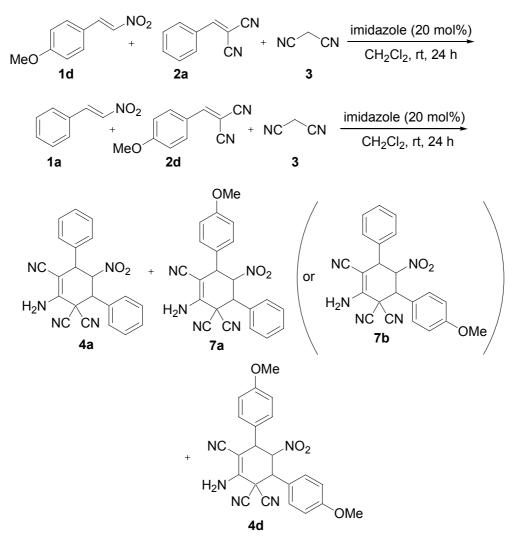
Supporting Information

A Convenient Three-Component Reaction Leading to the Synthesis of Polysubstituted Cyclohexene Derivatives

Xiao-Yang Guan and Min Shi*

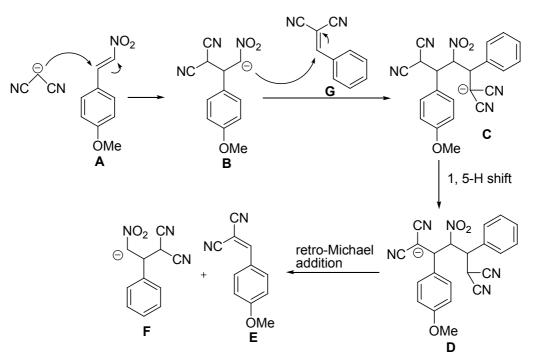
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. <u>mshi@mail.sioc.ac.cn</u>. Fax: 86-21-64166128

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if


required according to the journal that you are submitting your paper to)

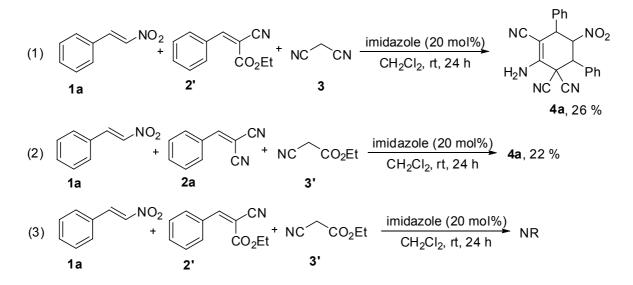
Content

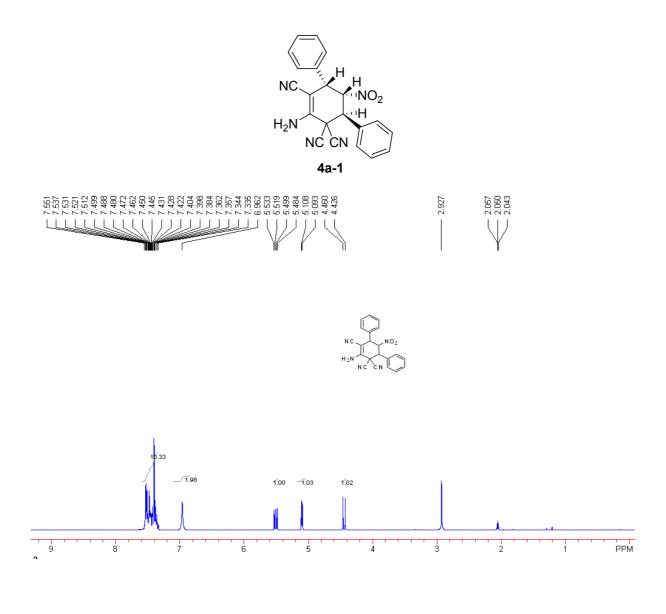
Mechanistic investigation by cross over experiments	S2
Spectroscopic data	S5
X-ray data of 4a-1 and 4a-2	S20


Mechanistic investigation by cross-over experiments

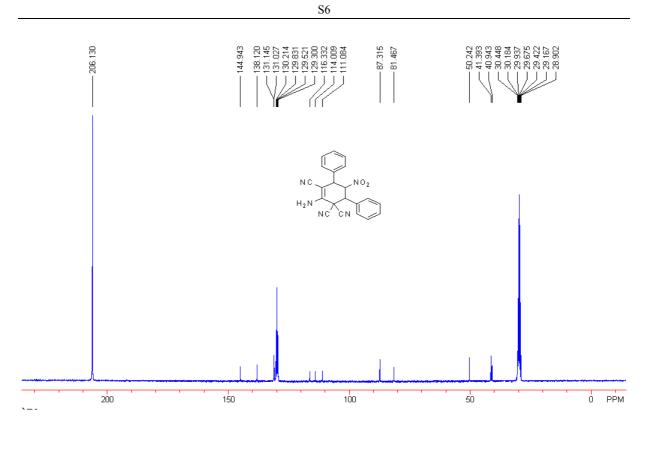
Under these optimized reaction conditions, we also examined the three-component reaction in which the substituents on the benzene rings of nitroalkene **1** and arylmethylidenemalononitrile **2** are different. Unfortunately, complex product mixtures were formed on the basis of ¹H NMR spectroscopic investigation under identical conditions. The three-component reaction of nitroalkene **1d**, arylmethylidenemalononitrile **2a** and malononitrile **3** was conducted to give the mixture of compounds **4a**, **7a** (or **7b**) and **4d**. Also we could get compounds **7a** (or **7b**) and **4d** from the reaction of **1a**, **2d** and **3** (Scheme 1).

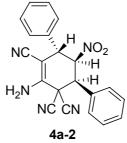
Scheme 1 The three-component reaction in which the substitution groups on the benzene rings of nitroalkene and arylidenemalononitrile were different.

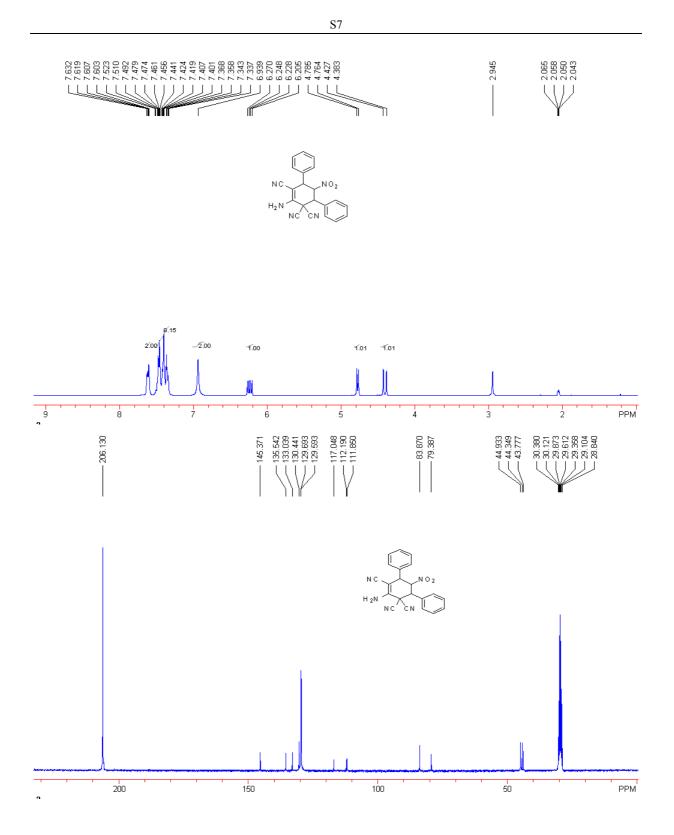

According to our understanding of the mechanism, the aromatic group exchange is due to 1,5-H shift in intermediate C and subsequent retro-Michael addition (Scheme 2). The anionic intermediates **B** and **F** could undergo nucleophilic attack to either arylmethylidenemalononitrile **E** or **G** to give different products.

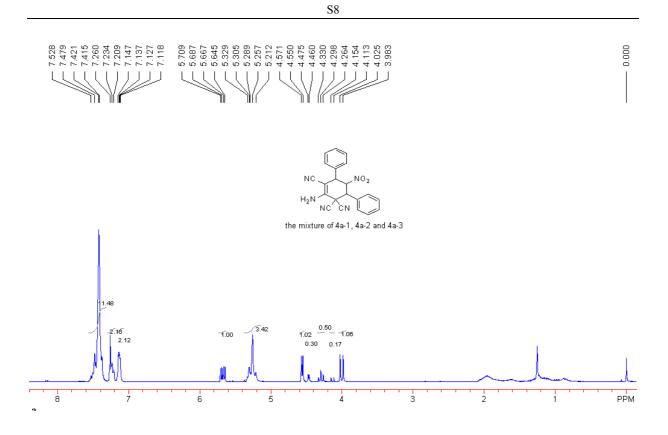

Scheme 2 The mechanism of the aromatic group exchange process

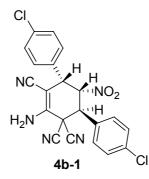
To investigate the reaction mechanism, some other cross-over experiments were conducted. For example, we carried out the reaction of nitroalkene **1a**, arylmethylidenemalononitrile **2'** and malononitrile **3** under the standard conditions. To our surprise, we only obtained product **4a** in 26 % yield, which did not contain CO_2Et group (Scheme 3, eq 1). The similar result was also obtained in the reaction of **1a**, **2a** and cyanoacetic acid ethyl ester **3'** (Scheme 3, eq 2). However, the reaction did not take place in the absence of both arylmethylidenemalononitrile and malononitrile (Scheme 3, eq 3).

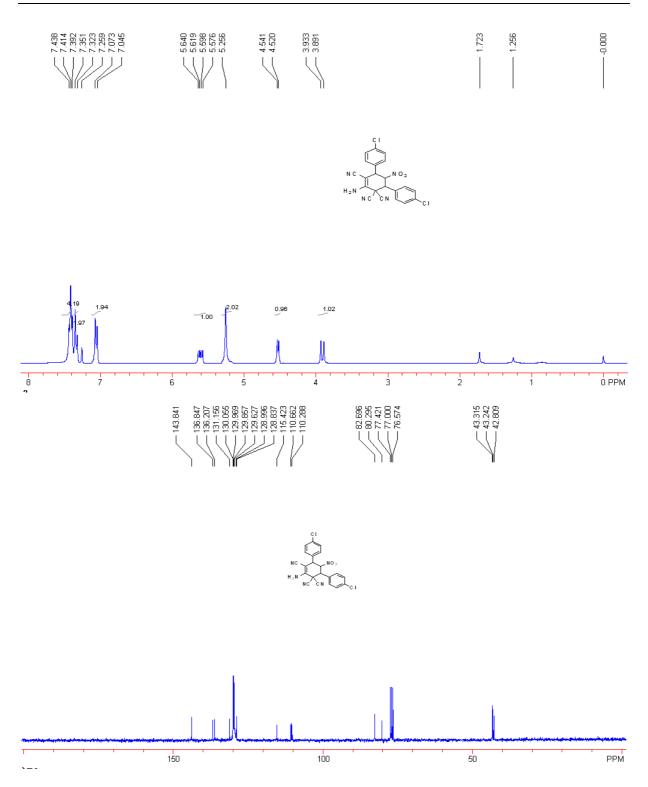

Through the results shown in Schemes 1 and 3, we could conclude that the malononitrile or its derivative arylmethylidenemalononitrile is very important in this three-component reaction. The aromatic groups between nitroalkene 1 and arylmethylidenemalononitrile 2 exchange processes exist during the reaction. Moreover, malononitrile also can exchange between arylmethylidenemalononitrile 2 and 3 during the reaction.

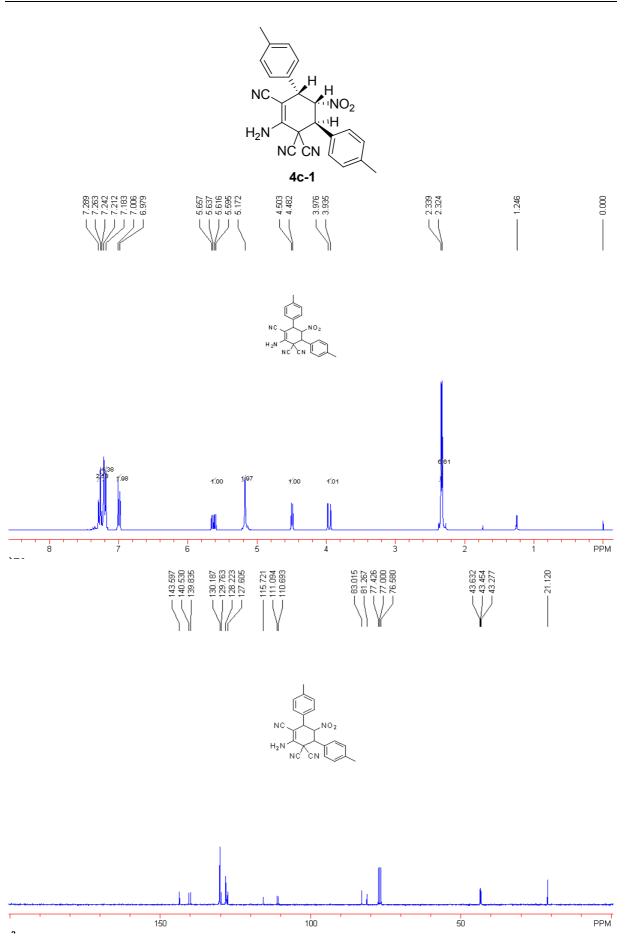


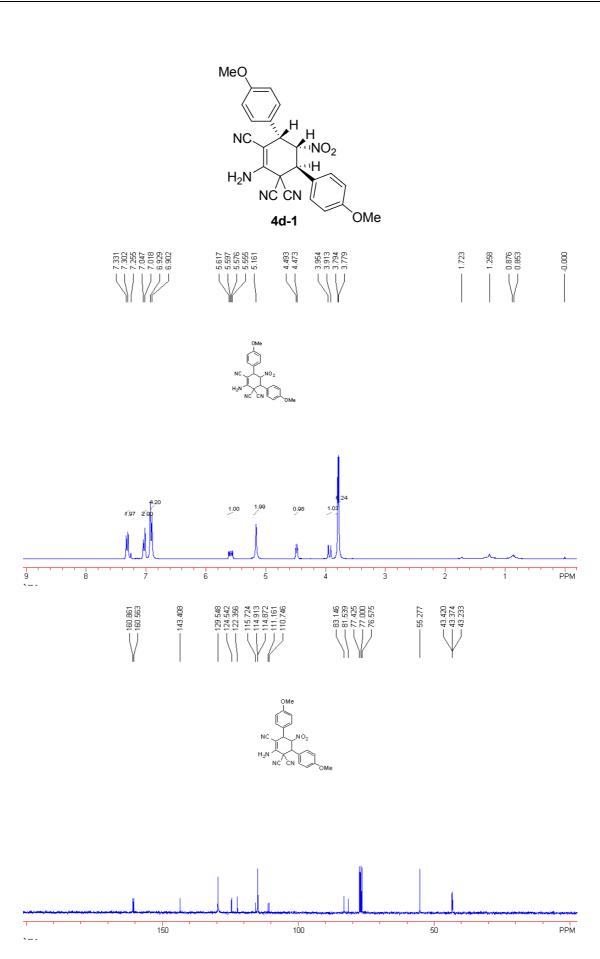

Scheme 3 Some other cross-over experiments

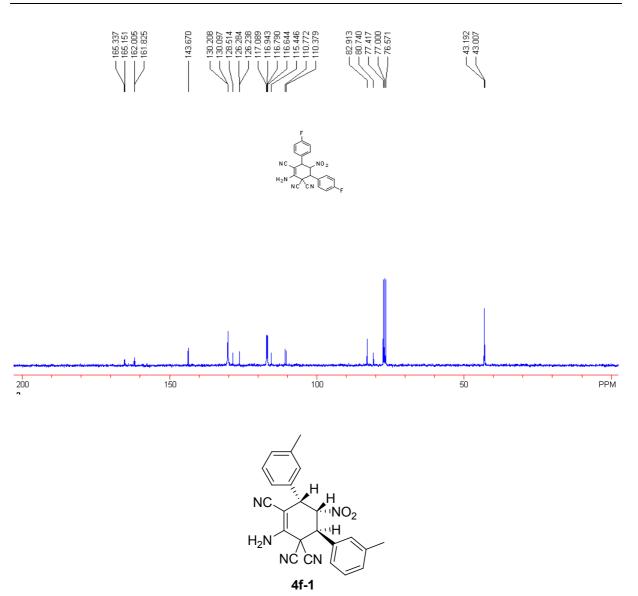

Spectroscopic data of the reaction products

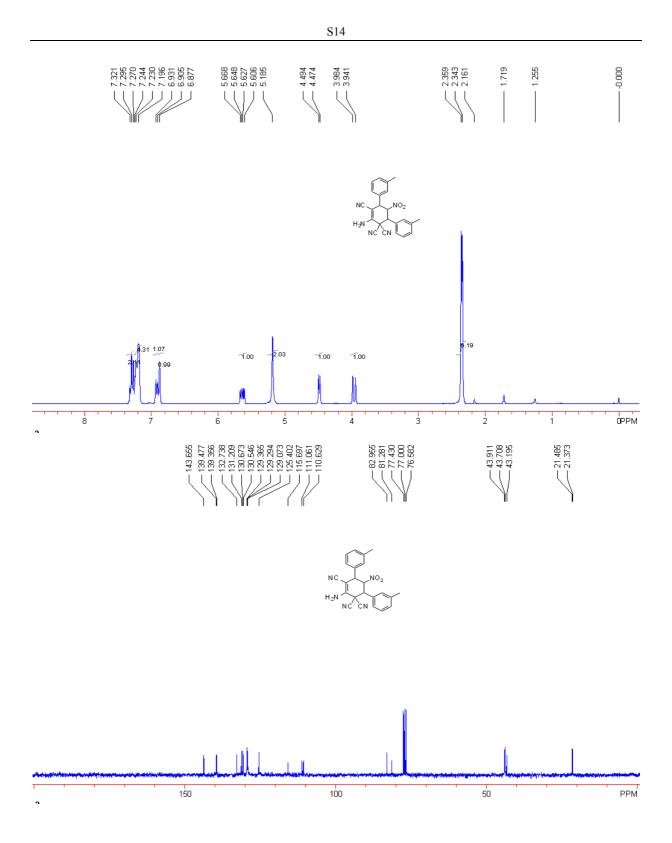


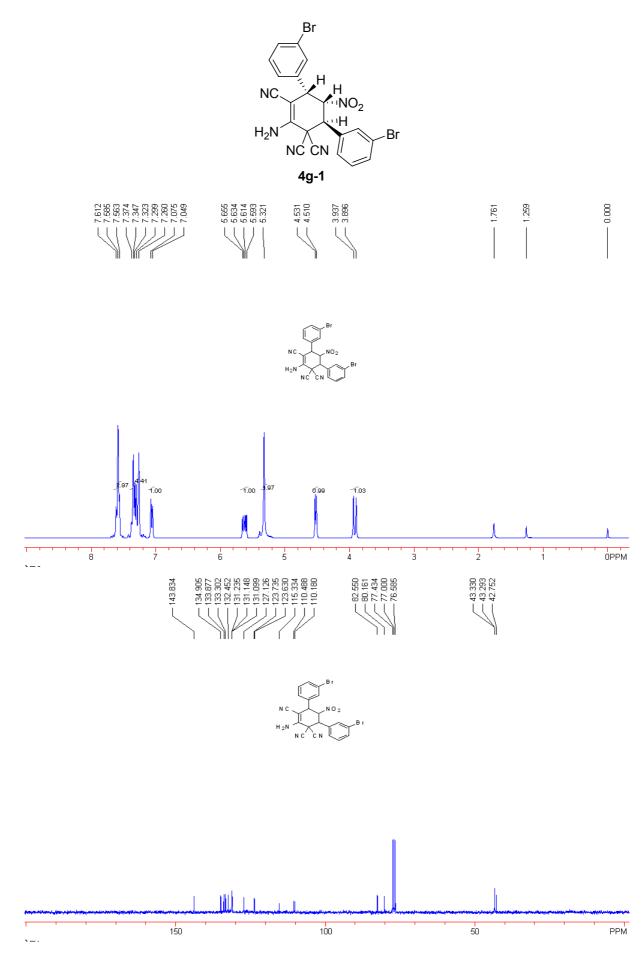


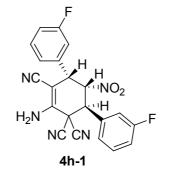

A mixture of compounds 4a-1, 4a-2 and 4a-3 for the determination of the product distribution.





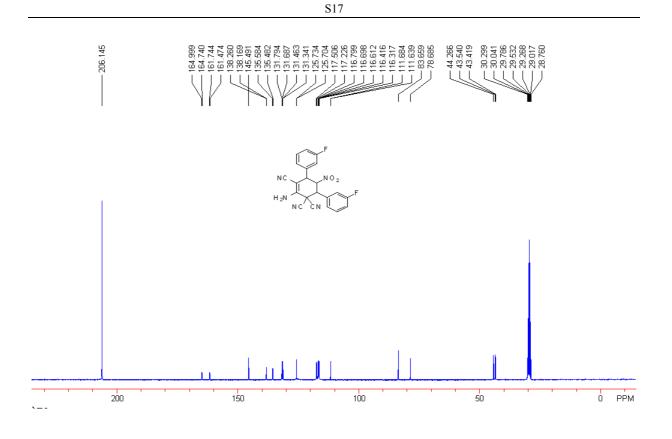

S9

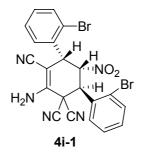


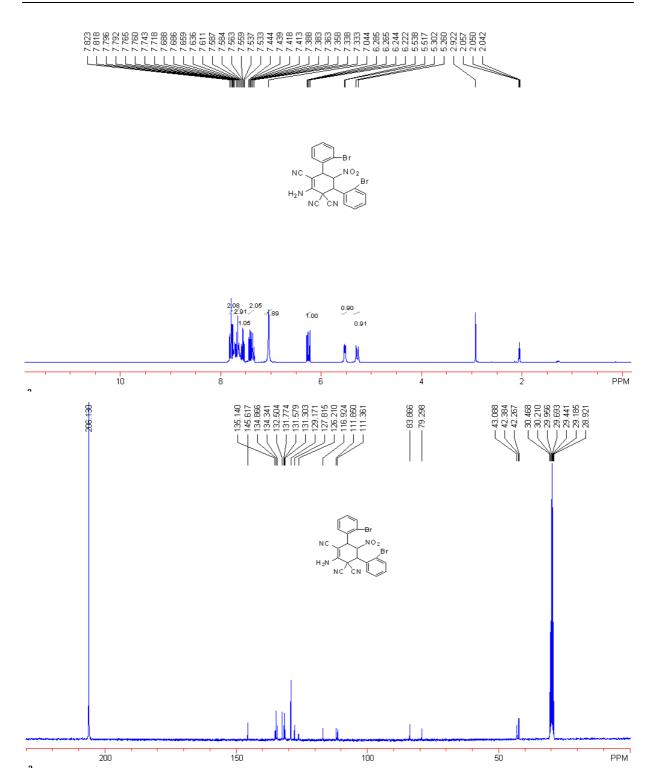


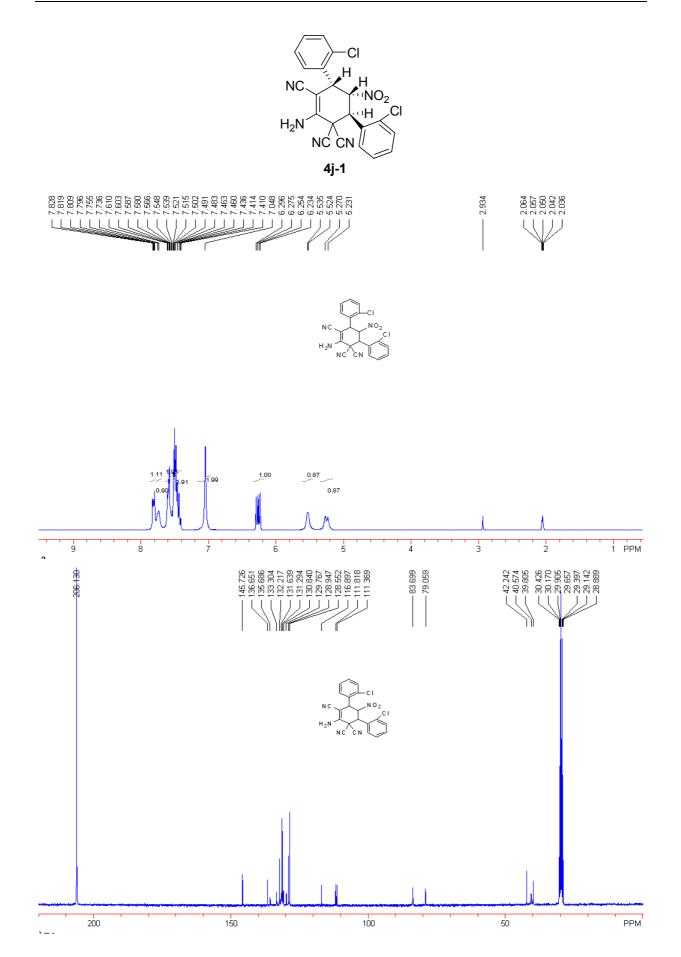
Н H NO₂ NC ١H H₂N 4e-1 F 7 3.969 3.916 - 7.420 7.403 7.391 7.375 7.375 7.375 7.375 7.162 7.162 7.103 5.642 5.620 5.620 5.670 5.579 5.312 7 4.554 7 4.534 — 1.779 000.0- — 2.05 1.01 1.02 A.00 9 PPM 8 7 6 5 4 3 2 1

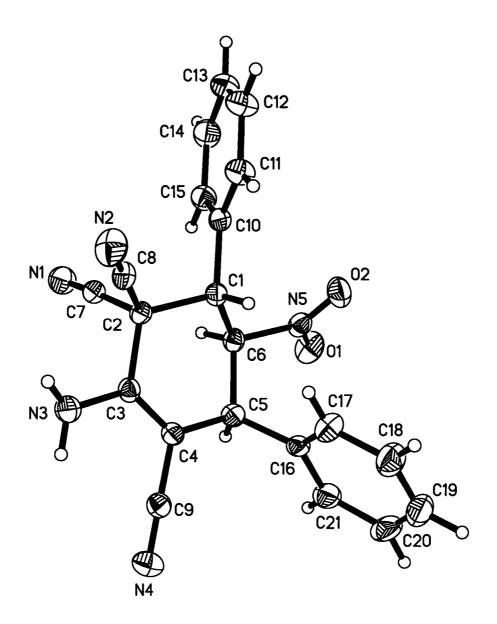












S18

The crystal data of compound **4a-1** have been deposited in CCDC with number 688760. Empirical Formula: $C_{21}H_{16}N_5O_{2.33}$; Formula Weight: 375.72; Crystal size: 0.469 x 0.411 x 0.347; Crystal Color, Habit: colorless, prismatic; Crystal System: Rhombohedral; Lattice Type: Primitive; Lattice Parameters: a = 23.2536(10)Å, b = 23.2536(10)Å, c = 17.7700(11)Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 120^{\circ}$, $V = 8321.4(7)Å^3$; Space group: R-3; Z = 18; $D_{calc} = 1.350$ g/cm³; $F_{000} = 3522$; R1 = 0.0514, wR2 = 0.1330. Diffractometer: Rigaku AFC7R.

S21

Table 1. Crystal data and structure refinement for cd28234.

```
Identification code
                                   cd28234
Empirical formula
                                   C21 H16 N5 O2.33
Formula weight
                                   375.72
Temperature
                                   293(2) K
Wavelength
                                   0.71073 A
Crystal system, space group
                                   Rhombohedral, R-3
Unit cell dimensions
                                   a = 23.2536(10) A
                                                        alpha = 90 deg.
                                   b = 23.2536(10) A
c = 17.7700(11) A
                                                         beta = 90 \text{ deg}.
                                                        gamma = 120 deg.
Volume
                                   8321.4(7) A^3
Z, Calculated density
                                   18, 1.350 Mg/m^3
Absorption coefficient
                                   0.092 mm^-1
F(000)
                                   3522
Crystal size
                                   0.469 x 0.411 x 0.347 mm
Theta range for data collection
                                   1.53 to 27.00 deg.
Limiting indices
                                   -28<=h<=29, -25<=k<=29, -19<=1<=22
Reflections collected / unique
                                   16528 / 4041 [R(int) = 0.0765]
Completeness to theta = 27.00
                                   100.0 %
Absorption correction
                                   Empirical
Max. and min. transmission
                                   1.00000 and 0.75474
Refinement method
                                   Full-matrix least-squares on F^2
Data / restraints / parameters
                                   4041 / 3 / 267
Goodness-of-fit on F^2
                                   1.020
Final R indices [I>2sigma(I)]
                                   R1 = 0.0514, wR2 = 0.1330
R indices (all data)
                                   R1 = 0.0744, wR2 = 0.1418
Largest diff. peak and hole
                                   0.735 and -0.309 e.A^-3
```

	x	У	Z	U(eq)
N(1)	-201(1)	2526(1)	1388(1)	56(1)
N(2)	-675(1)	2670(1)	-966(1)	65(1)
N(3)	-733(1)	3637(1)	462(1)	55(1)
N(4)	119(1)	5301(1)	1062(1)	55(1)
N(5)	1975(1)	4296(1)	430(1)	44(1)
0(1)	2348(1)	4571(1)	956(1)	64(1)
0(2)	2153(1)	4239(1)	-192(1)	62(1)
C(1)	814(1)	3547(1)	-28(1)	35(1)
C(2)	68(1)	3281(1)	202(1)	34(1)
C(3)	-79(1)	3826(1)	432(1)	35(1)
C(4)	416(1)	4420(1)	649(1)	35(1)
C(5)	1146(1)	4634(1)	697(1)	37(1)
C(6)	1243(1)	4030(1)	584(1)	36(1)
C(7)	-104(1)	2829(1)	855(1)	38(1)
C(8)	-354(1)	2919(1)	-453(1)	40(1)
C(9)	250(1)	4909(1)	879(1)	40(1)
C(10)	929(1)	2963(1)	-172(1)	38(1)
C(11)	856(1)	2718(1)	-893(1)	52(1)
C(12)	935(1)	2177(1)	-1049(2)	66(1)
C(13)	1096(1)	1884(1)	-485(2)	65(1)
C(14)	1180(1)	2126(1)	231(1)	61(1)
C(15)	1093(1)	2662(1)	398(1)	48(1)
C(16)	1552(1)	5233(1)	191(1)	40(1)
C(17)	1493(1)	5206(1)	-583(1)	56(1)
C(18)	1856(1)	5762(1)	-1014(2)	71(1)
C(19)	2269(1)	6358(1)	-699(2)	79(1)
C(20)	2323(1)	6406(1)	68 (2)	79(1)
C(21)	1968(1)	5842(1)	520(1)	59(1)
0(3)	10000	10000	9509(7)	165(7)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for cd28234. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	[A] and angles [deg] 101 cd20254.
N(1) - C(7) $N(2) - C(8)$ $N(3) - H(3A)$ $N(3) - H(3B)$ $N(4) - C(9)$ $N(5) - O(2)$ $N(5) - O(1)$ $N(5) - C(6)$ $C(1) - C(6)$ $C(1) - C(2)$ $C(1) - C(2)$ $C(1) - H(1)$ $C(2) - C(7)$ $C(2) - C(8)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(9)$ $C(4) - C(5)$ $C(5) - C(16)$ $C(5) - C(6)$ $C(5) - C(6)$ $C(5) - H(5)$ $C(6) - H(6)$ $C(10) - C(11)$ $C(10) - C(15)$ $C(11) - H(12)$ $C(12) - H(12)$ $C(13) - H(12)$ $C(13) - H(13)$ $C(14) - C(15)$ $C(14) - H(14)$ $C(15) - H(15)$ $C(16) - C(17)$ $C(16) - C(21)$ $C(17) - H(17)$ $C(18) - H(18)$ $C(17) - H(18)$ $C(19) - C(20)$ $C(19) - H(12)$ $C(20) - C(21)$ $C(20) - H(20)$ $C(21) - H(3C)$	1.133(2) 1.136(2) 1.356(2) 0.814(15) 0.863(16) 1.142(2) 1.211(2) 1.215(2) 1.517(2) 1.523(2) 1.531(2) 1.531(2) 1.531(2) 1.481(2) 1.483(2) 1.524(2) 1.524(2) 1.525(2) 1.544(2) 0.9800 0.9800 1.378(3) 1.388(3) 1.388(3) 1.388(3) 1.386(3) 0.9300 1.365(3) 0.9300 1.365(3) 0.9300 1.381(3) 1.382(3) 1.382(3) 1.353(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.368(4) 0.9300 1.75(3) 1.086(17)
C(3) - N(3) - H(3A) $C(3) - N(3) - H(3B)$ $H(3A) - N(3) - H(3B)$ $O(2) - N(5) - O(1)$ $O(2) - N(5) - C(6)$ $O(1) - N(5) - C(6)$ $C(6) - C(1) - C(10)$ $C(6) - C(1) - C(2)$ $C(10) - C(1) - C(2)$ $C(6) - C(1) - H(1)$ $C(10) - C(1) - H(1)$ $C(7) - C(2) - C(8)$ $C(7) - C(2) - C(3)$ $C(7) - C(2) - C(3)$ $C(7) - C(2) - C(1)$ $C(8) - C(2) - C(1)$ $C(8) - C(2) - C(1)$ $C(3) - C(2) - C(1)$ $C(4) - C(3) - N(3)$ $C(4) - C(3) - C(2)$	119.8(15) $115.2(15)$ $120(2)$ $124.57(16)$ $119.57(15)$ $115.84(17)$ $115.68(14)$ $106.89(13)$ $109.95(13)$ 108.0 108.0 108.0 $110.15(14)$ $106.65(13)$ $108.81(14)$ $109.60(13)$ $107.78(14)$ $113.84(13)$ $124.58(17)$ $120.06(14)$

Table 3.	Bond lengths	[A]	and	angles	[deg]	for	cd28234.
	2	• •					

115.08(16) $117.98(15)$ $126.84(15)$ $115.16(15)$ $110.34(14)$ $10.09(13)$ $116.63(14)$ 106.4 106.4 $101.10(14)$ $107.34(13)$ $115.13(13)$ 107.7 107.7 107.7 107.7 $174.4(2)$ $176.7(2)$ $179.9(3)$ $118.51(17)$ $118.83(16)$ $122.65(17)$ $121.1(2)$ 19.5 119.5 $120.0(2)$ 120.0 120.0 120.0 120.0 120.2 120.5 120.5
119.2 119.2 119.1(2) 120.5

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, -y + 2, -z + 2

	U11	U22	U33	U23	U13	U12
N(1)	66(1)	55(1)	49(1)	10(1)	9(1)	32(1)
1(2)	51(1)	71(1)	53(1)	-9(1)	-14(1)	17(1)
1(3)	32(1)	45(1)	85(1)	-9(1)	-1(1)	18(1)
(4)	66(1)	57(1)	53(1)	-7(1)	1(1)	39(1)
1(5)	34(1)	38(1)	60(1)	6(1)	-3(1)	17(1)
(1)	40(1)	63(1)	76(1)	-1(1)	-23(1)	17(1)
(2)	43(1)	67(1)	69(1)	1(1)	12(1)	22(1)
2(1)	32(1)	35(1)	36(1)	3(1)	2(1)	16(1)
(2)	30(1)	33(1)	35(1)	-1(1)	-2(1)	14(1)
:(3)	31(1)	37(1)	38(1)	4(1)	1(1)	18(1)
(4)	35(1)	36(1)	35(1)	0(1)	3(1)	19(1)
(5)	35(1)	37(1)	36(1)	-6(1)	-5(1)	16(1)
(6)	28(1)	38(1)	39(1)	2(1)	-2(1)	15(1)
:(7)	36(1)	36(1)	40(1)	-2(1)	1(1)	17(1)
:(8)	32(1)	41(1)	41(1)	1(1)	0(1)	14(1)
(9)	41(1)	41(1)	38(1)	0(1)	2(1)	20(1)
:(10)	30(1)	35(1)	48(1)	-2(1)	2(1)	16(1)
:(11)	59(1)	53(1)	49(1)	-4(1)	1(1)	33(1)
:(12)	73(2)	62(1)	71(2)	-16(1)	6(1)	38(1)
(13)	60(1)	51(1)	94(2)	-2(1)	16(1)	35(1)
:(14)	55(1)	56(1)	84(2)	17(1)	11(1)	37(1)
2(15)	45(1)	49(1)	55(1)	3(1)	3(1)	28(1)
:(16)	30(1)	32(1)	61(1)	-4(1)	1(1)	17(1)
2(17)	59(1)	42(1)	61(1)	8(1)	2(1)	21(1)
2(18)	68(2)	60(2)	84(2)	26(1)	15(1)	32(1)
2(19)	51(2)	55(2)	133(3)	36(2)	27(2)	29(1)
2(20)	41(1)	32(1)	153(3)	-10(2)	4(2)	10(1)
C(21)	41(1)	45(1)	88(2)	-16(1)	-1(1)	18(1)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for cd28234. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	х	У	z	U(eq)
Н(1)	899	3796	-499	41
H(5)	1283	4787	1215	44
H(6)	1134	3785	1060	43
H(11)	752	2918	-1281	63
H(12)	878	2015	-1538	80
H(13)	1149	1520	-588	78
H(14)	1297	1930	612	73
H(15)	1145	2819	889	57
H(17)	1205	4805	-815	67
H(18)	1816	5728	-1535	85
H(19)	2513	6730	-999	94
Н(20)	2597	6816	292	95
H(21)	2012	5876	1041	71
H(3A)	-999(9)	3324(9)	211(11)	54(7)
H(3B)	-817(11)	3946(10)	589(13)	73(8)
H(3C)	9649(11)	9530(11)	9249(14)	93(8)

Table 5.	Hydrogen	coordinates	(x 1)	0^4)	and isotropic
displacem	ent parame	eters (A^2 x	10^3)	for	cd28234.

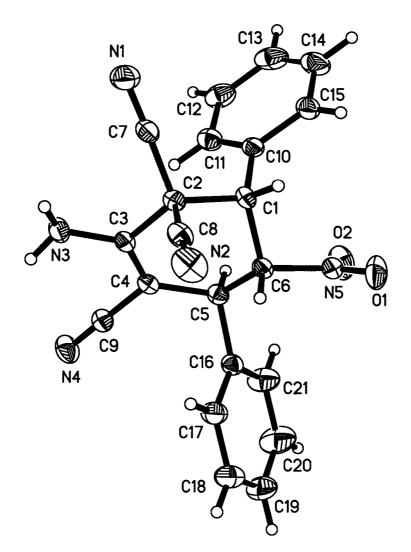

Table 6.	Torsion angl	les [deg]	for	cd28234.	
C(10)-C()-C(2)-C(7) 1)-C(2)-C(7)				-71.35(17) 54.95(18)
C(10)-C() -C(2) -C(8) 1) -C(2) -C(8)				168.77(14) - 64.93(17)
C(10)-C() -C(2) -C(3) 1) -C(2) -C(3)				47.99(18) 174.29(13)
) -C (3) -C (4)) -C (3) -C (4)				100.52(18) -140.68(16)
) -C(3) -C(4)) -C(3) -N(3)				-20.5(2) -73.70(19)
C(8)-C(2	-C(3) - N(3) -C(3) - N(3)				45.1(2) 165.30(16)
N(3)-C(3) -C(4) -C(9)) -C(4) -C(9)				-4.7(3) -178.37(15)
N(3)-C(3) - C(4) - C(5)				173.75(18)
C(3)-C(4) -C(4) -C(5)) -C(5) -C(16)				0.1(3) 120.80(19)
C(3)-C(4)-C(5)-C(16))-C(5)-C(6)				-60.68(19) -9.3(2)
) -C(5) -C(6)) -C(6) -C(1)				169.18(15) 16.6(2)
)-C(6)-C(1))-C(6)-C(5)				~165.06(14) -110.09(17)
	-C(6)-C(5) 1)-C(6)-N(5)				68.26(18) 54.97(19)
C(2)-C(1	-C(6) -N(5) 1) -C(6) -C(5)				177.77(13) 177.25(14)
C(2)-C(1)-C(6)-C(5)				-59.95(18)
C(16)-C() -C(6) -N(5) 5) -C(6) -N(5)				165.20(14) 38.51(19)
C(16)-C()-C(6)-C(1) 5)-C(6)-C(1)				40.9(2) -85.76(18)
) -C(7) -N(1)) -C(7) -N(1)				-173.7(19) -56(2)
)-C(7)-N(1))-C(8)-N(2)				68(2) 150(4)
	-C(8) -N(2) -C(8) -N(2)				33(4) -91(4)
C(3)-C(4	-C(9) -N(4) -C(9) -N(4)				-134(100) 47(98)
C(6)-C(1	-C(10)-C(11)				-146.71(17)
C(6)-C(1) -C(10) -C(11)) -C(10) -C(15)				92.12(19) 34.4(2)
C(15)-C() -C(10) -C(15) 10) -C(11) -C(1	.2)			-86.8(2) 0.9(3)
C(10)-C(D) -C(11) -C(12 L1) -C(12) -C(1	.3)			-178.06(18) -0.8(3)
C(12)-C(l2)-C(13)-C(1 l3)-C(14)-C(1	.5)			-0.1(3) 1.0(3)
	LO)-C(15)-C(1))-C(15)-C(14				0.0(3) 178.89(16)
	L4) -C(15) -C(1 -C(16) -C(17)	.0)			-0.9(3) -65.3(2)
C(6)-C(5)	-C(16) -C(17) -C(16) -C(21)				61.2(2) 110.64(18)
C(6) - C(5)	-C(16)-C(21)	0.)			-122.80(18)
C(5) - C(16)	L6) -C(17) -C(1 5) -C(17) -C(18)			2.2(3) 178.19(18)
C(17)-C(1	L7) -C(18) -C(1 L8) -C(19) -C(2	0)			-1.6(3) -0.3(4)
C(17)-C(1	19) -C(20) -C(2 6) -C(21) -C(2	0)			1.7(4) -0.9(3)
C(5) - C(16)	5)-C(21)-C(20	1)			-177.02(17)

Table 6.	Torsion	angles	[deg]	for	cd28234.
----------	---------	--------	-------	-----	----------

Symmetry transformations used to generate equivalent atoms: #1 $-x\!+\!2,-y\!+\!2,-z\!+\!2$

Table 7. Hydrogen bonds for	r cd28234 [A	and deg.].		
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3A)O(2)#2	0.814(15)	2.632(17)	3.346(2)	147.3(19)

Symmetry transformations used to generate equivalent atoms: #1 -x+2, -y+2, -z+2 #2 -x-y, x, -z

The crystal data of compound **4a-2** have been deposited in CCDC with number 688759. Empirical Formula: $C_{21}H_{15}N_5O_2$; Formula Weight: 369.38; Crystal size: 0.321 x 0.236 x 0.051; Crystal Color, Habit: colorless, prismatic; Crystal System: Monoclinic; Lattice Type: Primitive; Lattice Parameters: a = 13.2254(13)Å, b = 11.3377(12)Å, c = 14.1441(15)Å, $\alpha = 90^{\circ}$, $\beta = 117.874(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 1874.8(3)Å³; Space group: P2(1)/c; Z = 4; $D_{calc} = 1.309$ g/cm³; $F_{000} = 768$; R1 = 0.0561, wR2 = 0.1011. Diffractometer: Rigaku AFC7R.

Table 1. Crystal data and structure refinement for cd28232.

Identification code	cd28232
Empirical formula	C21 H15 N5 O2
Formula weight	369.38
Temperature	293(2) К
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	a = 13.2254(13) A alpha = 90 deg. b = 11.3377(12) A beta = 117.874(2) deg. c = 14.1441(15) A gamma = 90 deg.
Volume	1874.8(3) A^3
Z, Calculated density	4, 1.309 Mg/m^3
Absorption coefficient	0.088 mm ⁻¹
F(000)	768
Crystal size	0.321 x 0.236 x 0.051 mm
Theta range for data collection	1.74 to 26.99 deg.
Limiting indices	-16<=h<=13, -10<=k<=14, -18<=1<=18
Reflections collected / unique	10802 / 4078 [R(int) = 0.0527]
Completeness to theta = 26.99	99.8 %
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.86356
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4078 / 0 / 261
Goodness-of-fit on F^2	0.993
Final R indices [I>2sigma(I)]	R1 = 0.0561, wR2 = 0.1011
R indices (all data)	R1 = 0.0884, wR2 = 0.1131
Largest diff. peak and hole	0.169 and -0.162 e.A^-3

	x	У	Z	U(eq)
N(1)	2283(2)	4290(2)	3016(2)	56(1)
N(2)	4589(2)	1524(2)	3299(2)	64(1)
N(3)	1286(2)	1756(2)	1555(2)	42(1)
N(4)	316(2)	408(2)	-962(1)	53(1)
N(5)	4464(2)	3434(2)	237(2)	44(1)
O(1)	5484(1)	3456(2)	830(1)	70(1)
0(2)	3994(2)	3896(2)	-635(1)	69(1)
C(1)	3562(2)	3655(2)	1403(1)	32(1)
C(2)	2982(2)	2918(2)	1952(1)	32(1)
C(3)	1999(1)	2131(2)	1176(1)	30(1)
C(4)	1910(2)	1844(2)	215(1)	31(1)
C(5).	2662(2)	2304(2)	-254(1)	32(1)
C(6)	3749(2)	2804(2)	652(1)	33(1)
C(7)	2587(2)	3709(2)	2546(2)	37(1)
C(8)	3871(2)	2120(2)	2737(2)	39(1)
C(9)	1023(2)	1049(2)	-441(2)	36(1)
C(10)	2965(2)	4800(2)	903(2)	35(1)
C(11)	1797(2)	4896(2)	246(2)	45(1)
C(12)	1316(2)	5976(2)	-181(2)	58(1)
C(13)	1989(3)	6968(2)	47(2)	67(1)
C(14)	3143(3)	6879(2)	693(2)	62(1)
C(15)	3635(2)	5807(2)	1115(2)	47(1)
C(16)	2948(2)	1340(2)	-844(2)	36(1)
C(17)	3322(2)	251(2)	-390(2)	48(1)
C(18)	3615(2)	-603(2)	-915(2)	62(1)
C(19)	3536(2)	-376(2)	-1893(2)	67(1)
C(20)	3159(2)	696(3)	-2355(2)	78(1)
C(21)	2859(2)	1553(2)	-1841(2)	60(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for cd28232. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Dona lengths [A and angles [deg] for c
N(2) - C(8) N(3) - C(3) N(3) - H(3A) N(3) - H(3B) N(4) - C(9) N(5) - O(2) N(5) - O(2) N(5) - C(6) C(1) - C(10) C(1) - C(6) C(1) - C(2) C(1) - H(1) C(2) - C(7) C(2) - C(8) C(2) - C(3) C(3) - C(4) C(4) - C(9) C(4) - C(5) C(5) - C(6) C(5) - C(6) C(5) - C(6) C(5) - H(6) C(10) - C(11) C(10) - C(15) C(11) - C(12) C(11) - H(11) C(12) - C(13) C(12) - H(12) C(13) - H(13) C(14) - C(15) C(14) - H(14) C(15) - H(15) C(16) - C(21) C(17) - C(18) C(17) - H(17) C(18) - C(19) C(18) - H(19) C(20) - C(21) C(20) - H(20) C(21) - H(21)	1.133(2) 1.353(2) 0.88(2) 1.141(2) 1.210(2) 1.211(2) 1.505(2) 1.512(2) 1.538(2) 1.565(2) 0.9800 1.481(3) 1.487(3) 1.535(2) 1.349(2) 1.425(3) 1.522(2) 1.518(2) 1.526(2) 0.9800 0.9800 1.385(3) 1.382(3) 0.9300 1.375(3) 0.9300 1.375(3) 0.9300 1.372(3) 1.382(3) 0.9300 1.372(3) 1.382(3) 0.9300 1.372(3) 1.382(3) 0.9300 1.372(3) 1.382(3) 0.9300 1.372(3) 1.382(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 1.378(3) 0.9300 0.9300 1.378(3) 0.9300 0.9300 1.378(3) 0.9300 0.9300 1.378(3) 0.9300 0.9300 0.9300 1.378(3) 0.9300 0.9300 0.9300 1.378(3) 0.9300 0.9300 0.9300 1.378(3) 0.9300
C(3) - N(3) - H(3A) $C(3) - N(3) - H(3B)$ $H(3A) - N(3) - H(3B)$ $O(2) - N(5) - O(1)$ $O(2) - N(5) - C(6)$ $C(10) - C(1) - C(6)$ $C(10) - C(1) - C(2)$ $C(6) - C(1) - C(2)$ $C(10) - C(1) - H(1)$ $C(6) - C(1) - H(1)$ $C(7) - C(2) - C(3)$ $C(7) - C(2) - C(3)$ $C(7) - C(2) - C(1)$ $C(8) - C(2) - C(1)$ $C(8) - C(2) - C(1)$ $C(8) - C(2) - C(1)$ $C(3) - C(2) - C(1)$ $C(4) - C(3) - C(2)$ $N(3) - C(3) - C(2)$ $C(3) - C(2) - C(3)$ $C(3) - C(2) - C(2)$ $C(3) - C(4) - C(9)$	117.6(12) $121.4(14)$ $115.2(19)$ $124.88(18)$ $119.02(17)$ $116.08(18)$ $115.65(15)$ $114.87(14)$ $106.37(14)$ 106.4 106.4 106.4 106.4 $106.84(15)$ $110.62(14)$ $106.84(15)$ $110.03(15)$ $107.18(14)$ $113.80(14)$ $125.13(17)$ $120.42(15)$ $114.44(16)$ $117.76(16)$

Table 3. Bond lengths [A] and angles [deg] for cd28232.

$\begin{array}{llllllllllllllllllllllllllllllllllll$
--

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
N(1)	79(1)	45(1)	59(1)	-7(1)	43(1)	-4(1)
N(2)	59(1)	60(1)	52(1)	12(1)	9(1)	5(1)
N(3)	49(1)	42(1)	41(1)	-8(1)	26(1)	-17(1)
N(4)	52(1)	55(1)	47(1)	-10(1)	19(1)	-20(1)
N(5)	50(1)	34(1)	59(1)	-8(1)	36(1)	-8(1)
0(1)	41(1)	74(1)	101(1)	-1(1)	37(1)	-12(1)
0(2)	82(1)	73(1)	60(1)	13(1)	41(1)	-18(1)
C(1)	31(1)	30(1)	33(1)	-3(1)	13(1)	-7(1)
C(2)	36(1)	28(1)	30(1)	-1(1)	15(1)	-2(1)
2(3)	31(1)	25(1)	32(1)	2(1)	14(1)	-2(1)
C(4)	32(1)	26(1)	31(1)	-1(1)	11(1)	-2(1)
C(5)	37(1)	29(1)	30(1)	2(1)	15(1)	0(1)
C(6)	36(1)	27(1)	36(1)	1(1)	18(1)	-2(1)
C(7)	45(1)	31(1)	35(1)	-3(1)	20(1)	-8(1)
C(8)	43(1)	36(1)	32(1)	0(1)	12(1)	-6(1)
C(9)	38(1)	37(1)	31(1)	1(1)	15(1)	-3(1)
C(10)	50(1)	28(1)	34(1)	-3(1)	27(1)	-4(1)
C(11) C(12)	52(1) 73(2)	36(1)	46(1)	1(1)	23(1)	3(1)
C(12)	116(2)	53(2) 37(1)	54(2)	11(1)	34(1)	23(1)
C(14)	106(2)	32(1)	68(2) 72(2)	15(1)	60(2)	22(2)
C(14)	67(2)	37(1)	51(1)	-2(1) -6(1)	61(2)	-9(1)
C(16)	41(1)	34(1)	34(1)	-5(1)	40(1)	-11(1)
C(17)	64(1)	37(1)	51(1)	-1(1)	18(1) 34(1)	-4(1) 2(1)
C(18)	76(2)	43(1)	76(2)	-7(1)	43(2)	2(1) 6(1)
C(19)	78(2)	61(2)	73(2)	-24(2)	43(2)	0(2)
C(20)	110(2)	86(2)	49(2)	-10(2)	44(2)	13(2)
C(21)	88(2)	56(2)	41(1)	5(1)	35(1)	15(2) 15(1)
		(-,	(-)	0(1)		+0(1)
				and the second		

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for cd28232. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	х	У	Z	U(eq)
H(1)	4324	3869	1968	38
H(5)	2255	2940	-758	39
Н(6)	4200	2138	1085	39
H(11)	1335	4231	91	54
H(12)	532	6033	-625	70
H(13)	1661	7694	-236	80
H(14)	3599	7549	848	75
H(15)	4422	5756	1545	56
H(17)	3378	87	277	57
H(18)	3868	-1338	-599	74
H(19)	3740	-950	-2242	81
H(20)	3102	851	-3024	93
H(21)	2596	2281	-2168	72
H(3A)	835(16)	1160(18)	1231(16)	44(6)
H(3B)	1458(17)	1846(19)	2230(18)	59(7)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for cd28232.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccc} C(6)-C(1)-C(2)-C(7) & -170.18(14) \\ C(10)-C(1)-C(2)-C(8) & -158.18(15) \\ C(6)-C(1)-C(2)-C(3) & 83.92(19) \\ C(6)-C(1)-C(2)-C(3) & -45.39(19) \\ C(7)-C(2)-C(3)-C(4) & 143.89(17) \\ C(8)-C(2)-C(3)-C(4) & -98.68(19) \\ C(1)-C(2)-C(3)-C(4) & -98.68(19) \\ C(1)-C(2)-C(3)-N(3) & -37.5(2) \\ C(8)-C(2)-C(3)-N(3) & -9.96(19) \\ C(1)-C(2)-C(3)-N(3) & -161.95(16) \\ N(3)-C(3)-C(4)-C(9) & -2.5(3) \\ C(2)-C(3)-C(4)-C(9) & -2.5(3) \\ C(2)-C(3)-C(4)-C(5) & 176.55(17) \\ C(2)-C(3)-C(4)-C(5) & -5.0(3) \\ C(3)-C(4)-C(5)-C(6) & -162.53(16) \\ C(3)-C(4)-C(5)-C(6) & -162.53(16) \\ C(3)-C(4)-C(5)-C(6) & -162.53(16) \\ C(3)-C(4)-C(5)-C(16) & -40.5(2) \\ O(2)-N(5)-C(6)-C(5) & -152.22(17) \\ O(2)-N(5)-C(6)-C(5) & -171.84(14) \\ C(16)-C(5)-C(6)-N(5) & -171.84(14) \\ C(16)-C(5)-C(6)-N(5) & -171.84(14) \\ C(16)-C(5)-C(6)-N(5) & -171.67(15) \\ C(10)-C(1)-C(6)-N(5) & -171.67(15) \\ C(10)-C(1)-C(6)-C(5) & -171.57(15) \\ C(10)-C(1)-C(6)-C(5) & -171.57(15) \\ C(10)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-N(2) & -137(3) \\ C(3)-C(2)-C(8)-N(2) & -137(3) \\ C(3)-C(4)-C(9)-N(4) & -70(40) \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{ccccc} C(2) - C(3) - C(4) - C(9) & 175.99(16) \\ N(3) - C(3) - C(4) - C(5) & 176.55(17) \\ C(2) - C(3) - C(4) - C(5) & -5.0(3) \\ C(3) - C(4) - C(5) - C(6) & 18.4(2) \\ C(9) - C(4) - C(5) - C(6) & -162.53(16) \\ C(3) - C(4) - C(5) - C(16) & -40.5(2) \\ O(2) - N(5) - C(6) - C(5) & 29.3(2) \\ O(1) - N(5) - C(6) - C(5) & -152.22(17) \\ O(2) - N(5) - C(6) - C(1) & 97.8(2) \\ O(1) - N(5) - C(6) - C(1) & 80.6(2) \\ C(4) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - N(5) & -171.61(15) \\ C(10) - C(1) - C(6) - N(5) & 59.6(2) \\ C(2) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -163(7) \\ C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{ccccc} C(2) - C(3) - C(4) - C(5) & -5.0(3) \\ C(3) - C(4) - C(5) - C(6) & 18.4(2) \\ C(9) - C(4) - C(5) - C(16) & -162.53(16) \\ C(3) - C(4) - C(5) - C(16) & 140.43(18) \\ C(9) - C(4) - C(5) - C(16) & -40.5(2) \\ O(2) - N(5) - C(6) - C(5) & 29.3(2) \\ O(1) - N(5) - C(6) - C(5) & -152.22(17) \\ O(2) - N(5) - C(6) - C(1) & -97.8(2) \\ O(1) - N(5) - C(6) - C(1) & 80.6(2) \\ C(4) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - C(1) & -48.8(2) \\ C(16) - C(5) - C(6) - C(1) & -171.61(15) \\ C(10) - C(1) - C(6) - N(5) & 59.6(2) \\ C(2) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - N(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -163(7) \\ C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \\ \end{array}$
$\begin{array}{cccccc} C(3)-C(4)-C(5)-C(6) & & & 18.4(2) \\ C(9)-C(4)-C(5)-C(6) & & & -162.53(16) \\ C(3)-C(4)-C(5)-C(16) & & & 140.43(18) \\ C(9)-C(4)-C(5)-C(16) & & & -40.5(2) \\ O(2)-N(5)-C(6)-C(5) & & & 29.3(2) \\ O(1)-N(5)-C(6)-C(1) & & & -152.22(17) \\ O(2)-N(5)-C(6)-C(1) & & & -152.22(17) \\ O(1)-N(5)-C(6)-C(1) & & & -97.8(2) \\ O(1)-N(5)-C(6)-C(1) & & & -97.8(2) \\ O(1)-N(5)-C(6)-N(5) & & & -171.84(14) \\ C(16)-C(5)-C(6)-N(5) & & & -171.84(14) \\ C(16)-C(5)-C(6)-C(1) & & -48.8(2) \\ C(16)-C(5)-C(6)-C(1) & & & -171.61(15) \\ C(10)-C(1)-C(6)-N(5) & & & 59.6(2) \\ C(2)-C(1)-C(6)-N(5) & & & -171.57(15) \\ C(10)-C(1)-C(6)-C(5) & & & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & & & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & & & -46(7) \\ C(3)-C(2)-C(7)-N(1) & & & -163(7) \\ C(1)-C(2)-C(7)-N(1) & & & -163(7) \\ C(7)-C(2)-C(8)-N(2) & & & 104(3) \\ C(1)-C(2)-C(8)-N(2) & & & -18(3) \\ C(3)-C(2)-C(8)-N(2) & & & -70(40) \\ \end{array}$
$\begin{array}{ccccc} C(9)-C(4)-C(5)-C(6) & -162.53(16) \\ C(3)-C(4)-C(5)-C(16) & 140.43(18) \\ C(9)-C(4)-C(5)-C(6)-C(5) & 29.3(2) \\ O(2)-N(5)-C(6)-C(5) & -152.22(17) \\ O(2)-N(5)-C(6)-C(1) & 97.8(2) \\ O(1)-N(5)-C(6)-C(1) & 80.6(2) \\ C(4)-C(5)-C(6)-N(5) & -171.84(14) \\ C(16)-C(5)-C(6)-N(5) & -171.84(14) \\ C(16)-C(5)-C(6)-C(1) & -48.8(2) \\ C(16)-C(5)-C(6)-C(1) & -171.61(15) \\ C(10)-C(1)-C(6)-N(5) & 59.6(2) \\ C(2)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-N(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & -163(7) \\ C(7)-C(2)-C(8)-N(2) & -137(3) \\ C(3)-C(2)-C(8)-N(2) & -70(40) \\ \end{array}$
$\begin{array}{cccccc} C(3)-C(4)-C(5)-C(16) & 140.43(18) \\ C(9)-C(4)-C(5)-C(16) & -40.5(2) \\ 0(2)-N(5)-C(6)-C(5) & 29.3(2) \\ 0(1)-N(5)-C(6)-C(1) & -152.22(17) \\ 0(2)-N(5)-C(6)-C(1) & -97.8(2) \\ 0(1)-N(5)-C(6)-C(1) & 80.6(2) \\ C(4)-C(5)-C(6)-N(5) & -171.84(14) \\ C(16)-C(5)-C(6)-N(5) & -171.84(14) \\ C(16)-C(5)-C(6)-C(1) & -48.8(2) \\ C(16)-C(5)-C(6)-C(1) & -171.61(15) \\ C(10)-C(1)-C(6)-N(5) & 59.6(2) \\ C(2)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-C(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & -163(7) \\ C(7)-C(2)-C(8)-N(2) & -137(3) \\ C(3)-C(2)-C(8)-N(2) & -18(3) \\ C(3)-C(2)-C(8)-N(2) & -70(40) \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccc} 0(1) - N(5) - C(6) - C(5) & -152.22(17) \\ 0(2) - N(5) - C(6) - C(1) & -97.8(2) \\ 0(1) - N(5) - C(6) - C(1) & 80.6(2) \\ C(4) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - N(5) & 65.33(19) \\ C(4) - C(5) - C(6) - C(1) & -48.8(2) \\ C(16) - C(5) - C(6) - C(1) & -171.61(15) \\ C(10) - C(1) - C(6) - N(5) & 59.6(2) \\ C(2) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -163(7) \\ C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{ccccccc} 0(1) - N(5) - C(6) - C(1) & 80.6(2) \\ C(4) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - N(5) & 65.33(19) \\ C(4) - C(5) - C(6) - C(1) & -48.8(2) \\ C(16) - C(5) - C(6) - C(1) & -171.61(15) \\ C(10) - C(1) - C(6) - N(5) & 59.6(2) \\ C(2) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -65.5(2) \\ C(3) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -163(7) \\ C(1) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(2) - C(8) - N(2) & -70(40) \\ \end{array}$
$\begin{array}{cccccc} C(4) - C(5) - C(6) - N(5) & -171.84(14) \\ C(16) - C(5) - C(6) - N(5) & 65.33(19) \\ C(4) - C(5) - C(6) - C(1) & -48.8(2) \\ C(16) - C(5) - C(6) - C(1) & -171.61(15) \\ C(10) - C(1) - C(6) - N(5) & 59.6(2) \\ C(2) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & -65.5(2) \\ C(3) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -163(7) \\ C(1) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \\ \end{array}$
$\begin{array}{ccccc} C(16)-C(5)-C(6)-N(5) & 65.33(19) \\ C(4)-C(5)-C(6)-C(1) & -48.8(2) \\ C(16)-C(5)-C(6)-C(1) & -171.61(15) \\ C(10)-C(1)-C(6)-N(5) & 59.6(2) \\ C(2)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-C(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & 63.32(19) \\ C(3)-C(2)-C(7)-N(1) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & 70(7) \\ C(1)-C(2)-C(7)-N(1) & -163(7) \\ C(7)-C(2)-C(8)-N(2) & -137(3) \\ C(3)-C(2)-C(8)-N(2) & 104(3) \\ C(1)-C(2)-C(8)-N(2) & -18(3) \\ C(3)-C(4)-C(9)-N(4) & -70(40) \\ \end{array}$
$\begin{array}{ccccc} C(16)-C(5)-C(6)-C(1) & & -171.61(15) \\ C(10)-C(1)-C(6)-N(5) & & 59.6(2) \\ C(2)-C(1)-C(6)-N(5) & & -171.57(15) \\ C(10)-C(1)-C(6)-C(5) & & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & & 63.32(19) \\ C(8)-C(2)-C(7)-N(1) & & -46(7) \\ C(3)-C(2)-C(7)-N(1) & & 70(7) \\ C(1)-C(2)-C(7)-N(1) & & -163(7) \\ C(7)-C(2)-C(8)-N(2) & & -137(3) \\ C(3)-C(2)-C(8)-N(2) & & 104(3) \\ C(1)-C(2)-C(8)-N(2) & & -18(3) \\ C(3)-C(4)-C(9)-N(4) & & -70(40) \\ \end{array}$
$\begin{array}{cccc} C(10)-C(1)-C(6)-N(5) & 59.6(2) \\ C(2)-C(1)-C(6)-N(5) & -171.57(15) \\ C(10)-C(1)-C(6)-C(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & 63.32(19) \\ C(8)-C(2)-C(7)-N(1) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & 70(7) \\ C(1)-C(2)-C(7)-N(1) & -163(7) \\ C(7)-C(2)-C(8)-N(2) & -137(3) \\ C(3)-C(2)-C(8)-N(2) & 104(3) \\ C(1)-C(2)-C(8)-N(2) & -18(3) \\ C(3)-C(4)-C(9)-N(4) & -70(40) \\ \end{array}$
$\begin{array}{cccc} C(2) - C(1) - C(6) - N(5) & -171.57(15) \\ C(10) - C(1) - C(6) - C(5) & -65.5(2) \\ C(2) - C(1) - C(6) - C(5) & 63.32(19) \\ C(8) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & -163(7) \\ C(1) - C(2) - C(7) - N(1) & -163(7) \\ C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & 104(3) \\ C(1) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \\ \end{array}$
$\begin{array}{cccc} C(10)-C(1)-C(6)-C(5) & -65.5(2) \\ C(2)-C(1)-C(6)-C(5) & 63.32(19) \\ C(8)-C(2)-C(7)-N(1) & -46(7) \\ C(3)-C(2)-C(7)-N(1) & 70(7) \\ C(1)-C(2)-C(7)-N(1) & -163(7) \\ C(7)-C(2)-C(8)-N(2) & -137(3) \\ C(3)-C(2)-C(8)-N(2) & 104(3) \\ C(1)-C(2)-C(8)-N(2) & -18(3) \\ C(3)-C(4)-C(9)-N(4) & -70(40) \\ \end{array}$
$\begin{array}{cccc} C(2) - C(1) - C(6) - C(5) & 63.32(19) \\ C(8) - C(2) - C(7) - N(1) & -46(7) \\ C(3) - C(2) - C(7) - N(1) & 70(7) \\ C(1) - C(2) - C(7) - N(1) & -163(7) \\ C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & 104(3) \\ C(1) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \end{array}$
$\begin{array}{c} C(3) - C(2) - C(7) - N(1) & 70(7) \\ C(1) - C(2) - C(7) - N(1) & -163(7) \\ C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & 104(3) \\ C(1) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \end{array}$
$\begin{array}{cccc} C(1) - C(2) - C(7) - N(1) & & -163(7) \\ C(7) - C(2) - C(8) - N(2) & & -137(3) \\ C(3) - C(2) - C(8) - N(2) & & 104(3) \\ C(1) - C(2) - C(8) - N(2) & & -18(3) \\ C(3) - C(4) - C(9) - N(4) & & -70(40) \end{array}$
$\begin{array}{c} C(7) - C(2) - C(8) - N(2) & -137(3) \\ C(3) - C(2) - C(8) - N(2) & 104(3) \\ C(1) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \end{array}$
$\begin{array}{c} C(3) - C(2) - C(8) - N(2) & 104(3) \\ C(1) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \end{array}$
$\begin{array}{c} C(1) - C(2) - C(8) - N(2) & -18(3) \\ C(3) - C(4) - C(9) - N(4) & -70(40) \end{array}$
C(3) - C(4) - C(9) - N(4) -70(40)
C(F) = C(A) = C(O) = N(A) 111(AO)
C(5) - C(4) - C(9) - N(4) 111(40)
C(6) - C(1) - C(10) - C(11) 77.2(2)
$\begin{array}{c} C(2) - C(1) - C(10) - C(11) & -47.4(2) \\ C(6) - C(1) - C(10) - C(15) & -102.46(19) \end{array}$
C(2) - C(1) - C(10) - C(15) 132.98 (17)
C(15) - C(10) - C(11) - C(12) -0.4(3)
C(1) - C(10) - C(11) - C(12) -179.99(18)
C(10) - C(11) - C(12) - C(13) -0.4(3)
C(11) - C(12) - C(13) - C(14) 0.6(4)
C(12)-C(13)-C(14)-C(15) 0.0(3)C(13)-C(14)-C(15)-C(10) -0.8(3)
$\begin{array}{c} C(13) - C(14) - C(15) - C(10) & -0.8(3) \\ C(11) - C(10) - C(15) - C(14) & 1.0(3) \end{array}$
C(1) - C(10) - C(15) - C(14) -179.37(18)
C(6) - C(5) - C(16) - C(17) 73.3(2)
C(4) - C(5) - C(16) - C(17) -47.5(2)
$\begin{array}{c} C(6) - C(5) - C(16) - C(21) & -105.3(2) \\ C(4) - C(5) - C(16) - C(21) & 133.99(19) \end{array}$
$\begin{array}{c} C(4) - C(5) - C(16) - C(21) \\ C(21) - C(16) - C(17) - C(18) \\ \end{array} $ $\begin{array}{c} 133.99(19) \\ 0.8(3) \\ \end{array}$
C(5) - C(16) - C(17) - C(18) -177.79(18)
C(16)-C(17)-C(18)-C(19) 0.0(3)
C(17) - C(18) - C(19) - C(20) -0.5(4)
C(18) - C(19) - C(20) - C(21) 0.2(4)
$\begin{array}{c} C(19) - C(20) - C(21) - C(16) & 0.5(4) \\ C(17) - C(16) - C(21) - C(20) & -1.0(3) \end{array}$
$\begin{array}{c} C(17) - C(16) - C(21) - C(20) & -1.0(3) \\ C(5) - C(16) - C(21) - C(20) & 177.5(2) \end{array}$

Table 6. Torsion angles [deg] for cd28232.

S36

Symmetry transformations used to generate equivalent atoms:

Table /. Hydrogen bon	ds for cd28232 [#	A and deg.].			_
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(3)-H(3A)N(4)#1	0.88(2)	2.26(2)	3.091(3)	159.6(17)	

S37

Table 7. Hydrogen bonds for cd28232 [A and deg.].

Symmetry transformations used to generate equivalent atoms: #1 - x, -y, -z