Synthesis and Conformational Analysis of

Cyclic Analogues of Inverse γ-Turns

Morakot Kaewpet,^{*a*} Barbara Odell,^{*a*,*} Michael A. King,^{*b*} Biswadip Banerji,^{*a*,‡} Christopher J. Schofield^{*a*,*} and Timothy D. W. Claridge^{*a*,*}

^{*a*}Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K. Fax: +44 1865275674; Tel: +44 1865275625; E-mail: barbara.odell@chem.ox.ac.uk, christopher.schofield@chem.ox.ac.uk, tim.claridge@chem.ox.ac.uk.

^bCADD Group, UCB Pharma Limited, 208 Bath Road, Slough SL1 3WE, U.K. Fax; +44 1753536632; Tel: +44 1753534655.

[‡]Current address: Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology, and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08, Singapore 138667.

Table of co	ontents	Page
Fig. S1 ¹ H	I spectrum of Z-4b in $[^{2}H]_{5}$ -pyridine at 238 K.	2
Fig. S2 ¹ H	I spectrum of E -4b in [² H] ₅ -pyridine at 238 K.	2
Fig. S3 ¹ H	I spectrum of 5 in $[^{2}H]_{5}$ -pyridine at 238 K.	3
Fig. S4 ¹ H	I spectrum of 10 in CDCl ₃ at 298 K.	3
Table S1	¹ H NMR data for Z-4b and <i>E</i>-4b in $[^{2}H]_{5}$ -pyridine at 238 K.	4
Table S2	Selected NOEs for conformer A of Z-4b at 238 K and comparison of the calculated inter-proton distances with those derived from the energy minimised molecular dynamics structure.	5
Table S3	A summary of selected NOEs for conformers A, B and C of <i>E</i> -4b at 238 K.	5
Table S4	¹ H NMR data for 5 in $[^{2}H]_{5}$ -pyridine at 238 K.	6
Table S5	Selected NOEs for conformer A of 5 in [² H] ₅ -pyridine at 238 K and comparison with inter-proton distances as predicted from molecular modelling.	7
Table S6	Selected NOEs for conformer B of 5 in [² H] ₅ -pyridine at 238K and comparison with inter-proton distances predicted by molecular modelling.	7
Table S7	¹ H NMR data for 10 in $[^{2}H]_{5}$ -pyridine at 238 K.	8
Table S8	Relevant NOEs from the NOESY spectrum of 10 in CDCl ₃ at 298 K.	9
Table S9	Observed ³ J-coupling constants and calculated dihedral angles of 10 .	9

Supplementary Material for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Fig. S1 ¹H spectrum of **Z-4b** in $[^{2}H]_{5}$ -pyridine at 238 K.

Fig. S2 ¹H spectrum of E-4b in [²H]₅-pyridine at 238 K.

Fig. S3 ¹H spectrum of **5** in $[^{2}H]_{5}$ -pyridine at 238 K.

Fig. S4 ¹H spectrum of **10** in CDCl₃ at 298 K.

Position	$\delta_{\rm H}$, multiplicity, J in Hz of Z-4b		$\delta_{\rm H}$, multiplicity, J in Hz of <i>E</i> -4b		
restricti	Conformer A	Conformer B	Conformer A	Conformer B	Conformer C
NH1	11.34, dd, 8.0, 3.7	11.10, dt, 9.3, 3.7	11.00	10.68	11.1, br
2	4.81, dd, 8.0,	4.91, dd, 9.3,	4.66	4.78	4.43, d, 8.7
2'	3.45, dd,	3.58, dd,	3.28	3.40	3.65, d, 5.1
NH4	7.64, d, 10.8	7.67, d, 9.6	8.68	7.62	9.3, d, 8.15
5	5.25, ddd, 11.0, 10.8, 2.6	5.45, m	5.28	4.76	4.6
6	2.69, m	2.64, m	2.68	2.76	2.93, overlap
6'	2.62, m	2.67, m	2.10	2.35	2.5
7	5.64, dt,	5.67, m	5.32	5.22	5.4, overlap
8	5.44, dt,	6.22, dt,	5.86	5.43	6.1, overlap
9	3.12, m	3.06, m	3.12	3.08	3.8, d, 12.8
9'	2.95, m	3.00, m	2.78	2.66	2.87, overlap
10	4.94, m	5.37, m	4.89	5.18	5.2, overlap

Table S1¹H NMR data for **Z-4b** and **E-4b** in $[^{2}H]_{5}$ -pyridine at 238 K.

Proton pair	NOE intensity ratio ^(a)	Calc. di	stance (Å)
		NOEs ^(b)	Model
NH4 – H6	14	2.8	2.6
NH1 – H8	18	2.9	3.1
NH1 – H10	5.1	2.3	2.2
H5 - H7	14	2.8	2.7
$\mathrm{H8}-\mathrm{H10}$	14	2.8	2.7

Table S2 Selected NOEs for conformer A of **Z-4b** at 238 K and comparison of the calculated interproton distances with those derived from the energy minimised molecular dynamics structure.

^(a) 2D volume integral relative to that of H2-H2' ($V_{H2-2'}/V_{LS}$) quoted to 2 significant figures. ^(b) Calculated distance based on the isolated spin pair approximation.

	Intensity of NOEs		
Proton pair	<i>E</i> -4b conformer A	<i>E</i> -4b conformer B	<i>E</i> -4b conformer C
NH1 – NH4	-	-	Medium (2.5)
NH1 – H8	Weak (4.3)	Medium (3.6)	-
NH1 – H7	Weak* (3.2)	Weak* (5.1)	-
NH1 – H10	Medium (2.5)	Strong (2.1)	Strong (2.3)
NH1 – H2'	Medium (2.4)	Strong (2.4)	Medium (2.5)
NH4 – H5	Medium (3.0)	Medium (2.9)	Medium (2.3)
NH4 – H6′	Weak (2.9)	Medium (2.7)	Medium (3.0)
NH4 – H2	Strong (2.3)	Medium* (2.3)	Weak (3.6)
NH4 – H2′	-	Weak (3. 6)	Medium (2.3)
H8 – H6	-	Medium (3.0)	-
H8 – H6′	Medium (2.4)	-	-

Table S3 A summary of selected NOEs for conformers A, B and C of E-4b at 238 K.

*NOE not definitive due to peak overlap, NOEs defined qualitatively according to cross peak intensities as weak, medium, or strong. Some averaging of NOEs between conformers A and B was observed. The inter-proton distances (Å) from representative model structures are given in parentheses.

Position	$\delta_{\rm H}$, multiplicity, J in Hz of 5		
l osition	Conformer A	Conformer B	
NH1	11.11, dd, 9.5, 2.8	11.24, br	
2	4.96, dd, 12.9, 9.5	4.58, dd, 15.5, 7.0	
2'	3.56, dd, 12.9, 2.8	4.51, dd, 15.5, 3	
NH4	8.33, br	9.56, d, 11.5	
5	4.97, overlap	5.26, td, 11.5, 2.5	
6	1.94, m	1.78, overlapping	
6′	1.65, m	1.78, overlapping	
7	1.11, br	1.63, overlapping	
7′	1.45, br	1.48, overlapping	
8	1.75, overlap	1.78, overlapping	
8′	1.57, br	1.78, overlapping	
9	2.40, m	2.62, m	
9′	2.36, m	1.83, overlapping	
10	5.08, br	4.91, br	

Table S4 ¹H NMR data for **5** in [²H]₅-pyridine at 238 K.

Proton pair	Intensity of NOEs	Peak integral ratio	Calculated dis	tance (Å) from
		from NOEs ^(c)	NOEs ^(d)	Modelling
NH1 – H10	strong	2.9	2.1	2.6
$NH1 - H2'^{(a)}$	strong	2.2	2.1	2.4
$NH1-H2^{(b)}$	medium	5.1	2.3	2.9
NH1 – H9′	weak	120	3.9	3.7
NH1-H8′	very weak	330	4.6	4.0
NH4 - H2	strong	4.2	2.2	2.5
NH4 – H6′	weak	330	4.6	2.7
H5–H6	strong	1.1	1.8	2.5
H5 - H6'	strong	1.0	1.8	2.5
H5 - H7'	weak	40	3.1	3.9

Table S5 Selected NOEs for conformer A of **5** in $[{}^{2}H]_{5}$ -pyridine at 238 K and comparison with interproton distances as measured from molecular modelling.

^(a) $J_{(NH1, H2'eq)}$ 3 Hz

^(b) $J_{(NH1, H2ax)}$ 9.5 Hz

^(c) 2D volume integral relative to that of H7-H7' ($V_{H7-7'}/V_{I-S}$) quoted to 2 significant figures. ^(d) Calculated distance based on the isolated spin pair approximation.

Table S6 Selected NOEs for conformer B of **5** in $[{}^{2}H]_{5}$ -pyridine at 238K and comparison with interproton distances predicted by molecular modelling.

Proton pair	Intensity of	Peak integral ratio	Calculated distance (Å) from	
1	NOEs	from NOEs ^(a)	NOEs ^(b)	Modelling
NH1 – H5	strong	5.3	2.3	2.7
NH1 – H10	strong	10	2.6	2.2
NH1 – H2	strong	12	2.7	2.3
NH4 – H2/H2′	weak	490	5.0	3.8
NH4 – H6	medium	22	3.0	3.1

 ${}^{3}J_{(\text{NH4,H5})} = 11.5 \text{ Hz}, {}^{3}J_{(\text{NH1,H2ax})} = 7 \text{ Hz}, {}^{3}J_{(\text{NH1,H2eq})} = 3 \text{ Hz}.$

^(a) 2D volume integral relative to that of H9-H9' ($V_{H9-9'}/V_{I-S}$) quoted to 2 significant figures. ^(b) Calculated distance based on the isolated spin pair approximation.

Table S7¹H NMR data for **10** in CDCl₃ at 298 K.

Position	$\delta_{\rm H}$, multiplicity, J in Hz of 10
NH2	7.30, d, 10.0
3	4.60, ddd, 10, 7.5, 3.0
4	1.80, m
4′	1.61, m
5	1.50, m
5'	1.12, m
6	1.53, m
6'	1.34, m
7	1.96, m
7'	1.64, m
8	4.46, td, 8.0, 2.4
10	3.70, m
10′	3.49, td, 9.5, 4.7
11	2.28, dquintet, 12.7, 8.6
11′	2.04, m
12	2.47, dddd, 12.5, 8.1, 3.4, 1.4
12′	1.83, m
13a	5.01, dd, 7.9, 1.6
NH14	5.43, d, 8.0
OMe	3.73, s
^t Bu	1.43, s

Proton pair	Intensity of NOEs	Peak integral ratio from NOEs ^(a)	Calculated distance ^(b) (Å)
NH2 – H13a	strong	4.7	2.4
NH2 – H3	weak	76	3.0
NH2 – H4′	medium	55	3.1
NH2-H5*	(medium)*	26*	2.3
H12 – H13a	medium	55	2.8
H12′ – H13a	strong	18	2.4
H3 - H4	medium	14	2.4
H3 – H4′	medium	19	2.5
H3 – H5′	medium	140	3.7
H10 - H8	strong	19	2.4
H10′ – H8	medium	10	2.6
H10' - H7'	strong	30	2.3
H10′ – H5/H6	weak	29	4.8
H10′ – H5′	weak	82	4.7
H10′ – H6′	weak	70	3.7
NH14 – H8	strong	24	2.9

Table S8 Relevant NOEs from the NOESY spectrum of 10 in CDCl₃ at 298 K.

*Overlap with H6; estimated volume

 $^{(a)}$ 2D volume integral relative to that of H10-H10' (V_{\rm H10-10'}/V_{I-S}) quoted to 2 significant figures. $^{(b)}$ Calculated distance based on the isolated spin pair approximation

 Table S9 Observed ³J-coupling constants and calculated dihedral angles of 10.

Protons	${}^{3}J_{(H,H)}$, Hz	Calcd. dihedral angles (°)
NH2 – H3	10	166
NH14 – H8	8	146
H3 - H4	7.5	146
H3 – H4′	3	57 or 108
H13a – H12	7.9	150
H13a – H12′	1.6	90 or 77