Electronic Supplementary Information

Synthesis and DNA interactions of a bis-phenothiazinium photosensitizer

Beth Wilson,^a María-José Fernández,^b Antonio Lorente^{* b} and Kathryn B. Grant^{* a}

^{*a*} Department of Chemistry, Georgia State University P.O. Box 4098 Atlanta, Georgia 30302-4098; ^{*b*} Departamento de Química Orgánica, Universidad de Alcalá, 28871-Alcalá de Henares, Madrid, Spain.

antonio.lorente@uah.es, kbgrant@gsu,edu

Contents:

Experimentals.	
Preparation of phenothiazin-5-ium tetraiodide hydrate (1).	S2
Preparation of 3-(dimethylamino)phenothiazin-5-ium triiodide (2).	S2
Figures. Fig. S1. UV-visible spectra of 1 μM of compound 3 and of MB in the presence and absence of CT DNA and 1% SDS.	S3
Fig. S2. ¹ H NMR spectrum of compound 3 .	S 4
Fig. S3. ¹ H NMR spectrum: aromatic region with integration.	S5
Fig. S4. ¹ H NMR spectrum: aliphatic region with integration.	S 6
Fig. S5. ¹³ C NMR spectrum of compound 3 .	S7
Fig. S6. 2D HMQC NMR spectrum of compound 3.	S 8
Fig. S7. Viscometric measurements of 50 μ M bp alternating poly[(dA-dT)] ₂ and 50 μ M bp poly(dA)•poly(dT) with compound 3 and with MB .	S9
Table.	
Table S1. UV-visible absorbance data at 1 μ M of phenothiazine and 38 μ M bp of CT DNA.	S10
Reference.	S10

Experimentals

Phenothiazin-5-ium tetraiodide hydrate (1). Preparation of known compound 1¹ afforded a dark-blue solid product (1.63 g, 80%), mp 170 °C (from CHCl₃, decomp.); $R_{\rm f} = 0.09$ (CHCl₃); $v_{\rm max}$ (film)/cm⁻¹ 2967, 1558, 1467, 1440, 1311, 1233, 1131, 1067, 1023, 841, and 705; $\delta_{\rm H}$ (300 MHz; Acetone- d_6 ; Me₄Si) 8.01 (2H, m), 7.92 (2H, m), and 7.64 (4H, m); $\delta_{\rm C}$ (75 MHz; acetone- d_6 ; Me₄Si) 153.6, 130.7, 129.5, 128.6, 125.5, and 123.5; m/z (LR-ESI) 199.0 (M⁺ - C₁₂H₈NS requires 198.04).

3-(Dimethylamino)phenothiazin-5-ium triiodide (2). Known compound 2 was prepared by making a minor modification to a published literature procedure.¹ To a solution of phenothiazin-5-ium tetraiodide hydrate (0.400 g, 0.553 mmol) in 20 mL of chloroform was added a 2 M solution of dimethylamine in methanol (0.553 mL, 1.106 mmol) drop-wise over 4 h. The reaction progress was monitored by silica gel TLC (3:7 10% aqueous ammonium acetate/methanol). The resultant precipitate was filtered, washed with chloroform and allowed to air dry. Product 2 (189 mg, 55%) was obtained as a dark-blue solid, mp 144 – 145 °C (from MeOH); $R_f = 0.28$ (3:7 10%) aqueous ammonium acetate / methanol); (Found: C, 27.1; H, 1.9; N, 4.4; S, 5.2; I, 60.9. $C_{14}H_{13}N_2SI_3$ requires C, 27.0; H, 2.1; N, 4.5; S, 5.15; I, 61.2%); v_{max} (film)/cm⁻¹ 2800, 1617, 1559, 1489, 1429, 1411, 1252, 1118, 1411, 1078, 887, 835, and 772; $\delta_{\rm H}(300 \text{ MHz}; \text{DMSO-}d_6;$ Me₄Si) 8.22 (1H, dd, J 8.0 and 1.6, H-9), 8.17 (1H, dd, J 8.0 and 1.6, H-6), 8.10 (1H, d, J 10, H-1), 8.04 (1H, dd, J 10 and 2.4, H-2), 8.00 (1H, d, J 2.4, H-4), 7.85 (2H, m, H-7, H-8), 3.64 and 3.60 (6H, s, 2 x N(CH₃)₂); $\delta_{C}(75 \text{ MHz}, \text{DMSO-}d_{6}; \text{Me}_{4}\text{Si})$ 156.1, 144.1, 139.8, 139.6, 138.0, 134.6, 133.2, 129.8, 126.3, 126.1, 125.8, 109.7, 43.3, and 42.9; m/z (LR-ESI) 241.1 (M⁺- $C_{14}H_{13}N_2S$ requires 240.08).

Figures

Fig. S1 UV-visible spectra recorded at 22 °C in 10 mM sodium phosphate buffer pH 7.0 of: **a**) 1 μ M compound **3** (\bullet , $\lambda_{max} = 620$ nm) in the presence of 38 μ M bp CT DNA (O, $\lambda_{max} = 680$ nm) or 1% SDS (w/v) (solid line, $\lambda_{max} = 676$ nm); **b**) 1 μ M MB (\Box , $\lambda_{max} = 664$ nm) in the presence of 38 μ M bp CT DNA (O, $\lambda_{max} = 670$ nm) or 1% SDS (w/v) (solid line, $\lambda_{max} = 661$ nm). Line markers (\bullet ,O, \Box) are placed at every 50th data point. Prior to data acquisition, the samples containing DNA were pre-equilibrated for 12 h in the dark at 22 °C.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

compound 3

Fig. S2 ¹H NMR spectrum of compound **3**: $\delta_{\rm H}$ (300 MHz, 4:6 CDCl₃/CD₃OD; Me₄Si) 7.95 (2H, d, *J* 9.6, H-1), 7.94 (2H, d, *J* 9.6, H-9), 7.50-7.46 (4H, m, H-6, H-8), 7.33 (2H, dd, *J* 9.6 and 2.7, H-2), 7.26 (2H, d, *J* 2.7, H-4), 4.42 (4H, d, *J* 13.5, 2 x CH₂-α), 3.43 (12H, s, 2 x N(CH₃)₂), 3.38 (4H, m, overlap with CH₃OH, 2 x CH₂-α), 2.06 (4H, d, *J* 11.7, 2 x CH₂-β), 1.81 (2H, broad, 2 x CH), and 1.44-1.31 (8H, m, CH₂-CH₂, 2 x CH₂-β).

Fig. S3 Aromatic region with integration, enlarged from Fig. S2: $\delta_{\rm H} = 7.95$ (2H, d, *J* 9.6, H-1), 7.94 (2H, d, *J* 9.6, H-9), 7.50-7.46 (4H, m, H-6, H-8), 7.33 (2H, dd, *J* 9.6 and 2.7, H-2), 7.26 (2H, d, *J* 2.7, H-4). Note: resonance at 7.43 ppm is a residual solvent peak from CHCl₃.

Fig. S4 Aliphatic region with integration, enlarged from Fig. S2: $\delta_{\rm H} = 4.42$ (4H, d, *J* 13.5, 2 x *CH*₂-α), 3.43 (12H, s, 2 x N(*CH*₃)₂), 3.38 (4H, m, overlap with CH₃OH, 2 x *CH*₂-α), 2.06 (4H, d, *J* 11.7, 2 x *CH*₂-β), 1.81 (2H, broad, 2 x *CH*), and 1.44-1.31 (8H, m, *CH*₂-*CH*₂, 2 x *CH*₂-β).

Fig. S5 ¹³C NMR spectrum of compound **3**: δ_C (75 MHz, 4:6 CDCl₃/CD₃OD; Me₄Si) 154.3 and 153.3 (C-3, C-7), 139.2 and 138.7 (C-1, C-9), 136.4, 135.9, 135.8, and 134.8 (C4a, C5a, C9a and C10a), 119.3 and 118.6 (C-2, C-8), 107.1 and 106.4 (C-4, C-6), 49.3 (C- α), 41.6 (NCH₃), 35.8 (CH), 33.0 and 32.9 (C- β , CH₂-CH₂).

Fig. S6 HMQC NMR spectrum of compound **3** in DMSO- d_6 at 25 °C recorded using a Varian Unity Plus 500 MHz instrument. The ¹H - ¹³C correlations in this spectrum were utilized to assign the proton and carbon resonances in the spectra shown in Figs. S2 –S5.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Fig. S7 Viscometric measurements conducted at 25 ± 0.1 °C in 10 mM sodium phosphate buffer pH 7.0 of 50 μ M bp alternating poly[(dA-dT)]₂ and 50 μ M bp poly(dA)•poly(dT) DNA pre-equilibrated for 12 h in the dark at 22 °C with 0.0 to 3 μ M of the phenothiazines **a**) compound **3** and **b**) **MB**.

•: compound 3 :	alternating poly[(dA-dT)] ₂	slope = 1.18	R = 0.9066
O: compound 3:	poly(dA)•poly(dT)	slope = 0.22	R = 0.9202
B : MB :	alternating poly[(dA-dT)] ₂	slope = 1.11	R = 0.9518
□: MB :	poly(dA)•poly(dT)	slope = 0.17	R = 0.7111

Table

_

Table S1 UV-visible absorbance at 1 μ M of phenothiazine^{*a*}

	Absorbance		
Wavelength (nm)	Compound 3	MB	
676	0.0707	0.0424	
700	0.0414	0.0107	
710	0.0204	0.0034	
		• • • • •	

^{*a*} 1 μ M of each phenothiazine was pre-equilibrated with 38 μ M bp of CT DNA in 10 mM sodium phosphate buffer pH 7.0 for 12 h at 22 °C.

Reference

1 L. Strekowski, D-F. Hou and R. L. Wydra, J. Heterocyclic Chem., 1993, **30**, 1693-1695.