Supplementary information

Spectacular Induced-Fit Process for Guest Binding by a Calix[6]arene Zn(II) *Funnel Complex*

David Coquière,[†] Jérôme Marrot[§] and Olivia Reinaud*^{,†}

[†] Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France. [§] Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 av. des Etats-Unis, 78035 Versailles cedex, France. <u>Olivia.Reinaud@univ-paris5.fr</u>

Table of contents

Page S2: XRD of the aqua-complex 3.

- **Page S3:** evolution of ¹H NMR spectrum (250 MHz, 300 K) of complex **3** upon addition of benzylamine.
- Page S5: XRD of complex 3 with benzylamine as a guest.
- **Page S6:** evolution of ¹H NMR spectrum (250 MHz, 300 K) of complex **3** upon addition of dimethyldopamine.
- **Page S8:** COSY ¹H NMR spectrum (250 MHz, CDCl₃, 300 K) of complex **3** with dimethyldopamine as a guest.
- Page S9: XRD of complex 3 with dimethyldopamine as a guest.
- **Page S10:** ¹H High-field NMR spectra (250 MHz, CDCl₃, 300 K) of complex **3** with various guest and measured $\Delta\delta$.

XRD of the aqua complex 3

Slow diethyl ether diffusion into a CH_2Cl_2 solution (0.5 mL) of complex 3 (\approx 3 mg) resulted in the formation of colourless crystals suitable for X-Ray analysis.

Crystal data: C_{88} H₁₂₉ Cl₂ N₉ O₁₉ Zn, M_w = 1753.27, monoclinic, space group P2₁/c; dimensions: a = 16.4885(3) Å, b = 26.3581(6) Å, c = 23.3178(5) Å, β = 109.279(1)°, V = 9565.7(3) Å³; Z = 4; μ = 0.381 mm⁻¹; 117512 reflections measured at 100 K; independent reflections: 28046 [19361 Fo > 4 σ (Fo)]; data were collected up to a 2 Θ max value of 60.16° (99.8 % coverage). Number of variables: 995; R₁ = 0.0608, wR₂ = 0.1782, S = 1.109; highest residual electron density 1.285 e.Å⁻³ (all data R₁ = 0.0874, wR₂ = 0.1922). CCDC 690395.

XRD structures of the aqua-complex **3**. Left: side view; right: bottom view. Hydrogen atoms, counter anions and solvent molecules (four molecules of diethylether) have been omitted for clarity. Dotted lines: hydrogen bonds (OH^{...}O) and CH- π interactions.

Distances (Å):	d(Zn(1)-N(50)) =	1,9766(17)
	d(Zn(1)-N(1)) =	1,9980(17)
	d(Zn(1)-N(57)) =	1,9972(18)
	d(Zn(1)-O(88)) =	2,041(2)
	$d(N(71)^{}N(72)) =$	3,14
	d(N(71)N(73)) =	4,37
	$d(N(72)^{}N(73)) =$	3,24.
Angles (degree):	N(50)-Zn(1)-N(1) =	112,50(7)
	N(50)-Zn(1)-N(57) =	109,74(7)
	N(1)-Zn(1)-N(57) =	104,05(7)
	N(50)-Zn(1)-O(88) =	112,09(8)
	N(1)-Zn(1)-O(88) =	110,25(8)
	N(57)-Zn(1)-O(88) =	107,81(8)
Hydrogen bond (Å):	d(O(88) O(63)) =	3,10
CH- π interaction (Å):	d(O(88) centroïd) =	3,48

Evolution of ¹H NMR spectrum (250 MHz, 300 K) of complex 3 upon

addition of benzylamine

Bottom to top: ¹H NMR spectra (250 MHz, CD₃CN/D₂O 1:1, 300 K) of complex **3** (6 mM) a) before and after the addition of b) 2 equiv. and c) 5 equiv. of benzylamine. \checkmark (CH₃)₃C, o OCH₃, \blacktriangle NCH₃ and H_{Im}, \diamond CH₂Ar, \bullet CH₂Im, \Box H_{ArNH2} and \blacksquare H_{ArrBu}; * uncoordinated benzylamine; α , γ , δ and ε guest benzylamine; S: solvent; W: water.

For each ¹H NMR spectrum, the number and relative intensities of proton signals are in agreement with C_{3v} symmetrical compounds. The chemical shifts of the tertiobutyl (1.41 ppm) and methoxy protons (3.53 ppm) show that these groups are projected away from the calixarene cavity, in agreement with the flattened cone conformation above schematized.¹ In spectrum b, the resonances of both complexes (with and without benzylamine endocoordinate) are observable. This shows that the guest exchange was slow vs. the time scale of the NMR analysis.

Integration of the resonances that are characteristic of both complexes (with and without benzylamine in the cavity) indicated that *ca*. 73% of benzylamine encapsulation is obtained after addition of 2 equivalents of benzylamine to the solution of the complex (spectrum b). The corresponding tertiobutyle resonance, did not shift significantly as it remains in position *out* whatever this guest is. However, important shifts are observed for

¹ Coquiere, D.; Marrot, J.; Reinaud, O. Chem. Commun. 2006, 3924-3926.

H_{ArNH2} (in position *in*) and CH_{2Im} signals with $\Delta \delta = +0.25$ ppm and +0.48 ppm, respectively. These low-field shifts are rationalized by the endo-coordination of the large benzylamine guest (green NMR signature), which pushes away these groups from the center of the cone (red NMR signature), in full agreement with the solid state structure. Such a geometrical change allows the cavity size to increase and the calixarene to accommodate benzylamine thanks to a more straight conformation. Consequently, the rest of the host signals (o OCH₃, \blacktriangle NCH₃ and H_{Im}, \diamond CH₂Ar, and \blacksquare H_{Ar/Bu}) are also slightly shifted. The signals of protons α , γ , δ and ε of the coordinated guest gradually appeared during the titration at 2.38 ppm (s), 4.93 ppm (d), 6.28 ppm (t) and 6.59 ppm (t), respectively (for $\Delta\delta$ see Figure 3 of the manuscript).

XRD of complex 3 with benzylamine as a guest

Slow diethyl ether diffusion into a methanol solution (0.5 mL) of complex $3 \approx 3 \text{ mg}$ and 5 equiv. of benzylamine resulted in the formation of colourless crystals suitable for X-Ray analysis.

Crystal data: C_{79} H₉₆ Cl₂ N₁₀ O₁₄ Zn, M_w = 1545.93, monoclinic, space group P2₁/n; dimensions: a = 19.874(3) Å, b = 25.382(4) Å, c = 23.188(3) Å, β = 114.988(6)°, V = 10602(3)Å³; Z = 4; μ = 0.333 mm⁻¹; 284267 reflections measured at 100 K; independent reflections: 18776 [9992 Fo > 4 σ (Fo)]; data were collected up to a 2 Θ max value of 50.40° (98.3 % coverage). Number of variables: 915; R₁ = 0.1406, wR₂ = 0.3437, S = 1.040; highest residual electron density 1.701 e.Å⁻³ (all data R₁ = 0.1910, wR₂ = 0.3715). CCDC 690397.

XRD structures of complex **3** with benzylamine as a guest. Left: side view; right: bottom view. Hydrogen atoms and counter anions have been omitted for clarity. Dotted lines: hydrogen bonds (NH^{\dots}O) and CH- π interactions.

Distances (Å):	d(Zn(1)-N(1)) =	1.995(3)
	d(Zn(1)-N(34)) =	1.991(2)
	d(Zn(1)-N(35)) =	2.000(2)
	d(Zn(1)-N(89)) =	2.020(4)
Angles (degree):	N(1)-Zn(1)-N(34) =	107.40(10)
	N(1)-Zn(1)-N(35) =	106.38(10)
	N(34)-Zn(1)-N(35) =	108.95(9)
	N(1)-Zn(1)-N(89) =	122.00(12)
	N(34)-Zn(1)-N(89) =	101.36(12)
	N(35)-Zn(1)-N(89) =	110.17(12)
Hvdrogen bonds (Å):	d(N(89) - O(28)) =	2,92
, , , , , , , , , , , , , , , , , , , ,	$d(N(89) \cdots O(41)) =$	2,94
CH- π interactions (Å):	d(C(92)centroïd) =	3,64 and 4,14
	d(C(96)) centroïd) =	3,45

Bottom to top: ¹H NMR spectra (250 MHz, CDCl₃, 300 K) of complex **3** (5 mM) a) before and after the addition of b) 3 equiv. and c) 6 equiv. of dimethyldopamine in total. \checkmark (CH₃)₃C, o OCH₃, \blacktriangle NCH₃ and H_{Im}, \diamond CH₂Ar, \bullet CH_{2Im}, \Box H_{ArNH2} and \blacksquare H_{ArrBu}; α , β , δ , δ' , ε , ζ and ζ' : guest dimethyldopamine; *: free dimethyldopamine; S: solvents; W: water.

The addition of 3 equivalents of dimethyldopamine led to a growing new ¹H NMR signature that is characteristic of calixarene **3** (red resonances) hosting one equivalent of dimethyldopamine (green resonances) (spectra b and c). The most significant resonance shifts were observed for the CH_{2Im}, H_{ArNH2} and CH_{2Ar} groups with $\Delta \delta = + 0.63$ ppm, + 0.35 ppm and 0.47 ppm, respectively. Dimethyldopamine endo-coordination was characterized by 2D ¹H NMR analysis (see below). α , β and methoxy proton signals were observed at $\delta = 1.38$ ppm, 0.50 ppm and 3.40 ppm and 3.60 ppm ($\Delta \delta$ of 1.58 ppm, 2.28 ppm, 0.55 ppm and 0.35 ppm), respectively. Aromatic proton δ , δ ' and ε appeared at 4.92 ppm ($\Delta \delta = 1.90$ ppm), 5.83 ppm ($\Delta \delta = 0.93$ ppm) and 6.28 ppm ($\Delta \delta = 0.42$ ppm), respectively. The chemical shifts of the complexes in CDCl₃ and CD₃CN/D₂O (see page S-3) are slightly different. However, the most significant changes observed during the titration are similar in both solvents, which indicates similar host structural modifications upon inclusion of a voluminous guest. Again, for each ¹H NMR spectrum, the number and relative intensities of proton signals are in agreement with C_{3v} symmetrical compounds. The chemical shifts of the tertiobutyl (1.34 ppm) and methoxy protons (3.42 ppm) show that these groups are projected away from the calixarene cavity, in agreement with a flattened cone conformation Erreur ! Signet non défini.

COSY¹H NMR spectrum (250 MHz, CDCl₃, 300 K) of complex 3 with

dimethyldopamine as a guest

COSY ¹H NMR spectrum (250 MHz, CDCl₃, 300 K) of complex **3** (5 mM) with 6 equiv. of dimethyldopamine (it corresponds to the ¹H NMR spectrum c) above reported). α , β , δ , δ' , ϵ , ζ and ζ' : guest dimethyldopamine; α , β , δ , δ' , ϵ , ζ and ζ' (in grey): free dimethyldopamine; dotted lines: correlations.

The determination of the endo-coordinated dimethyldopamine proton signals required a COSY ¹H NMR analysis. It was performed with the sample corresponding to spectrum c (page S-6) and showed ³J_{HH} correlations for the α (1.38 ppm) and β (0.50 ppm) protons as well as for aromatic protons δ (4.92 ppm) and ϵ (6.28 ppm). Surprisingly, the resonance of the δ ' proton (5.83 ppm) have been identified through a ⁴J_{HH} correlation with the δ proton (4.92 ppm).

XRD of complex 3 with dimethyldopamine as a guest

Slow diethyl ether diffusion onto a solution of complex 3 (\approx 3 mg) and 6 equiv. of dimethyldopamine in CH₂Cl₂/CH₃CN (1:1; 0.5 mL) resulted in the formation of colourless crystals suitable for X-Ray analysis.

Crystal data: C_{82} H₁₀₂ Cl₂ N₁₀ O₁₆ Zn, M_w = 1620.01, triclinic, space group P-1; dimensions: a = 16.0388(6) Å, b = 16.3548(7) Å, c = 20.0055(9) Å, α = 75.968(2)°, β = 78.527(2)°, γ = 88.231(2)°, V = 4988.5(4) Å³; Z = 2; μ = 0.358 mm⁻¹; 76509 reflections measured at 100 K; independent reflections: 29217 [12362 Fo > 4 σ (Fo)]; data were collected up to a 2 Θ max value of 60.32° (99.0 % coverage). Number of variables: 1017; R₁ = 0.0741, wR₂ = 0.1927, S = 0.869; highest residual electron density 1.474 e.Å⁻³ (all data R₁ = 0.1435, wR₂ = 0.2158). CCDC 690396.

XRD structures of complex **3** with dimethydopamine as a guest. Left: side view; right: bottom view. Hydrogen atoms and counter anions have been omitted for clarity. Dotted lines: hydrogen bonds (NH^{\cdots}O) and CH- π interactions.

Distances (Å):	d(Zn-N(1)) =	2,003(3)
	d(Zn-N(57)) =	2,027(3)
	d(Zn-N(88)) =	2,038(2)
	d(Zn-N(48)) =	1,991(2)
Angles (degree):	N(48)-Zn- $N(1)$ =	108,71(10)
	N(48)-Zn- $N(57) =$	104,87(10)
	N(1)-Zn- $N(57) =$	104,40(11)
	N(48)-Zn- $N(88) =$	122,38 (10)
	N(1)-Zn- $N(88) =$	113,83(10)
	N(57)-Zn- $N(88) =$	100,28(10)
Hydrogen bonds (Å):	d(N(88) - O(7)) =	2,94
	d(N(88) - O(63)) =	3,01
CH- π interactions (Å):	d(C(89)) centroïd) =	4,02 each
	d(C(90) centroïd) =	3,77
	d(C(92)) centroïd) =	4,10

High-field ¹H NMR spectrum area of complex 3 with inclusion of various

organic guests and measured $\Delta \delta$

Left: ¹H High-field NMR spectra (250 MHz, CDCl₃, 300 K) of complex **3** after the addition of a) AcNH₂, b) EtOH, c) 3-aminopropanol, d) MeCN, e) DMF, and f) DMSO. The H atoms displayed in italics correspond to the ¹H NMR signal. Right: measured $\Delta\delta$ ($\Delta\delta = \delta_{L endo-bound} - \delta_{L free}$.