \mathrm{M} \mathrm{aq} . \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was then added, the organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with 0.1 M aq. $\mathrm{NaHCO}_{3}(5 \times 40 \mathrm{~mL})$, dried and concentrated in vacuo to give a 22:4:55:17:2 mixture of 24:25:18:26:5 (57 mg).

Data for 24: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] $3.63-3.77(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H), 4.75(1 \mathrm{H}$, ddd, $J 12.0,8.0$, 4.0, $\mathrm{C}(1) H)$.

Data for 25: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 2.73-2.83 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}\right), 5.07-5.14(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H})$.
Data for 26: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 4.00-4.10 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H\right)$ 5.20-5.26 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H\right)$. $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg})$ was added to a stirred solution of a 22:4:55:17:2 mixture of 24:25:18:26:5 (57 mg) in MeOH (5 mL) and the resultant suspension was stirred at rt for 16 h before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(5$ mL) was added and the mixture was extracted with $\mathrm{DCM}(4 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried and concentrated in vacuo to give an $81: 19$ mixture of $\mathbf{1 8 : 5}$ as a colourless oil (20 mg).
(1RS,2RS,3SR)-1-Acetoxy-2-hydroxy-3-N,N-dibenzylaminocyclohexane 28

A stirred solution 17 ($50 \mathrm{~g}, 0.171 \mathrm{mmol},>98 \% \mathrm{de}$) in $\mathrm{AcOH}(1 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 24 h before being allowed to cool to rt. $0.1 \mathrm{M} \mathrm{aq} . \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was then added and the aqueous layer was extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then washed with 0.1 M aq. $\mathrm{NaHCO}_{3}(5 \times 10$ $\mathrm{mL})$, dried and concentrated in vacuo to give a 44:36:11:9 mixture of $\mathbf{2 8 : 2 9 : 3 0 : 3 1}(53 \mathrm{mg})$ as a colourless oil.

Data for 28: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 2.43-2.52 $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H, 4.49-4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H)$.
Data for 29: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 3.09-3.16 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}\right), 5.17-5.22(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H)$.
Data for 30: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 5.05-5.10 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H\right)$.
Data for 31: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] 5.34-5.39 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H\right)$. $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added to a stirred solution of a 44:36:11:9 mixture of 28:29:30:31 (53 mg) in MeOH $(10 \mathrm{~mL})$ and the resultant suspension was stirred at rt for 16 h before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ was added and the mixture was extracted with $\mathrm{DCM}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried and concentrated in vacuo to give a 44:36:20 mixture of 18:5:14 as a colourless oil (23 mg).
(1RS,2SR,3RS)-3-N,N-dibenzylaminocyclohexane-1,2-diol 14

KOAc ($23 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{1 6}(99 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(6: 1,5$ mL) and the resultant suspension was heated at reflux for 48 h . The reaction mixture was allowed to cool to rt and concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times 10$ mL). The combined organic extracts were dried and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ were added. The resultant suspension was stirred for 16 h before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{DCM}(3 \times 10$ $\mathrm{mL})$. The combined organic extracts were washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine (30 mL), dried, and concentrated in vacuo to give 14 as a pale yellow solid ($31 \mathrm{mg}, 43 \%,>98 \%$ de).

X-ray Crystal Structure Determination for 14

Data were collected using an Enraf-Nonius k-CCD diffractometer with graphite monochromated Mo-K α radiation using standard procedures at 150 K . The structure was solved by direct methods (SIR92), all nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS. ${ }^{2}$

X-ray crystal structure data for $\mathbf{1 4}\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}\right]: \mathrm{M}=311.42$, monoclinic, space group $P 12 / a l$, $a=$ $10.83920(10) \AA, b=28.0222(3) \AA, c=12.21180(10) \AA, \beta=110.5571(5)^{\circ}, V=3473.00(6) \AA^{3}, \mathrm{Z}=8, \mu=$ $0.76 \mathrm{~mm}^{-1}$, colourless plate, crystal dimensions $=0.1 \times 0.3 \times 0.4 \mathrm{~mm}^{3}$. A total of 7908 unique reflections were measured for $5<\theta<27$ and 4662 reflections were used in the refinement. The final parameters were $w R_{2}=0.042$ and $R_{1}=0.040[I>3.0 \sigma(I)]$.

Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 681276. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].
(1RS,2RS,3SR)-1-p-Toluenesulphonyloxy-2-acetoxy-3-N,N-dibenzylaminocyclohexane 34

$\mathrm{Ac}_{2} \mathrm{O}(0.13 \mathrm{~mL}, 1.4 \mathrm{mmol})$ and DMAP $(50 \mathrm{mg})$ were added sequentially to a stirred solution of $\mathbf{1 9}(472 \mathrm{mg}$, 0.93 mmol) in $\mathrm{DCM} /$ pyridine $(1: 1,20 \mathrm{~mL})$. The resultant solution was stirred at rt for 24 h before being cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with DCM $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed sequentially with 10% aq. $\mathrm{CuSO}_{4}(2 \times 50 \mathrm{~mL}), 0.1 \mathrm{M}$ aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried, and concentrated in vacuo to give 34 as a white solid ($373 \mathrm{mg}, 72 \%$, $>98 \%$ de); mp 105-106 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{KBr}) 2942,2867(\mathrm{C}-\mathrm{H}), 1741$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06-1.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{A}}\right), 1.29-1.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}\right), 1.43-1.56(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(6) H_{\mathrm{A}}\right), 1.73-1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{B}}\right), 1.94-2.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}, \mathrm{COMe}\right), 2.03-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.44$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $2.67(1 \mathrm{H}$, app td $J 12.0,4.0, \mathrm{C}(3) H), 3.43\left(2 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{~N}\left(\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 3.78(2 \mathrm{H}, \mathrm{d}, J 13.5$, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)_{2}\right), 4.45(1 \mathrm{H}$, ddd, $J 12.0,8.0,4.0, \mathrm{C}(1) H), 5.18(1 \mathrm{H}$, app t, $J 9.9 \mathrm{C}(2) H), 7.17-7.35(12 \mathrm{H}, \mathrm{m}$, Ph, Ar), $7.74(2 \mathrm{H}, \mathrm{d}, J 8.1, A r) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.9,23.7,31.5(C(4), C(5), C(6)), 21.1,21.6(\mathrm{COMe}$, $\operatorname{ArMe}), 53.6\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 59.5(C(3)), 72.4(C(2)), 82.4(C(1)), 126.9,127.5,128.2,128.7,129.7,139.6$ (Ar,

[^1]Ph), $170.2(C O M e) ; m / z\left(\mathrm{ESI}^{+}\right) 508\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; H R M S\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 508.2152; found 508.2152.
(1RS,2SR,3RS)-3-N,N-dibenzylaminocyclohexane-1,2-diol 14 from 34

KOAc ($73 \mathrm{mg}, 0.74 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 4}(373 \mathrm{mg}, 0.74 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(6: 1,20$ mL) and the resultant suspension was heated at reflux for 72 h . The reaction mixture was allowed to cool to rt and concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and mixture was extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried and concentrated in vacuo. The residue was dissolved in MeOH $(10 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ were added. The resultant suspension was stirred for 16 h at rt before being concentrated in vacuo. $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and mixture was extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and brine (50 mL), dried, and concentrated in vacuo to give $\mathbf{1 4}$ as a white solid ($130 \mathrm{mg}, 57 \%,>98 \%$ de).
(1RS,2RS,3RS)-3-Aminocyclohexane-1,2-diol 6

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(78 \mathrm{mg})$ was added to a vigorously stirred solution of $\mathbf{5}(157 \mathrm{mg}, 0.50 \mathrm{mmol})$ in degassed MeOH $(2 \mathrm{~mL})$ and the resultant suspension was stirred at rt under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 24 h . The suspension was then filtered through a pad of Celite (eluent MeOH) and the filtrate was concentrated in vacuo to give $\mathbf{6}$ as a pale yellow solid ($53 \mathrm{mg}, 80 \%$, $>98 \%$ de); mp 115-116 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{KBr}) 3355(\mathrm{O}-\mathrm{H}), 2936,2867(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, d_{4}-\mathrm{MeOH}\right) 1.34-1.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.47-1.66\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{2}, \mathrm{C}(5) H_{2}\right), 1.74-1.87(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(6) H_{\mathrm{B}}\right), 3.02-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.52(1 \mathrm{H}, \mathrm{dd}, J 5.3,3.3, \mathrm{C}(2) H), 3.74-3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) H) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, d_{4}-\mathrm{MeOH}\right)$ 18.6, $29.2(C(4), C(5)), 47.4(C(6)), 49.9(C(3)), 70.0(C(1)), 74.2(C(2)) ; m / z\left(\mathrm{ESI}^{+}\right) 132$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 132.1019; found 132.1022.
(1RS,2SR,3SR)-3-Aminocyclohexane-1,2-diol 7

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(121 \mathrm{mg})$ was added to a vigorously stirred solution of $11(243 \mathrm{mg}, 0.78 \mathrm{mmol})$ in degassed $\mathrm{MeOH}(2 \mathrm{~mL})$ and the resultant suspension was stirred at rt under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 24 h . The suspension was
then filtered through a pad of Celite (eluent MeOH) and the filtrate was concentrated in vacuo to give $\mathbf{7}$ as a colourless oil (103 mg , quant, $>98 \%$ de); $\mathrm{v}_{\max }($ film $) 3385(\mathrm{O}-\mathrm{H}), 2941,2867(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, d_{4}-\right.$ $\mathrm{MeOH})$ 1.11-1.76 (6H, m, C(4) $\left.H_{2}, \mathrm{C}(5) H_{2}, \mathrm{C}(6) H_{2}\right), 2.59-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H)$, 3.46-3.59 (1H, m, C(1)H), 3.75-3.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, d_{4}-\mathrm{MeOH}\right) 21.0,27.6,28.2(C(4), C(5), C(6)), 52.2(C(3)), 71.8$ $(C(1)), 73.2(C(2)) ; m / z\left(\mathrm{ESI}^{+}\right) 132\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; H R M S\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 132.1019; found 132.1020.
(1RS,2SR,3RS)-3-Aminocyclohexane-1,2-diol 8

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(25 \mathrm{mg})$ was added to a vigorously stirred solution of $\mathbf{1 4}(54 \mathrm{mg}, 0.17 \mathrm{mmol})$ in degassed MeOH $(2 \mathrm{~mL})$ and the resultant suspension was stirred at rt under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 24 h . The suspension was then filtered through a pad of Celite (eluent MeOH) and the filtrate was concentrated in vacuo to give $\mathbf{8}$ as a white solid ($14 \mathrm{mg}, 64 \%,>98 \%$); mp 134-135 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) 3384(\mathrm{O}-\mathrm{H}), 2940,2871(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, d_{4}-\right.$ $\mathrm{MeOH})$ 1.14-1.27 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}\right), 1.44-1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{A}}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.63-1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{B}}\right), 1.79-$ $1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.92-3.03(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H), 3.21(1 \mathrm{H}, \mathrm{dd}, J 9.6,3.1, \mathrm{C}(2) H), 4.00(1 \mathrm{H}, \mathrm{app} \mathrm{q}$, $J 3.0, \mathrm{C}(1) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, d_{4}-\mathrm{MeOH}\right) 18.7(C(5)) 31.4(C(6)), 32.2(C(4)), 50.4(C(3)), 67.0(C(1)), 77.3$ $(C(2)) ; m / z\left(\mathrm{ESI}^{+}\right) 132\left([\mathrm{M}+\mathrm{H}]^{+}, 55 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 132.1019; found 132.1022.
(1RS,2RS,3SR)-3-Aminocyclohexane-1,2-diol 9

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(55 \mathrm{mg})$ was added to a vigorously stirred solution of $\mathbf{1 8}(110 \mathrm{mg}, 0.35 \mathrm{mmol})$ in degassed $\mathrm{MeOH}(2 \mathrm{~mL})$ and the resultant suspension was stirred at rt under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 24 h . The suspension was then filtered through a pad of Celite (eluent MeOH) and the filtrate was concentrated in vacuo to give $\mathbf{9}$ as a white solid (47 mg , quant, $>98 \%$ de); $\mathrm{mp} 45-46{ }^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) 3356(\mathrm{O}-\mathrm{H})$, 2934, $2868(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, d_{4}-\mathrm{MeOH}\right) 1.25-1.46\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H_{\mathrm{A}}, \mathrm{C}(5) H_{\mathrm{A}}, \mathrm{C}(6) H_{\mathrm{A}}\right), 1.71-1.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) H_{\mathrm{B}}\right), 1.88-2.02(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}(4) H_{\mathrm{B}}, \mathrm{C}(6) H_{\mathrm{B}}\right), 2.75(1 \mathrm{H}$, app td, $J 10.3,3.7, \mathrm{C}(3) H), 3.12(1 \mathrm{H}$, app $\mathrm{t}, J 9,2, \mathrm{C}(2) H), 3.30-3.43(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(1) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, d_{4}-\mathrm{MeOH}\right) 21.3(C(5)), 30.5,32.9(C(4), C(6))$, $54.6(C(3))$, $73.6(C(1))$, $78.6(C(2))$; $m / z\left(\mathrm{ESI}^{+}\right) 132\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 132.1019; found 132.1022.

[^0]: ${ }^{1}$ A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics, 1996, 15, 1518.

[^1]: ${ }^{2}$ P. W. Betteridge, J. R. Carruthers, R. I. Cooper, C. K. Prout and D. J. Watkin, CRYSTALS, 2001, Issue 11, Chemical Crystallography Laboratory, University of Oxford, UK.

