This journal is (c) The Royal Society of Chemistry 2008

Stereoselective Desymmetrisation of Prochiral α,α-Dicyanoalkenes via Domino Michael-Michael Addition Reactions

Tai-Ran Kang,^a Jian-Wu Xie,^a Wei Du,^a Xin Feng,^a and Ying-Chun Chen^{* a,b}

^a Key Laboratory of Drug-Targeting and Drug Deliver System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. ^b State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

> E-mail: ycchenhuaxi@yahoo.com.cn ycchen@scu.edu.cn

Supplementary Information

Table of Contents

- 1. General method
- 2. General procedure for the desymmetrisation reaction
- 3. Procedure for the Synthesis of Compound 5
- 4. Procedure for the Synthesis of Compound 6
- 5. NMR and HPLC spectra

1. General method

TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. ¹H and ¹³C NMR were recorded on Bruker 300 or 75 MHz spectrometers, respectively. Chemical shifts were reported in ppm down field with tetramethylsilane resonance as the internal standard. ESI HRMS was recorded on a Bruker Apex-2. Enantiomeric excess was determined by HPLC analysis on Chiralpak columns. All other reagents were used without purification as commercially available.

2. General procedure for the desymmetrisation reaction.

Compound **2** (0.1 mmol), **3** (0.12 mmol), catalyst **1a** 6.5 mg (0.02 mmol), TFA 2.9 μ L (0.04 mmol) and DIPEA (2.2 μ L, 0.015 mmol) were stirred in THF (0.3 mL) at 25 °C for 110 h. Then the reaction was quenched by adding 1 mol/L HCl (0.5 mL). The mixture was diluted with EtOAc (10 mL), washed with water, and dried over anhydrous sodium sulfate. The solvent was removed and flash chromatography on silica gel (ethyl acetate/petroleum ether) gave the product **4**.

4a 81% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{25} = +17.2$ (c = 0.87 in CHCl₃); 99% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 21.14 min, t (major) = 13.46 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.39-7.28 (m, 3H), 7.22-7.20 (m, 2H), 4.43 (s, 1H), 3.26

(td, J = 3.4 Hz, 12.0 Hz, 1H), 2.88 (d, J = 13.3 Hz, 1H), 2.70-2.66 (m, 1H), 2.62-2.57 (m, 2H), 2.44 (d, J = 11.6 Hz, 1H), 1.83-1.78 (m, 3H), 1.70-1.62 (m, 1H), 1.37-1.32 (m, 1H), 0.95-0.89 (m, 2H), 0.79 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.3, 141.4, 129.2, 127.6, 126.9, 111.4, 110.4, 48.9, 48.8, 44.6, 43.7, 41.8, 31.1, 30.9, 29.7, 28.6, 24.9, 22.0; ESI-HRMS: calcd. for C₂₀H₂₂N₂O+Na 329.1630, found 329.1630.

4b 71% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{25} = +18.1$ (c = 0.66 in CHCl₃);

>99.5% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, λ = 220 nm, t (minor) = 22.94 min, t (major) = 15.03 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.13 (d, *J* = 7.8 Hz, 2H), 6.89 (d, *J* = 8.0 Hz,, 2 H), 4.43 (s, 1H), 3.81 (s, 3H), 3.22 (td, *J* = 3.3 Hz, 12.7 Hz, 1H), 2.87

(d, J = 13.4 Hz, 1H), 2.71-2.62 (m, 1H), 2.60-2.50 (m, 2H), 2.37 (d, J = 11.7 Hz, 1H), 1.82-1.76 (m, 3H), 1.68-1.63 (m, 1H), 1.39-1.34 (m, 1H), 0.99-0.83 (m, 2H), 0.79 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.5, 158.8, 133.4, 127.8, 114.5, 111.4, 110.5, 55.3, 49.1, 48.9, 44.5, 42.9, 42.0, 31.1, 30.9, 29.7, 28.6, 24.9, 22.0; ESI-HRMS: calcd. for C₂₁H₂₄N₂O+Na 359.1735, found 359.1732.

4c 64% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = +7.5$ (*c* = 0.33 in CHCl₃); >99.5% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 23.33 min, t (major) = 10.37 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.35 (d, J = 8.5 Hz, 2H), 7.16 (d, J =

8.4 Hz, 2H), 4.42 (s, 1H), 3.26 (td, J = 4.5 Hz, 12.9 Hz, 1H), 2.87 (d, J = 13.3 Hz, 1H), 2.65-2.56 (m, 3H), 2.39 (d, J = 11.7 Hz, 1H), 1.81-1.76 (m, 3H), 166-1.59 (m, 1H), 1.35-1.24 (m, 1H), 1.01-0.84 (m, 2H), 0.80 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.8, 139.9, 133.3, 129.5, 128.9, 128.8, 128.2, 111.4, 110.3, 48.8, 48.7, 44.5, 43.2, 41.7, 31.1, 30.9, 29.6, 28.6, 24.9, 22.0; ESI-HRMS: calcd. for C₂₀H₂₁ClN₂O+Na 363.1240, found 363.1240.

4d 72% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = +12.0$ (c = 0.37 in CHCl₃); 95% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) =17.73 min, t (major) = 12.31 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.34-7.26 (m, 2H), 7.20 (s, 1H), 7.10 (d, J = 6.7 Hz, 1H),

4.43 (s, 1H), 3.26 (td, J = 4.6 Hz, 12.6 Hz, 1H), 2.87 (d, J = 13.3 Hz, 1H), 2.71-2.57 (m, 3H), 2.42 (d, J = 11.5 Hz, 1H), 1.79-1.77 (m, 3H), 1.66-1.64 (m, 1H), 1.37-1.32 (m, 1H), 0.99-0.88 (m, 2H), 0.81 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.7, 143.4, 135.1, 130.6, 127.9, 127.0, 125.2, 111.4, 110.3, 48.8, 48.6, 44.5, 43.5, 41.5, 31.1, 30.9, 29.6, 28.6, 24.9, 22.0; ESI-HRMS: calcd. for C₂₀H₂₁ClN₂O+Na 363.1240, found 363.1240.

4e 68% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = +3.3$ (c = 0.41 in CHCl₃); 92% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 20.53 min, t (major) = 10.89 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.41-7.31 (m, 3H), 7.25-7.19 (m, 1H), 4.44 (s, 1H), 4.01

(td, J = 5.0 Hz, 12.1 Hz, 1H), 2.88 (d, J = 13.4 Hz, 1H), 2.63-2.50 (m, 4H), 1.86-1.78 (m, 4H), 1.34-1.29 (m, 1H), 1.02-0.86 (m, 2H), 0.81 (d, J = 6.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.6, 139.1, 133.9, 130.1, 128.5, 128.0, 127.0, 111.5, 110.4, 48.8, 47.9, 44.5, 41.2, 38.6, 31.2, 31.1, 29.7, 28.8, 25.5, 22.0; ESI-HRMS: calcd. for C₂₀H₂₁ClN₂O+Na 363.1240, found 363.1240.

4f 45% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{25} = -15.3$ (c = 0.33 in CHCl₃); 98% ee; The enantiomeric excess was determined by HPLC on Chiralpak AD column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 7.40 min, t (major) = 5.57 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.03 (d, J = 7.6 Hz, 1H), 7.92-7.89 (m, 1H), 7.82-7.79 (m,

1H), 7.58-7.50 (m, 4H), 4.48 (s, 1H), 4.32-4.22 (m, 1H), 2.98 (d, J = 13.2 Hz, 1H), 2.79 (d, J = 11.6 Hz, 1H), 2.69-2.65 (m, 3H), 1.85-1.81 (m, 2H), 1.62-1.60 (m, 2H), 1.40 (d, J = 14.5 Hz, 1H), 1.05-0.89 (m, 2H), 0.64 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.3, 138.0, 134.1, 131.3, 129.3, 127.7, 126.7, 125.9, 125.8, 123.2, 121.6, 111.6, 110.5, 49.3, 49.0, 44.8, 41.5, 36.7, 31.3, 31.0, 29.7, 28.9, 25.8, 21.9; ESI-HRMS: calcd. for C₂₄H₂₄N₂O+Na 379.1786, found 379.1748.

4g 64% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 18:1); $[\alpha]_D^{25} = +17.3$ (*c* = 0.68 in CHCl₃); 97% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 19.70 min, t (major) = 12.96 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.37 (d, *J* = 1.8 Hz, 1H), 6.32 (dd, *J* = 1.9 Hz, 3.2 Hz, 1H), 6.11 (d,

J = 3.2 Hz, 1H), 4.40 (s, 1H), 3.43 (td, J = 4.2 Hz, 13.3 Hz, 1H), 2.88-2.79 (m, 2H), 2.59-2.48 (m, 3H), 1.75-1.70 (m, 4H), 1.45-1.40 (m, 1H), 1.05-0.94 (m, 2H), 0.87 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.9, 153.7, 142.1, 111.3, 110.4, 110.2, 106.6, 48.6, 46.0, 44.1, 40.3, 37.3, 31.3, 31.0, 29.6, 28.4, 24.9, 22.0; ESI-HRMS: calcd. for C₁₈H₂₀N₂O₂+Na 319.1422, found 319.1400.

4h 60% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = +16.7$ (*c* = 0.69 in CHCl₃); 97% ee; The enantiomeric excess was determined by HPLC on Chiralpak AD column [10% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 15.34 min, t (major) = 12.68 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.26-7.22 (m, 1H), 6.97 (dd, J = 3.5 Hz, 5.1 Hz,

1H), 6.88-6.87 (m, 1H), 4.43 (s, 1H), 3.62 (td, J = 6.8 Hz, 11.2 Hz, 1H), 2.86 (d, J = 13.4 Hz, 1H), 2.78-2.70 (m, 2H), 2.58 (d, J = 13.4 Hz, 1H), 2.35-2.32 (m, 1H), 1.82-1.63 (m, 4H), 1.57-1.53 (m, 1H), 1.02-0.93 (m, 2H), 0.85 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.2, 145.1, 127.0, 124.5, 124.2, 111.3, 110.4, 49.9, 48.9, 44.4, 43.7, 39.1, 31.1, 29.7, 28.7, 25.0, 22.0; ESI-HRMS: calcd. for C₁₈H₂₀N₂OS+Na 335.1194, found 335.1214.

4i 54% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{25} = +12.0$ (*c* = 0.37 in CHCl₃); 98% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 12.58 min, t (major) = 29.58 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.42 (s, 1H), 2.69 (d, *J* = 13.0 Hz, 1H), 2.50-2.46 (m, 2H),

2.18-2.14 (m, 2H), 1.96-1.92 (m, 2H), 1.73-1.64 (m, 3H), 1.61-1.54 (m, 2H), 1.42-1.29 (m, 1H), 1.28-1.23 (m, 3H), 1.08-0.98 (m, 1H), 0.94-0.87 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 206.6, 111.4, 110.6, 48.9, 45.8, 44.9, 41.0, 35.7, 35.5, 31.0, 30.6, 29.9, 28.7, 24.9, 22.2, 18.6, 14.1; ESI-HRMS: calcd. for C₁₇H₂₄N₂O+Na 295.1786, found 295.1766.

4j 61% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = -9.3$ (*c* = 0.78 in CHCl₃); 95% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 23.86 min, t (major) = 14.38 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.38-7.35 (m, 2H), 7.30-7.27 (m, 4 H), 7.23-7.18 (m, 2H), 7.06-7.02 (m, 2H), 4.58 (s, 1H), 3.46 (td, *J* = 4.3 Hz, 13.0 Hz, 1H), 2.94 (d,

J = 13.3 Hz, 1H), 2.90-2.80 (m, 1H), 2.77-2.56 (m, 4H), 2.05-1.96 (m, 3H), 1.60-1.51 (m, 2H), 1.45-1.34 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.0, 143.9, 141.0, 129.4, 128.7, 127.8, 126.9, 126.8, 126.3, 111.4, 110.4, 48.9, 48.8, 44.5, 43.6, 42.0, 35.8, 31.3, 30.1, 28.8, 28.0; ESI-HRMS: calcd. for C₂₅H₂₄N₂O+Na 391.1786, found 391.1743.

4k 66% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 18:1); $[\alpha]_D^{25} = -7.1$ (*c* = 0.87 in CHCl₃); 97% ee;

The enantiomeric excess was determined by HPLC on Chiralpak ADcolumn [20% 2-propanol/ hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 12.62 min, t (major) = 7.99 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.29-7.24 (m, 2H), 7.21-7.16 (m, 3 H), 7.05 (d, J = 8.3 Hz,, 2H), 6.90 (d, J = 8.5 Hz,, 2H), 4.58 (s, 1H), 3.79 (s, 3H), 3.40 (td, J = 4.4 Hz, 12.4 Hz, 1H), 2.93 (d, J = 13.4 Hz, 1H),

2.88-2.80 (m, 1H), 2.78-2.58 (m, 3H), 2.52-2.49 (m, 1H), 2.05-1.95 (m, 3H), 1.64-1.50 (m, 2H), 1.43-1.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.2, 158.9, 143.9, 133.1, 128.7, 127.8, 126.8, 126.3, 114.7, 111.4, 110.4, 55.3, 49.0, 48.9, 44.4, 42.8, 42.3, 35.8, 31.3, 30.1, 28.8, 28.1; ESI-HRMS: calcd. for C₂₆H₂₆N₂O₂+Na 421.1892, found 421.1895.

41 67% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = -2.8$ (*c* = 1.1 in CHCl₃); 97% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 28.01 min, t (major) = 11.36 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.36-7.33 (m, 2H), 7.30-7.17 (m, 5H), 7.05-7.03 (m, 2H), 4.58 (s, 1H), 3.44 (td, *J* = 4.2 Hz, 12.2 Hz, 1H), 2.93

(d, J = 13.3 Hz, 1H), 2.86-2.77 (m, 1H), 2.72-2.51 (m, 4H), 2.05-1.94 (m, 3H), 1.61-1.50 (m, 2H), 1.48-1.42 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.5, 143.6, 139.5, 133.5, 129.6, 128.7, 128.2, 126.9, 126.3, 111.3, 110.3, 48.8, 48.6, 44.4, 43.0, 41.9, 35.8, 31.3, 30.0, 28.8, 28.0; ESI-HRMS: calcd. for C₂₅H₂₃ClN₂O+Na 425.1397, found 425.1422.

4m 62% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = -15.8$ (*c* = 0.35 in CHCl₃); 90% ee; The enantiomeric excess was determined by HPLC on Chiralpak AD column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 11.23 min, t (major) = 7.94 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.36 (d, *J* = 9.0 Hz, 1H), 7.32-7.19 (m, 3 H), 7.12 (d, *J* = 7.0 Hz, 2H), 6.32 (dd, *J* = 2.0 Hz, 3.1 Hz, 1H), 6.20 (d, *J* = 3.1 Hz, 1H), 4.57 (s, 1H),

3.63 (td, J = 3.8 Hz, 11.7 Hz, 1H), 2.95-2.82 (m, 3H), 2.64 (d, J = 13.3 Hz, 3H), 2.04-2.00 (m, 1H), 1.93-1.89 (m, 2H), 1.69-1.61 (m, 1H), 1.57-1.49 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 204.6, 153.4, 143.9, 142.2, 128.7, 126.9, 126.4, 111.2, 110.3, 106.8, 48.7, 46.0, 44.0, 40.7, 37.1, 35.8, 31.2, 30.5, 28.7, 28.0; ESI-HRMS: calcd. for C₂₃H₂₃N₂O₂+Na 381.1579, found 381.1563.

4n 61% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = +8.9$ (c = 0.75 in CHCl₃); 94% ee;

The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 18.64 min, t (major) = 9.47 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.39-7.30 (m, 3H), 7.29-7.20 (m, 2H), 4.42 (s, 1H), 3.27 (td, J = 4.3 Hz, 13.2 Hz, 1H), 2.88 (d, J = 13.3 Hz, 1H), 2.67 (t, J = 13.3 Hz, 1H), 2.61-2.53 (m, 2H), 2.45-2.41 (m, 1H), 1.86-1.78 (m, 3H), 1.54-1.53 (m,

1H), 1.42-1.37 (m, 1H), 1.16-1.08 (m, 3H), 1.07-0.84 (m, 3H), 0.78 (t, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.4, 141.3, 129.2, 127.6, 126.9, 111.5, 110.5, 48.9, 48.7, 44.9, 43.7, 41.8, 38.9, 31.1, 29.4, 28.9, 28.6, 27.9, 19.5, 14.0; ESI-HRMS: calcd. for C₂₂H₂₆N₂O+Na 357.1943, found 357.1949.

4o 71% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = -9.3$ (c = 0.78 in CHCl₃); 99.5% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 24.08 min, t (major) = 9.08 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.46-7.30 (m, 3H), 7.29-7.21 (m, 2H), 4.35 (s, 1H), 3.28

(td, J = 4.1 Hz, 11.7 Hz, 1H), 2.88 (d, J = 13.3 Hz, 1H), 2.78-2.69 (m, 1H), 2.62-2.54 (m, 2H), 2.49-2.44 (m, 1H), 1.84-1.79 (m, 3H), 1.38-1.29 (m, 2H), 1.05-0.93 (m, 2H), 0.70 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 205.2, 141.3, 129.1, 127.7, 127.0, 111.5, 110.5, 48.9, 48.7, 44.7, 43.7, 42.1, 39.6, 32.2, 31.2, 29.0, 27.0, 23.3, 22.2; ESI-HRMS: calcd. for C₂₃H₂₈N₂O+Na 371.2099, found 371.2074.

4p 60% yield; $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = -16.9$ (*c* = 0.74 in CHCl₃); 98% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/ hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 16.26 min, t (major) = 13.92 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.93 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 6.2 Hz, 4H), 7.34-7.31 (m, 3H), 5.29-5.22 (m, 1H), 4.54 (s, 1H), 3.31 (td, *J* = 4.4 Hz, 11.9 Hz, 1H), (m, 1H), 2.92 (d, *J* = 13.6 Hz, 1H), 2.81-2.62 (m, 4H), 2.31-2.25 (m, 1H), 2.00-1.97 (m, 2H), 1.84-1.79 (m, 1H), 1.52-1.48

(m, 2H); 13 C NMR (75 MHz, CDCl₃) δ (ppm) 204.5, 165.4, 140.7, 133.2, 129.7, 129.5, 129.4, 128.4, 128.0, 127.0, 111.1, 110.1, 66.6, 48.3, 48.0, 44.4, 44.2, 42.2, 31.4, 28.1, 27.7, 26.7; ESI-HRMS: calcd. for C₂₆H₂₄N₂O₃+Na 435.1685, found 435.1641.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2008

3. Procedure for the Synthesis of Compound 5

The mixture of **4a** (30.6 mg, 0.1 mmol) and Cs₂CO₃ (65 mg, 0.2 mmol) in freshly distilled dry THF (0.3 mL) was stirred at 50 °C until the reaction was complete. The mixture was diluted with EtOAc (10 mL) and washed with water. After dried with anhydrous sodium sulfate, the solvent was removed and flash chromatography on silica gel (4% ethyl acetate/petroleum ether) gave compound **5** (23.8 mg, 99% yield). $R_f = 0.1$ (petroleum ether/EtOAc = 25:1); $[\alpha]_D^{25} = +11.0$ (c = 0.75 in CHCl₃); 99% ee; The enantiomeric excess was determined by HPLC on Chiralpak AS column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 220$ nm, t (minor) = 33.19 min, t (major) = 26.55 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.36-7.29 (m, 2H), 7.28-7.23 (m, 1H), 7.22-7.17 (m, 2H), 5.93 (s, 1H), 2.88-2.84 (m, 1H), 2.72-2.68 (m, 1H), 2.63-2.48 (m, 3H), 2.38-2.29 (m, 1H), 2.06-2.03 (m, 1H), 1.73-1.62 (m, 2H), 1.56-1.50 (m, 1H), 1.33-1.25 (m, 1H), 0.98 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 199.0, 166.9, 142.5, 128.8, 127.3, 126.8, 124.6, 47.8, 45.2, 37.7, 36.2, 31.4, 30.0, 26.9, 17.0; ESI-HRMS: calcd. for C₁₇H₂₀O+Na 263.1412, found 263.1439.

4. Procedure for the Synthesis of Compound 6

TiCl₄ (44 μ L, 0.4mmol) was added dropwise by using a syringe to a stirred suspension of Zn powder (52 mg, 0.80 mmol) in freshly distilled dry THF (0.3 mL) at room temperature under Ar atmosphere. Then the mixture was refluxed for 2 h. The suspension of the formed low-valent titanium reagent was cooled to room temperature and the solution of **4a** (30.6 mg, 0.1mmol) in anhydrous THF (0.20 mL) was added. The mixture was stirred at room temperature for 5 h, and then quenched with 5% HCl (1.0 mL). The mixture was extracted with CHCl₃ (3×10 mL). The combined organic phase was washed with water (2×10 mL) and dried over anhydrous Na₂SO₄.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2008

After concentration, the crude product was purified by column chromatography (silica gel, ethyl acetate/petroleum ether, 1:3) to give pure compound **6** (13.8 mg, yield 45%). $R_f = 0.1$ (petroleum ether/EtOAc = 4:1); $[\alpha]_D^{25} = +14.0$ (c = 0.61 in CHCl₃); 99% ee; The enantiomeric excess was determined by HPLC on Chiralpak IC column [20% 2-propanol/hexane, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.21 min, t (major) = 5.33 min]; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.31-7.27 (m, 2H), 7.21-7.19 (m, 2H), 7.17-7.12 (m, 1H), 4.66 (s, 2H), 2.90-2.86 (m, 1H), 2.28 (d, J = 9.9 Hz, 1H), 2.17-2.13 (m, 2H), 2.08-2.01 (m, 3H), 1.98-1.97 (m, 1H), 1.78-1.70 (m, 2H), 1.68-1.57 (m, 1H), 1.44-1.41 (m, 2H), 1.37-1.32 (m, 1H), 0.98 (d, J = 7.21 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 163.7, 147.2, 128.3, 127.0, 125.6, 117.5, 81.8, 79.2, 46.5, 46.0, 44.8, 38.3, 37.9, 36.1, 30.0, 27.5, 27.4, 18.0; ESI-HRMS: calcd. for C₂₀H₂₄N₂O+Na 331.1786 found 331.1749.

5. NMR and HPLC spectra

	(min)	(V *sec)	% Area	(V)	% Height
1	10.378	84999784	99.99	1739110	99.98
2	23.339	10554	0.01	-404	0.02

ppm

200

neters 75. NHZ 1.00 0

20.00 cm 5.00 cm 220.500 ppm 16640.64 Hz -0.500 ppm -37.73 Hz 11.05000 ppm/cm 833.91864 Hz/cm

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.089	24912430	99.74	466384	99.82
2	24.083	64713	0.26	-855	0.18

	RT (min)	Area (V *sec)	% Area	Height (Ⅴ)	% Height
1	13.922	93224575	99.23	2092995	99.23
2	16.267	725414	0.77	16186	0.77

