Reactive trityl derivatives: stabilised carbocation mass-tags for life sciences applications

Alexey V. Ustinov, Vadim V. Shmanai, Kaajal Patel, Irina A. Stepanova, Igor A. Prokhorenko, Irina V. Astakhova, Andrei D. Malakhov, Mikhail V. Skorobogatyi, Pablo L. Bernad, Jr, Safraz Khan, Mona Shahgholi, Edwin M. Southern, Vladimir A. Korshun,* and Mikhail S. Shchepinov*

Supporting Information

Synthetic procedures for compounds 4a-f, 5a-k, 7a-j, 8, 10f,g,h, 11a,b, 12a-h, 13a,c, 15a,c-h, 16a,b, 17c,d, 18, 19, 20, 21, 22b,c, 23b,d, 24d, 27b, 28d-h, 29, 31, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 54, 55, 56 :
(Experimental Section)
page 2-33
References
page 34

Experimental Section

Instrumentation. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX-500 spectrometer and referenced to $\mathrm{CDCl}_{3}(7.25 \mathrm{ppm})$ and DMSO-d $d_{6}(2.50 \mathrm{ppm}) .{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gradient-selected HMQC and HMBC spectra were obtained by using $2048\left(t_{2}\right) \times 256\left(t_{1}\right)$ complex point data sets, zero filled to $2048\left(F_{2}\right) \times 1024\left(F_{1}\right)$ points. The spectral widths were 13 ppm and 200 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ dimensions, respectively. HMBC spectra were measured with 50 ms delay for evolution of long-range couplings. (MA)LDI-TOF mass spectra were obtained using a Voyager Elite Biospectrometry Research Station (PerSeptive Biosystems, Vestec Mass Spectrometry Products) in a positive ion mode. EI-TOF HRMS and ESI-TOF HRMS spectra in positive ion mode were obtained using Micromass LCT reflection TOF mass spectrometer. Analytical thin-layer chromatography was performed on the Kieselgel $60 \mathrm{~F}_{254}$ precoated aluminium plates (Merck), spots were visualised under UV light (254 nm). Column chromatography was performed on silica gel (Merck Kieselgel $600.040-0.063 \mathrm{~mm}$).
Reagents and solvents. Reagents obtained from commercial suppliers were used as received. 4-Hydroxy-4'-methoxybenzophenone (3), ${ }^{[1]} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4$ 4, ${ }^{[2]}$ tert-butyl 6 -bromohexanoate, ${ }^{[3]}$ were prepared as described. Solvents were mainly HPLC grade and used without further purification unless otherwise noted. DCM was always used freshly distilled over CaH_{2}. THF was distilled over powdered LiAlH_{4} or over sodium benzophenone ketyl and stored over $4 \AA$ molecular sieves under nitrogen. DMF was freshly distilled under reduced pressure.

4-[3-(tert-Butyloxycarbonyl)propoxy]benzophenone (4a). A solution of sodium methoxide prepared from sodium $(0.46 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{MeOH}(50 \mathrm{~mL})$, was added to the solution of 4hydroxybenzophenone ($3.96 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{MeOH}(100 \mathrm{~mL})$. The mixture was evaporated to dryness, coevaporated with tert-butanol $(2 \times 40 \mathrm{~mL})$, the residue was dissolved in HMPA (30 mL) and tert-butyl 4 -chlorobutyrate $(4.0 \mathrm{~g}, 22 \mathrm{mmol})$ was added in one portion. The mixture was heated at $100^{\circ} \mathrm{C}$ for 5 h , then cooled, diluted with water (300 mL) and extracted with EtOAc $(2 \times 200 \mathrm{~mL})$. The combined organic layers were washed with water $(5 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was chromatographed on silica gel in $1 \rightarrow 4 \% \mathrm{EtOAc}$ in toluene to give the desired compound as white crystalline solid, mp $72^{\circ} \mathrm{C}$ (EtOAc-hexane). Yield $5.10 \mathrm{~g}(75 \%)$. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=341.1752[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4}\right]^{+}$341.1747. NMR (DMSO-d d_{6}): 7.73 (d, 2H, $\left.J=8.9 \mathrm{~Hz}, \mathrm{ArH}\right) ; 7.70-7.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; 7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ; 7.07$ (d, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 4.09\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.38\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.97(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4-[5-(tert-Butyloxycarbonyl)pentyloxy]benzophenone (4b). To a solution of 4hydroxybenzophenone $(1.98 \mathrm{~g}, 10.0 \mathrm{mmol})$ in in dry acetone $(80 \mathrm{~mL})$ dry $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{~g}, 0.1 \mathrm{~mol})$ and tert-butyl 6 -bromohexanoate ${ }^{[4]}(3.76 \mathrm{~g}, 15 \mathrm{mmol})$ were added, and the mixture was stirred for 48 h at ambient temperature, then filtered, and the solid was washed with acetone. The combined filtrate was evaporated, and the residue was dissolved in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$, filtered, and evaporated. The residue was chromatographed on silica gel in $0 \rightarrow 6 \%$ EtOAc in toluene to give desired product ($3.10 \mathrm{~g}, 84 \%$) as a colourless oil. ESI-TOF HRMS: $m / z=369.2051$ $[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4}\right]^{+} 369.2060$. NMR (DMSO- d_{6}): 7.73 (d, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}$); 7.70$7.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; 7.54(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}) ; 7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) ; 4.07(\mathrm{t}, 2 \mathrm{H}, J=$
$6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}$); $2.21\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H})$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4,4'-Bis[3-(tert-butyloxycarbonyl)propoxy]benzophenone (4c). 4,4'-Dihydroxybenzophenone $(4.24 \mathrm{~g}, 20 \mathrm{mmol})$ was alkylated as described in the procedure for $\mathbf{4 a}$ using sodium ($1.15 \mathrm{~g}, 50$ mmol) and tert-butyl 4 -chlorobutyrate ($8.04 \mathrm{~g}, 45 \mathrm{mmol}$). The desired compound was purified by chromatography on silica gel in $2 \rightarrow 5 \%$ EtOAc in toluene. Yield $5.49 \mathrm{~g}(55 \%)$, white crystalline solid, mp $92^{\circ} \mathrm{C}$ (EtOAc-hexane). ESI-TOF HRMS: $m / z=499.2697[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{7}\right]^{+}$499.2690. NMR (DMSO-d d_{6}): 7.69 (d, 4H, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}$); 7.05 (d, 2H, $J=8.8 \mathrm{~Hz}$, $\mathrm{ArH}) ; 4.08\left(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.38\left(\mathrm{t}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.97(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.41\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4-[3-(tert-Butyloxycarbonyl)propoxy]-4'-methoxybenzophenone
(4e).
4,4'-
Dihydroxybenzophenone ($4.24 \mathrm{~g}, 20 \mathrm{mmol}$) was alkylated as described in the procedure for $\mathbf{2 c}$ using sodium ($1.15 \mathrm{~g}, 50 \mathrm{mmol}$) and tert-butyl 4 -chlorobutyrate ${ }^{[2]}(4.47 \mathrm{~g}, 25 \mathrm{mmol})$. The mixture was chromatographed on silica gel in $2 \rightarrow 5 \rightarrow 10 \rightarrow 15 \%$ EtOAc in toluene to give 4,4 '-bis[3-(tert-butyloxycarbonyl)propoxy]benzophenone $\quad \mathbf{4 c}(1.60 \mathrm{~g}, \quad 16 \%)$ and 4-[3-(tert-butyloxycarbonyl)propoxy]-4'-hydroxybenzophenone (4d) ($3.14 \mathrm{~g}, 44 \%$) as crystalline solid $\mathrm{mp} 122-124.5^{\circ} \mathrm{C}$ (EtOAc). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=357.1701[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5}\right]^{+}$ 357.1697. NMR (DMSO- d_{6}): 10.30 (br.s, $1 \mathrm{H}, \mathrm{OH}$), 7.67 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}$); 7.62 (d, 2H, J $=8.4 \mathrm{~Hz}, \mathrm{ArH}) ; 7.04(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}) ; 4.08(\mathrm{t}, 2 \mathrm{H}, J=6.3$ $\mathrm{Hz}, \mathrm{OCH}_{2}$); $2.38\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 2.01-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.40(\mathrm{~s}, 9 \mathrm{H}$, CH_{3}). The latter compound was dissolved in acetone and methylated with $\mathrm{MeI}(3 \mathrm{eq})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (7 eq) at ambient temperature for 3 h . The solid was filtered and the solution was evaporated. The residue was dissolved in chloroform, and the solution was filtered and evaporated to give $\mathbf{4 e}$ ($3.18 \mathrm{~g}, 44 \%$ based on starting $4,4^{\prime}$-dihydroxybenzophenone), $\mathrm{mp} 76-78^{\circ} \mathrm{C}$ (EtOAc-hexane). ESI-TOF HRMS: $m / z=371.1846[M+H]^{+}$, calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{5}\right]^{+}$371.1853. NMR (DMSO- d_{6}): 7.74-7.66 (m, 4H, ArH); 7.11-7.03 (m, 4H, ArH); $4.08\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 3.86(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}); $2.38\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 2.02-1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4-[5-(tert-Butyloxycarbonyl)pentyloxy]-4'-methoxybenzophenone (4f). To a solution of 4-hydroxy-4'-methoxybenzophenone ($5.84 \mathrm{~g}, 25.6 \mathrm{mmol}$) in in dry acetone (250 mL) dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(17.7 \mathrm{~g}, 0.128 \mathrm{~mol})$ and tert-butyl 6-bromohexanoate ${ }^{[4]}(7.05 \mathrm{~g}, 28.1 \mathrm{mmol})$ were added, and the mixture was stirred for 96 h at ambient temperature, then filtered, and the solid was washed with acetone. The combined filtrate was evaporated, and the residue was dissolved in $\mathrm{CHCl}_{3}(150$ mL), filtered, and evaporated. The residue was chromatographed on silica gel in $0 \rightarrow 20 \% \mathrm{EtOAc}$ in toluene to give the desired product ($1.99 \mathrm{~g}, 19.5 \%$). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=399.2175$ $[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5}\right]^{+}$399.2166. NMR (DMSO-d d_{6}): $7.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 7.06(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{ArH}) ; 4.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.21\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H})\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right)$. 4-Methoxy-4'-[5-(4-methoxybenzoylphenoxycarbonyl)pentyloxy]benzophenone (4f) (22%) was isolated as a side product. NMR (DMSO-d d_{6}): 7.78 (m, 8H, ArH); 7.19 (d, 2H, J = $8.2 \mathrm{~Hz}, \mathrm{ArH}$); 6.95 (m, 6H, $\mathrm{ArH}) ; 4.07\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.88 ; 3.87\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, COCH_{2}); $1.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

General procedure for preparation of trirylmethanols 5. To a stirred solution of corresponding benzophenone (4.0 mmol) in dry THF (30 mL) the solution of arylmagnesium bromide (0.5 or $1.0 \mathrm{M}, 5.0 \mathrm{mmol}$) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). The reaction was diluted with water $(200 \mathrm{~mL})$ and $5 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and chromatographed on silica gel in appropriate solvent system.

4-\{4-[Hydroxy-(thiophen-2-yl)-phenyl-methyl]phenoxy\}butanoic acid, tert-butyl ester (5a) was prepared from 4-[3-(tert-butyloxycarbonyl)propoxy]benzophenone $\mathbf{4 a}(1.70 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF (50 mL) and 1.0 M 2-thienylmagnesium bromide ($7.5 \mathrm{~mL}, 7.5 \mathrm{mmol}$). The title compound was chromatographed on silica gel in toluene with 1.0% of $\mathrm{Et}_{3} \mathrm{~N}$; yellowish oil. Yield $1.55 \mathrm{~g}(72 \%)$. ESI-TOF HRMS: $m / z=407.1671[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}\right]^{+} 407.1675$. NMR (DMSO-d d_{6} : 7.42 (m, 1H, H-5 (thiophene)); 7.33-7.21 (m, 5H, ArH (phenyl)); 7.15 (d, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}$ (phenyl)); 6.94 (m, 1H, H-4 (thiophene)); 6.84 (d, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}$ (phenyl)); 6.67-6.62 (m, 2H, H-3 (thiophene), OH); $3.95\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.35(\mathrm{t}, 2 \mathrm{H}$, $J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}$); $1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

4-\{4-[Hydroxy-(4-dimethylaminophenyl)phenyl-methyl]phenoxy\}butanoic acid, tert-butyl ester ($\mathbf{5 b}$) was prepared from $4 \mathbf{a}(1.36 \mathrm{~g} ; 4.0 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ and 0.5 M 4 dimethylaminophenylmagnesium bromide ($10.0 \mathrm{~mL}, 5.0 \mathrm{mmol}$). The compound was chromatographed on silica gel in same solvent system to give the desired compound as a pinkish oil. Yield $1.809 \mathrm{~g}(98 \%)$. ESI-TOF HRMS: $m / z=444.2537[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{3}\right]^{+}$
444.2533. NMR (DMSO-d d_{6}): 7.26 (m, 2H, ArH); 7.19 (m, 3H, ArH); 7.07 (d, 2H, $J=8.8 \mathrm{~Hz}$, $\mathrm{ArH}) ; 6.96(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.81(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.62(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\mathrm{ArH}) ; 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.94\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.35(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3$ $\mathrm{Hz}, \mathrm{COCH}_{2}$); $1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

4-[3-(tert-Butyloxycarbonyl)propoxy]-4'-methoxytritanol (5c) was prepared from 4a $(1.85 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF (30 mL) and 1 M phenylmagnesium bromide ($7.0 \mathrm{~mL}, 7.0 \mathrm{mmol}$). The crude product was chromatographed on silica gel in $0 \rightarrow 5 \% \mathrm{EtOAc}$ in toluene with 0.5% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired compound as a yellow oil. Yield $1.57 \mathrm{~g}(70 \%)$. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $431.2214[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{4}\right]^{+}$431.2217. NMR (DMSO- d_{6}): $7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ; 7.20$ (m, 3H, ArH); 7.07 (m, 4H, ArH); $6.83(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.94(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}$, OCH_{2}); $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.40$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$).

6-\{4-[Hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy\}hexanoic acid, tert-butyl ester (5d) was prepared from 4-[5-(tert-butyloxycarbonyl)pentyloxy]benzophenone 4b (1.84 g; 5.0 mmol) in dry THF (30 mL) and 1 M 4 -methoxyphenylmagnesium bromide ($7.0 \mathrm{~mL}, 7.0 \mathrm{mmol}$). The crude tritanol was chromatographed on silica gel in $0 \rightarrow 5 \% \mathrm{EtOAc}$ in toluene with 0.5% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired compound as a colourless oil. Yield $1.597 \mathrm{~g}(67 \%)$. ESI-TOF HRMS: $m / z=459.2535[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{4}\right]^{+}$459.2530. NMR (DMSO- d_{6}): $7.26(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}) ; 7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; 7.07(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.83(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.92(\mathrm{t}, 2 \mathrm{H}$, $\left.J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.20\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.70(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Thiophen-2-yl-bis\{4-[3-(tert-butyloxycarbonyl)propoxy]phenyl\}methanol (5e) was prepared from 4,4'-bis[3-(tert-butyloxycarboxy)propoxy]benzophenone $\mathbf{4 c}(2.49 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ and 1.0 M 2 -thienylmagnesium bromide ($7.5 \mathrm{~mL}, 7.5 \mathrm{mmol}$). The crude tritanol was chromatographed on silica gel in toluene with 1.0% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired compound as a violet oil. Yield $2.86 \mathrm{~g}(98 \%)$. ESI-TOF HRMS: $m / z=565.2611[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{~S}\right]^{+} 565.2618$. NMR (DMSO- d_{6}): 7.40 (m, 1H, H-5 (thiophene)); 7.15 (d, 4H, $J=8.9$ $\mathrm{Hz}, \mathrm{ArH}$ (phenyl)); 6.93 (m, 1H, H-4 (thiophene)); 6.83 (d, 4H, $J=8.9 \mathrm{~Hz}, \mathrm{ArH}$ (phenyl)); 6.61 (m, 1H, H-3 (thiophene)); $6.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.94\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.35(\mathrm{t}, 4 \mathrm{H}, J=7.3$ $\left.\mathrm{Hz}, \mathrm{COCH}_{2}\right) ; 1.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

4-Dimethylaminophenyl-bis\{4-[3-(tert-butyloxycarbonyl)propoxy]phenyl\}methanol (5f) was prepared from $4 \mathrm{c}(2.49 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ and $0.5 \mathrm{M} 4-(N, N-$ dimethylamino)phenylmagnesium bromide ($15 \mathrm{~mL}, 7.5 \mathrm{mmol}$). The tritanol was purified by chromatography on silica gel in toluene with 5% of EtOAc and 1% of $\mathrm{Et}_{3} \mathrm{~N}$. Pale violet oil, yield 2.22 g (71%). ESI-TOF HRMS: $m / z=602.3477[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{NO}_{6}\right]^{+} 602.3476$. NMR (DMSO-d d_{6} : 7.06 (d, 4H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}$); $6.94(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.80(\mathrm{~d}, 4 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}, \mathrm{ArH}$); $6.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{ArH}$); 5.91 (br.s, $1 \mathrm{H}, \mathrm{OH}$); 3.93 (t, $2 \mathrm{H}, J=6.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right) ; 2.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{CCH}_{3}$).
4-Methoxy-4',4"-bis[3-(tert-butyloxycarbonyl)propoxy]triphenylmethanol (5g) was prepared from $4 \mathrm{c}(2.49 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF (30 mL) and 1 M 4 -methoxyphenylmagnesium bromide ($7.0 \mathrm{~mL}, 7.0 \mathrm{mmol}$). The tritanol was chromatographed on silica gel in $3 \rightarrow 7 \% \mathrm{EtOAc}$ in toluene to give the desired compound as a colorless oil. Yield $1.88 \mathrm{~g}(62 \%)$. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $589.3162[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{O}_{7}\right]^{+} 589.3160$. NMR (DMSO-d d_{6}): 7.10-7.04 (m, $6 \mathrm{H}, \mathrm{ArH}$ (phenyl)); 6.86-6.81 (m, 6H, ArH (phenyl)); 6.07 (s, 1H, OH); 3.93 (m, 4H, OCH 2); 3.72 (s, 3 H , $\left.\mathrm{OCH}_{3}\right) ; 2.40-2.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right) ; 1.95-1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

4-\{4-[Hydroxy-(thiophen-2-yl)-(4-methoxyphenyl)-methyl]phenoxy\}butanoic acid, tertbutyl ester (5h) was prepared from 4-[3-(tert-butyloxycarbonyl)propoxy]-4'methoxybenzophenone $4 \mathrm{e}(1.85 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ and 1.0 M 2thienylmagnesium bromide ($7.5 \mathrm{~mL}, 7.5 \mathrm{mmol}$). The crude compound was chromatographed on silica gel in toluene with 1.0% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired tritanol as a violet oil. Yield 1.33 g (58%). ESI-TOF HRMS: $m / z=565.2622[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{~S}\right]^{+}$565.2618. NMR (DMSO-d d_{6}): 7.40 (m, 1H, H-5 (thiophene)); 7.15 (m, 4H, ArH (phenyl)); 6.93 (m, 1H, H-4 (thiophene)); $6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$ (phenyl)); $6.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ (thiophene)); $6.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.94$ (t, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}$); $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.35\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.91(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.39 (s, $9 \mathrm{H}, \mathrm{CCH}_{3}$).

4-\{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy\}butanoic acid, tert-butyl ester (5i) was prepared from $\mathbf{4 e}(1.48 \mathrm{~g} ; 4.0 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ and 0.5 M 4-dimethylaminophenylmagnesium bromide ($10.0 \mathrm{~mL}, 5.0 \mathrm{mmol}$). The compound was chromatographed on silica gel in toluene with 1.0% of $\mathrm{Et}_{3} \mathrm{~N}$. Colourless oil, yield $1.514 \mathrm{~g}(77 \%)$. ESI-TOF HRMS: $m / z=565.2622[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NO}_{4}\right]^{+}$565.2618. NMR (DMSO$\left.d_{6}\right): 7.07(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.62(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{ArH}$); $5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.94\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.85(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right) ; 2.35\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

4-[3-(tert-Butyloxycarbonyl)propoxy]-4',4'-dimethoxytritanol (5j) was prepared from $4 \mathrm{e}(1.85 \mathrm{~g} ; 5.0 \mathrm{mmol})$ in dry THF (30 mL) and 1 M 4 -methoxyphenylmagnesium bromide (7.0 $\mathrm{mL}, 7.0 \mathrm{mmol}$); the purification was achieved using chromatography on silica gel in $3 \rightarrow 7 \%$ EtOAc in toluene. The desired tritanol was obtained as a yellow oil, yield $1.79 \mathrm{~g}(75 \%)$. ESITOF HRMS: $m / z=461.2325[M-O H]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{5}\right]^{+} 461.2323$.

6-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy\}hexanoic acid, tert-butyl ester (5k) was prepared from 4-[5-(tert-butyloxycarbonyl)pentyloxy]-4'-methoxybenzophenone $\mathbf{4 f}$ (400 $\mathrm{mg} ; 1.0 \mathrm{mmol})$ in dry THF (10 mL) and 1 M 4 -methoxyphenylmagnesium bromide ($1.2 \mathrm{~mL}, 1.2$ $\mathrm{mmol})$. The crude compound was chromatographed on silica gel in $0 \rightarrow 15 \% \mathrm{EtOAc}$ in toluene with 0.5% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired tritanol as a colourless oil, yield $334 \mathrm{mg}(66 \%)$. ESI-TOF HRMS: $m / z=489.2630[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{5}\right]^{+}$489.2636. NMR (DMSO-d d_{6} : $7.06(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{ArH}) ; 6.82(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 6.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.92\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.72(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ; 2.20\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H})$, $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

General procedure for preparation of trityl acids 6. To a stirred solution of tert-butyl ester $\mathbf{5}$ (3 mmol) in dry DCM $(5 \mathrm{~mL}$) trifluoroacetic acid $(5 \mathrm{~mL})$ was added in one portion and the mixture was stirred at ambient temperature for 3 h , then evaporated, and co-evaporated with DCM $(4 \times 50 \mathrm{~mL})$ to give free acid. These were used for the preparation of activated esters without additional purification. In some cases analytical samples of acids $\mathbf{6}$ were purified by column chromatography on silica gel (typically 20 to 40% acetone in toluene).
General procedure for preparation of N-oxysuccinimide activated esters 7. The acid 6 obtained from tert-butyl ester $5(3 \mathrm{mmol})$ were dissolved in DCM (50 mL), triethylamine (0.92 $\mathrm{mL}, 6.6 \mathrm{mmol}$) and N, N-disuccinimidyl carbonate ($1.27 \mathrm{~g}, 4.95 \mathrm{mmol}$) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (100 mL), washed with 5\% $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give pure activated ester 7. In some cases the latter was purified by column chromatography on silica gel (EtOAc in toluene).

4-\{4-[Hydroxy-(2-thienyl)-phenylmethyl]phenoxy\}butanoic acid, N-succinimidyl ester (7a) was prepared from tert-butyl ester of 4-\{4-[hydroxy-(2-thienyl)-phenylmethyl]phenoxy\} butanoic acid 5 a $(1.40 \mathrm{~g} ; 3.3 \mathrm{mmol})$. The final compound purified by column chromatography $(0 \rightarrow 20 \%$ EtOAc in toluene). Yield $1.00 \mathrm{~g}(65 \%)$, pink amorphous solid. ESI-TOF HRMS: $m / z=448.1217$ $[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}\right]^{+} 448.1213$. NMR (DMSO- d_{6}): 7.42 (m, $1 \mathrm{H}, \mathrm{H}-5$ (thiophene)); $7.33-7.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}\right.$ (phenyl)); $7.16\left(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \operatorname{ArH}\right.$ (phenyl)); $6.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{4,5}=\right.$ $4.8 \mathrm{~Hz}, J_{3,4}=3.6 \mathrm{~Hz}, \mathrm{H}-4$ (thiophene)); $6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}$ (phenyl); 6.65 (m, 2H, H-3 (thiophene), OH); $4.03\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.84\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 2.81(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$); $2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

4-\{4-[Hydroxy-(4-dimethylaminophenyl)-phenyl-methyl]phenoxy\}butanoic acid, $\quad \mathrm{N}$ oxysuccinimide ester (7b) was prepared from tert-butyl 4-\{4-[hydroxy-(4-dimethylaminophenyl)-phenyl-methyl]phenoxy\}butanoate 5b (923 mg ; 2.0 mmol). Column chromatography: $5 \rightarrow 10 \rightarrow 15 \%$ EtOAc in toluene. Yield $458 \mathrm{mg}(43 \%)$, pink amorphous solid. ESI-TOF HRMS: $m / z=485.2075[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}$485.2071. NMR (DMSO$d_{6}$): 7.26 (m, 2H, ArH); 7.19 (m, 3H, ArH); 7.07 (d, 2H, $\left.J=8.7 \mathrm{~Hz}, ~ A r H\right) ; 6.96(\mathrm{~d}, 2 \mathrm{H}, J=8.7$ $\mathrm{Hz}, \mathrm{ArH}) ; 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) ; 6.62(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) ; 6.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 4.02$ (t, 2H, J = $6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}$); 2.88-2.79 (m, 12H, NCH $\left.,_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.06$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

4-\{4-[Hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy\}butanoic
acid, $\quad N$ oxysuccinimide ester (7c) was prepared from 4-[3-(tert-butyloxycarbonyl)propoxy]-4'methoxytritanol 5c ($1.12 \mathrm{~g} ; 2.5 \mathrm{mmol}$). Column chromatography: $5 \rightarrow 20 \% \mathrm{EtOAc}$ in toluene. Yield $0.900 \mathrm{~g}(74 \%)$, white amorphous solid. ESI-TOF HRMS: $m / z=472.1751[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{6}\right]^{+}$472.1755. NMR (DMSO-d d_{6} : $7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ; 7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; 7.08(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}) ; 6.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 4.03\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.73(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}); $2.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCOCH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

6-\{4-[Hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy\}hexanoic acid, N oxysuccinimide ester (7d) was prepared from tert-butyl 6-\{4-[hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy\}hexanoate 5 d $(953 \mathrm{mg} ; 2.0 \mathrm{mmol})$. Yield $743 \mathrm{mg}(72 \%)$, white amorphous solid. ESI-TOF HRMS: $m / z=500.2075[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{6}\right]^{+} 500.2068$. NMR (DMSO-d d_{6} : $7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ; 7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; 7.07(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.83(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{ArH}) ; 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.93\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.81(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$); $2.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.78-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.51$ (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

2-Thienyl-4',4'-bis[3-(N-succinimidylcarbonyl)propoxy]triphenylmethanol (7e) was prepared from 2-thienyl-4',4'-bis[3-(tert-butyloxycarbonyl)propoxy]triphenylmethanol 5e (2.50 $\mathrm{g} ; 4.29 \mathrm{mmol}$). The compound was purified by column chromatography ($10 \rightarrow 50 \% \mathrm{EtOAc}$ in toluene). Yield $2.05 \mathrm{~g}(72 \%)$, pink amorphous solid. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=647.1697$ [M$\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}\right]^{+}$647.1694. NMR (DMSO- d_{6}): 7.41 (m, 1H, H-5 (thiophene)); $7.16(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.93$ (dd, $1 \mathrm{H}, J_{4,5}=4.8 \mathrm{~Hz}, J_{3,4}=3.7 \mathrm{~Hz}, \mathrm{H}-4$ (thiophene)); 6.87 (d, 4H, J=8.8 Hz, ArH); 6.63 (m, 1H, H-3 (thiophene)); 6.54 (s, 1H, OH); 4.03 (t, 4H, $J=6.2$ $\mathrm{Hz}, \mathrm{OCH}_{2}$); 2.87-2.78 (m, 12H, $\mathrm{COCH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$); 2.07 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

4-(N,N-Dimethylaminophenyl)-4',4'-bis[3-carboxypropoxy]triphenylmethanol (6f). To a stirred solution of 4-(N,N-dimethylaminophenyl)-4', $4^{\prime \prime}$-bis[3-(tert-butyloxycarbonyl)propoxy]triphenylmethanol $(1.55 \mathrm{~g}, 2.5 \mathrm{mmol})$ in dry DCM $(5 \mathrm{~mL})$ trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:4). The solution was evaporated to dryness, and co-evaporated with DCM $(4 \times 30 \mathrm{~mL})$ to give acid $\mathbf{6 f}$ as dark violet oil. Yield $1.23 \mathrm{~g}(97 \%)$. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $490.2220[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{6}\right]^{+} 490.2224$. NMR (DMSO-d d_{6}): 7.49 (d, 2H, J = 9.6 $\mathrm{Hz}, \mathrm{ArH}) ; 7.33(\mathrm{~d}, 4 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 7.27(\mathrm{~d}, 2 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{ArH}) ; 7.21(\mathrm{~d}, 4 \mathrm{H}, J=8.9 \mathrm{~Hz}$, $\mathrm{Ar} H) ; 4.18\left(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.43\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 2.01$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

4-Methoxy-4',4"-bis\{[3-(N-succinimidyl)oxycarbonyl]propoxy\}triphenylmethanol (7f) was prepared from 4,4'-bis[3-(tert-butyloxycarbonyl)propoxy]-4"-(4-methoxybenzoyl)tritanol 5 g $(1.21 \mathrm{~g} ; 2.0 \mathrm{mmol})$ and purified by column chromatography ($20 \rightarrow 30 \% \mathrm{EtOAc}$ in toluene). Yield $826 \mathrm{mg}(78 \%)$, white amorphous solid. $R_{\mathrm{f}} 0.18$ (toluene-EtOAc, $1: 1$). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $671.2230[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{11}\right]^{+}$671.2235. NMR (DMSO-d d_{6}): 7.10-7.04 (m, 6H, ArH (phenyl)); 6.88-6.81 (m, 6H, ArH (phenyl)); 6.09 (s, 1H, OH); 4.03 (t, 4H, J = 5.3 Hz ,
OCH_{2}); $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.87-2.77\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{COCH}_{2}\right) ; 2.11-2.03(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

4-\{4-[Hydroxy-(2-thienyl)-(4-methoxyphenyl)-methyl]phenoxy\}butanoic acid, N succinimidyl ester ($\mathbf{7 g}$) was prepared from tert-butyl ester of 4 - $\{4$-[hydroxy-(2-thienyl)-(4-methoxyphenyl)-phenoxy\}butanoic acid $5 \mathrm{~h}(1.25 \mathrm{~g} ; 2.75 \mathrm{mmol})$ and purified by column chromatography ($0 \rightarrow 20 \%$ EtOAc in toluene). Yield $1.06 \mathrm{~g}(78 \%)$, pink amorphous solid. ESITOF HRMS: $m / z=478.1315[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}\right]^{+}$478.1319. NMR (DMSO- d_{6}): 7.41 (m, 1H, H-5 (thiophene)); 7.19-7.13 (m, 4H, ArH (phenyl)); 6.93 (dd, 1H, J4,5 $=4.8 \mathrm{~Hz}, J_{3,4}$ $=3.7 \mathrm{~Hz}, \mathrm{H}-4$ (thiophene)); 6.86 (m, 4H, ArH (phenyl)); 6.62 (m, 1H, H-3 (thiophene)); 6.54 (s, $1 \mathrm{H}, \mathrm{OH}$); 4.03 (t, $2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2}$); $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$); 2.90-2.79 (m, 6H, COCH_{2}, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$); $2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

4-\{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy\}butanoic acid, N-oxysuccinimide ester ($\mathbf{7 h}$) was prepared from tert-butyl 4-\{4-[hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy\} butanoate $\mathbf{5 i}$ ($983 \mathrm{mg} ; 2.0 \mathrm{mmol}$) and purified by column chromatography ($10 \rightarrow 15 \%$ EtOAc in toluene). Yield $660 \mathrm{mg}(62 \%)$, violet amorphous solid. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=515.2181[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}\right]^{+}$ 515.2177. NMR (DMSO-d d_{6}): 7.07 (m, 4H, ArH); 6.95 (d, 2H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}$); 6.82 (m, 4H, $\mathrm{ArH}) ; 6.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}) ; 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 4.02\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.72(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 2.88-2.79 (m, 12H, $\mathrm{NCH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$); 2.06 ($\mathrm{m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

6-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy\}hexanoic acid, N-oxysuccinimide ester (7i) was prepared from tert-butyl 6-\{4-[hydroxy-bis(4methoxyphenyl)methyl]phenoxy\} hexanoate $5 \mathbf{j}$ ($253 \mathrm{mg} ; 0.5 \mathrm{mmol}$) and purified by column chromatography ($10 \rightarrow 25 \%$ EtOAc in toluene). Yield 240 mg (88%), white amorphous solid. ESI-TOF HRMS: $m / z=530.2175[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{7}\right]^{+} 530.2173$. NMR (DMSO$d_{6}$): $7.06(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 6.83(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 6.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.93\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$; $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.80\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right) ; 1.70(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

General procedure for preparation of \mathbf{N}-oxysulfosuccinimide activated esters.

A trityl acid (1.0 mmol), prepared as above, was dissolved in dry DMF $(2.5 \mathrm{~mL})$, then N oxysulfosuccinimide sodium salt ($250 \mathrm{mg}, 1.17 \mathrm{mmol}$) and DCC ($375 \mathrm{mg}, 1.8 \mathrm{mmol}$) were added and the mixture was left under stirring overnight, then cooled to $+4^{\circ} \mathrm{C}$ and stirred for 2 h .

The precipitate formed was filtered off, and the solution was diluted with EtOAc (10 mL), cooled to $+4^{\circ} \mathrm{C}$ overnight, filtered, and diluted with dry $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The mixture was kept at ambient temperature for $2-3 \mathrm{~h}$ and the desired compound was collected by filtration, washed with ether and dried in vacuo.

4-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy\}butyric acid, N-oxysulfosuccinimide ester, sodium salt (8) was prepared using above procedure, 38% yield from the orthoester. ESITOF HRMS: $m / z=604.1262[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NNaO}_{10} \mathrm{~S}\right]^{+}$604.1248. NMR (DMSO$\left.d_{6}\right): 7.10-7.04(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 6.88-6.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 4.02(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right) ; 3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{CH}\right) ; 2.91-2.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2}, \mathrm{COCH}_{2} \mathrm{CHCO}\right) ; 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

4,4'-Bis[3-(pentafluorophenyloxyacarbonyl)propoxy]-4'-methoxy-tritanol (9). To a stirred solution of 4,4'-bis(3-carboxypropoxy)-4"-methoxy-tritanol (742 mg ; 1.5 mmol) in dry DCM (20 mL) triethylamine ($0.28 \mathrm{~mL}, 2.0 \mathrm{mmol}$) pentafluorophenyl carbonate $(1.97 \mathrm{~g}, 5.0 \mathrm{mmol})$ were added and the mixture was stirred overnight, then evaporated, coevaporated with DCM and chromatographed on silica gel ($5 \rightarrow 10 \%$ EtOAc in toluene). Yield $980 \mathrm{mg}(79 \%)$, dark red oil R_{f} 0.25 (toluene-EtOAc, 3:1). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=809.1595[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{40} \mathrm{H}_{27} \mathrm{~F}_{10} \mathrm{O}_{7}\right]^{+}$ 809.1592 .

General procedure for preparation of amides 10.

Succinimide activated ester (1 mmol) in DCM (20 mL) was treated with amine (2.5 mmol) for 3 h. The solution was then washed with water, 5% citric acid, dried, and evaporated. The residue was purified by column chromatography in appropriate solvent system. Yields are usually $>$ 90\%.

Examples of preparation of amides 10.

4-\{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy\}butanoic acid, 4-phenylbutylamide (10f). To a stirred solution of 4-\{4-[hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy\}butanoic acid $\mathbf{6 i}$ ($245 \mathrm{mg}, 0.56$ mmol) in dry DMF (10 mL) N, N-diisopropylethylamine ($145 \mu \mathrm{~L}, 0.84 \mathrm{mmol}$) and PyBOP (350 $\mathrm{mg}, 0.67 \mathrm{mmol}$) were subsequently added. The mixture was stirred 10 min at ambient temperature, and 4-phenylbutylamine ($167 \mu \mathrm{~L}, 1.12 \mathrm{mmol}$) was added. The mixture was stirred then 1 h , diluted with EtOAc (200 mL), washed with water ($4 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and chromatographed on silica gel in toluene with $10 \rightarrow 15 \%$ of EtOAc and $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$. The product was obtained as pale pink oil (275 mg), yield 86%. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=549.3107[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$549.3112. NMR (DMSO- d_{6}): $7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ; 7.30-7.10(\mathrm{~m}, 5 \mathrm{H}$, ArH); 7.06 (m, 4H, ArH); 6.95 (d, 2H, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}$); 6.80 (m, 4H, ArH); 6.61 (d, 2H, J=8.8 $\mathrm{Hz}, \mathrm{ArH}) ; 5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.91\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.06(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{NCH}_{2}\right) ; 2.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 2.20\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.91(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$.

4-\{3-[2-(Trimethylamino)ethylaminocarbonyl]propoxy\}phenyl-4',4"-dimethoxytritanol $\mathbf{(1 0 g})$. To a stirring solution of 2-aminoethyl-trimethylammonium chloride ($69 \mathrm{mg}, 0.5 \mathrm{mmol}$) in the mixture of pyridine $(1 \mathrm{~mL})$, acetonitrile $(1 \mathrm{~mL})$, and water $(1 \mathrm{~mL}) 4$-[3-(sulfosuccinimido-oxycarbonyl)propoxy]phenyl-4', $4^{\prime \prime}$-dimethoxytritanol, sodium salt, $\mathbf{8}(155 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added in one portion and the mixture was stirred for 6 h , then diluted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, washed with water $(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was dissolved in acetone $(2 \mathrm{~mL})$ and precipitated in $\mathrm{Et}_{2} \mathrm{O}$ to give pure 10 b as white solid ($95 \mathrm{mg}, 70 \%$). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=490.2830[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$ 490.2826. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right): 8.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ; 7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ; 7.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$; 6.90-6.80 (m, 6H, ArH$) ; 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$ $\left(\mathrm{OCH}_{3}\right) ; 3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right) ; 3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right) ; 3.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right) ; 2.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO-d C_{6}): $172.26(\mathrm{CO}), 157.80(2 \mathrm{C}$, $\mathrm{C} 4^{\prime}, 4^{\prime \prime}$), 157.07 (C 4), 140.57 ($2 \mathrm{C}, \mathrm{C} 1^{\prime}, 1^{\prime \prime}$), 136.21 (C 1), 129.43 (2C, C2,6), 128.89 (4C, $\left.\mathrm{C} 2^{\prime}, 6^{\prime}, 2^{\prime \prime}, 6^{\prime \prime}\right), 113.16(2 \mathrm{C}, \mathrm{C} 3,5), 112.76\left(4 \mathrm{C}, \mathrm{C} 3^{\prime}, 5^{\prime}, 3^{\prime \prime}, 5^{\prime \prime}\right), 79.64\left(\mathrm{Ar}_{3} \mathrm{COH}\right), 66.81,55.06$ (2C, $4^{\prime}-\mathrm{OCH}_{3}, 4^{\prime \prime}-\mathrm{OCH}_{3}$), 52.60, 33.10, 31.67, 29.64, 24.75.

$N, N, N^{\prime}, N^{\prime}$-Tetrakis 2 2-[2-(4-\{4-[bis(4-methoxyphenyl)hydroxymethyl]phenoxy\}butyrylamino)ethylaminocarbonyl]ethyl\}ethylenediamine (10h). To a stirring solution of $N, N, N^{\prime}, N^{\prime}-$ tetrakis[2-(2-aminoethylaminocarbonyl)ethyl]ethylenediamine (103 $\mathrm{mg}, 0.2 \mathrm{mmol}$) in the mixture of $\mathrm{MeOH}(1 \mathrm{~mL})$, acetonitrile $(1 \mathrm{~mL})$, and water $(1 \mathrm{~mL}) 4-[3$-(sulfosuccinimido-oxycarbonyl)propoxy]phenyl-4',4''-dimethoxytritanol, sodium salt, 8 ($622 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added in one portion and the mixture was stirred for 6 h , then diluted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, washed with water $(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was chromatographed on silica gel in $0 \rightarrow 10 \% \mathrm{MeOH}$ in $\mathrm{Me}_{2} \mathrm{CO}$ to give 10 h as white amorphous solid. Yield ($326 \mathrm{mg}, 76 \%$). $R_{\mathrm{f}} 0.60$ (acetone- $\mathrm{MeOH}, 1: 1+0.5 \% \mathrm{Et}_{3} \mathrm{~N}$). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $2116.0329[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{122} \mathrm{H}_{143} \mathrm{~N}_{10} \mathrm{O}_{23}\right]^{+} 2116.0322 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): 7.92(\mathrm{~m}, 4 \mathrm{H}$,

NH); 7.87 (m, 4H, NH); 7.20 (m, 8H, ArH); 7.05 (m, 16H, ArH); 6.88-6.78 (m, 24H, ArH); 6.07 (br.s, 4H, OH); 3.91 (m, 8H, OCH 2); 3.71 (s, 24H, OCH ${ }_{3}$); 3.07 (br.s, 16H, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$); 2.87 (s, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$); 2.61 (m, 8H, COCH_{2}); 2.19 ($\mathrm{m}, 16 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$); $1.90(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$) ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6} : $171.79(4 \mathrm{C}, \mathrm{CO}), 171.56(4 \mathrm{C}, \mathrm{CO}), 157.92,157.79,157.28$, 157.12, 140.58, 140.52, 136.27, 136.12, 129.46, 129.41, 128.89 (16C), 113.61, 113.26, 113.13, 112.74 (16C), $85.56,79.64$ (4C), $68.54,66.90,55.88,55.03$ (8 C$), 51.25,50.95,49.73,38.45$, $38.35,33.51,31.13,31.82,29.65,24.91$.

3-(4-Bromophenyl)propionic acid. 4-Bromobenzaldehyde ($92.5 \mathrm{~g}, 0.50 \mathrm{~mol}$) and Meldrum's acid $(72.0 \mathrm{~g}, 0.50 \mathrm{~mol})$ were dissolved in triethylamine-formic acid reagent ${ }^{[4]}(1.5 \mathrm{~L})$ and the mixture was refluxed for 20 h , then diluted with water (4 L) and acidified with $6 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~L})$ until pH reached 2. The precipitated solid was filtered off, washed with diluted HCl , and dissolved in $5 \% \mathrm{NaHCO}_{3}$. The aqueous salt solution was washed with ether ($4 \times 400 \mathrm{~mL}$), filtered and acidified with diluted HCl . The resulting 3-(4-bromophenyl)propionic acid was filtered off and dried in vacuo over KOH and $\mathrm{P}_{4} \mathrm{O}_{10}$, yield $69.4 \mathrm{~g}(60 \%)$. The compound was pure according to NMR. $R_{\mathrm{f}} 0.33\left(\mathrm{CHCl}_{3}-\mathrm{EtOAc}, 9: 1\right)$. An analytical sample was crystallyzed from toluene and showed mp $134^{\circ} \mathrm{C}$. NMR (DMSO-d d_{6}): 9.52 (br. s, $1 \mathrm{H}, \mathrm{OH}$); 8.00 (d, $2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{ArH}$); 7.73 $(\mathrm{d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 3.41\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.14\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right)$. The compound is also available from Aldrich.

(3-Methyl-3-oxetanyl)methyl 3-(4-bromophenyl)propionate. 3-(4-Bromophenyl)propionic acid chloride was prepared in usual manner from 3-(4-bromophenyl)propionic acid ($5.50 \mathrm{~g}, 24$ mmol) and oxalyl chloride ($4.2 \mathrm{ml}, 50 \mathrm{mmol}$) in benzene (30 mL) with following evaporation. 3-Methyl-3-oxetanemethanol ($2.30 \mathrm{ml}, 23 \mathrm{mmol}$) and pyridine ($3.8 \mathrm{~mL}, 48 \mathrm{mmol}$) were dissolved in DCM $(50 \mathrm{~mL})$ and crude 3-(4-bromophenyl)propionyl chloride in DCM $(10 \mathrm{~mL})$ was added dropwise within 30 min with stirring and cooling on a water bath. The mixture was stirred for 16 h , then diluted with $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$, washed with water ($2 \times 200 \mathrm{~mL}$), $5 \% \mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$, 5% citric acid ($3 \times 100 \mathrm{~mL}$) and $10 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and chromatographed on silica gel in CHCl_{3}. Yield $5.90 \mathrm{~g}(82 \%)$. Colorless oil which solidifies upon storage, mp around $30^{\circ} \mathrm{C} . R_{\mathrm{f}} 0.20$ (toluene-EtOAc, $9: 1$). NMR $\left(\mathrm{CDCl}_{3}\right): 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, ArH); $7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) ; 4.44(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.34(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz})$ $\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right) ; 4.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCO}\right) ; 2.91\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.66(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}$); $1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1-[2-(4-Bromophenyl)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (11a). 3-Methyl-3-oxetanyl)-methyl 3-(4-bromophenyl)propionate ($31.32 \mathrm{~g}, 100 \mathrm{mmol}$) was dissolved in dry DCM $(100 \mathrm{~mL})$, cooled on NaCl -ice bath to $-15^{\circ} \mathrm{C}$, and boron trifluoride diethyl etherate ($3.1 \mathrm{~mL}, 25$ mmol) was added in one portion. The mixture was stirred for 1 h , then allowed to warm to room temperature, quenched with triethylamine ($14 \mathrm{~mL}, 100 \mathrm{mmol}$) and diluted with diethyl ether (150 mL). The boron trifluoride-diethyl ether complex was filtered off, the solution was evaporated, and the residue was purified by flash chromatography on silica gel in toluene. Finally, the compound was crystallyzed from toluene-petroleum ether to give colorless needles (24.86 g ,
79%), $\mathrm{mp} 184^{\circ} \mathrm{C}$ (toluene-petroleum ether). $R_{\mathrm{f}} 0.35$ (toluene-EtOAc, $9: 1$). ESI-TOF HRMS: m / z $=313.0428[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrO}_{3}\right]^{+}$313.0434. NMR (DMSO- d_{6}): $7.43(\mathrm{~d}, 2 \mathrm{H}, J=8.3$ $\mathrm{Hz}, \mathrm{ArH}) ; 7.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{ArH}) ; 3.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 1.82(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$); $0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4-(4-Bromophenoxy)butyronitrile. To a solution of 4-bromophenol ($17.3 \mathrm{~g}, 0.10 \mathrm{~mol}$) in dry acetone (300 mL) dry $\mathrm{K}_{2} \mathrm{CO}_{3}(70 \mathrm{~g}, 0.5 \mathrm{~mol})$ and 4-bromobutyronitrile ($16.3 \mathrm{~g}, 0.11 \mathrm{~mol}$) were added, and the mixture was refluxed for approximately 10 h , until starting 4-bromophenol consumes (monitoring by TLC in CHCl_{3}). The mixture was cooled, filtered, and solid inorganic salts were washed with acetone. The combined filtrate was evaporated, and the residue was dissolved in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$, filtered again, and evaporated. The residue was triturated in petroleum ether, filtered, and dried in vacuo to give desired aryl alkyl ether ($22.3 \mathrm{~g}, 93 \%$) as colorless crystals, $\mathrm{mp} 62^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.57$ (toluene-EtOAc, 4:1). NMR (DMSO- d_{6}): 7.45 (d, 2H, $J=$ $9.0 \mathrm{~Hz}, \mathrm{ArH}) ; 6.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{ArH}) ; 4.02\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CN}$); $2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 6.77(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{ArH}$); $4.03\left(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.57\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}\right) ; 2.01(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).
1-[3-(4-Bromophenoxy)propyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (11b). An ice cooled solution of 4-(4-bromophenoxy)butyronitrile ($15.4 \mathrm{~g}, 64 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and dry $\mathrm{MeOH}(2.6 \mathrm{~mL}, 64 \mathrm{mmol})$ was saturated with dry HCl within 3 h and then kept overnight at ambient temperature. The precipitate formed was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$, and suspended in the mixture of $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ and $\mathrm{MeOH}(20 \mathrm{~mL})$, then refluxed for 48 h and cooled. The solid was filtered off, the filtrate was evaporated, diluted with petroleum ether (100 mL) and filtered again. The filtrate was evaporated, dissolved in dry $\mathrm{MeOH}(30 \mathrm{~mL}$), then $1,1,1-$ tris(hydrohymethyl)ethane $(9.01 \mathrm{~g}, 75 \mathrm{mmol})$ and BF_{3} etherate $(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ were added. The mixture was stirred for 3 h , evaporated, and the residue was chromatographed on silica gel column in $0 \rightarrow 5 \% \mathrm{EtOAc}$ in toluene containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to yield the desired orthoester (6.13 g , 28%) as a colorless solid, $\mathrm{mp} 93^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.55$ (toluene-EtOAc, 4:1). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $343.0548[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrO}_{4}\right]^{+}$343.0539. NMR (DMSO-d d_{6}): $7.41(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}$, $\mathrm{ArH}) ; 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 3.94\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{ArOCH}_{2}\right) ; 3.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right)$; $1.80-1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 0.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
General procedure for preparation of tritanol orthoesters 12. To a stirred and coolled to $70^{\circ} \mathrm{C}$ mixture of THF (20 mL) and 0.9 M BuLi in hexane $(7.0 \mathrm{~mL}, 6.3 \mathrm{mmol})$ the solution of bromo orthoester 11a or 11b $(5.0 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added dropwise within 30 min . The mixture was then stirred for 30 min , and the solution of corresponding benzophenone (5.0 mmol) in THF (50 mL) was added dropwise within 30 min . The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (200 mL) with few drops of triethylamine, washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was dissolved in toluene containing $1 \% \mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ and chromatographed on a silica gel column in appropriate solvent system. The desired product was triturated in petroleum ether filtered off and dried in vacuo.

1-(2-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}ethyl)-4-methyl-2,6,7-
trioxabicyclo-[2.2.2]octane (12a). Method A. Magnesium turnings ($0.30 \mathrm{~g}, 12.5 \mathrm{mmol}$) was placed in a three-neck flask $(250 \mathrm{~mL})$ and activated by heating with a iodine crystal. The flask was then equipped with dropping funnel, reflux condenser, and argon inlet. THF (20 mL) was added to magnesium and 5-7 mL of the solution of 1-[2-(4-bromophenyl)ethyl]-4-methyl-2,6,7trioxabicyclo[2.2.2]octane ($3.13 \mathrm{~g}, 10 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ was added. The mixture was heated under Ar near to boiling until a reaction started, then the remaining aryl bromide was added dropwise and the mixture was refluxed for 30 min . Using Ar pressure, the solution was filtered through glass wool in a 250 mL flask containing a solution of 4,4'dimethoxybenzophenone ($2.42 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (40 mL). The mixture was refluxed for 2 h , then cooled, quenched with $5 \% \mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, and extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was chromatographed on silica gel column ($2 \rightarrow 10 \% \mathrm{EtOAc}$ in toluene containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$). The resulting oil was triturated in petroleum ether to give the desired to give the desired tritanol (1.50 $\mathrm{g}, 31 \%$) colorless crystals, $\mathrm{mp} 145^{\circ} \mathrm{C}$ (dec.). $R_{\mathrm{f}} 0.44$ (toluene-EtOAc, $1: 1$), $R_{\mathrm{f}} 0.14$ (tolueneEtOAc, 9:1). ESI-TOF HRMS: $m / z=459.2175[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{5}\right]^{+}$459.2166. NMR (DMSO-d d_{6}): 7.07 (m, 8H, ArH); $6.83(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.11$ (s, 1H, OH); 3.84 (s, 6H, $\mathrm{CH}_{2} \mathrm{O}$); $3.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 0.76(\mathrm{~s}, 3 \mathrm{H}$, CCH_{3}). Method B. Following the general procedure for compounds 12, tritanol 12a was obtained in 85% yield.

3-[4-(9-Hydroxythioxanthen-9-yl)phenyl] propionic acid, N-oxysuccinimide ester (12b) was prepared from alkyl orthoester and thioxanthone. ESI-TOF HRMS: $m / z=429.1510[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}\right]^{+}$429.1519. NMR (DMSO- d_{6}): $8.02(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}$ (thioxanthene)); 7.46-7.38 (m, 4H, ArH (thioxanthene)); 7.35-7.28 (m, 2H, ArH (thioxanthene)); 7.07 (d, 2H, $J=8.2 \mathrm{~Hz}, \mathrm{ArH}$ (phenyl)); 6.78 (m, 2H, ArH (phenyl)); 5.75 (s, $1 \mathrm{H}, \mathrm{OH}$); 2.93-2.86 (m, 2H, ArCH 2); 2.85-2.74 (m, 6H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$).

1-(2-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl\}ethyl)-4-methyl-2,6,7-
trioxabicyclo[2.2.2]octane (12c) was prepared from 1-[2-(4-bromophenoxy)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane ($1.566 \mathrm{~g}, 5.0 \mathrm{mmol}$) and 4,4'-dimethylthiobenzophenone (1.372 g , 5.0 mmol). The compound was purified using stepwise gradient $2 \rightarrow 2.5 \rightarrow 3.5 \rightarrow 4.0 \rightarrow 4.5 \rightarrow 5.0 \% \mathrm{Me}_{2} \mathrm{CO}$ in toluene containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$. Yield 1.249 g (49.1\%), amorphous solid. $R_{\mathrm{f}} 0.53$ (toluene-EtOAc, 4:1). ESI-TOF HRMS: $m / \mathrm{z}=491.1720[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{~S}_{2}\right]^{+}$491.1709. NMR (DMSO-d d_{6}): 7.20-7.05 (m, 12H, ArH); $6.30(\mathrm{~s}, 1 \mathrm{H}$, OH); 3.84 (s, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$); $2.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH}_{3}\right) ; 1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$; $0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

1-\{2-[4-(9-Hydroxy-3-methoxythioxanthen-9-yl)phenyl]ethyl\}-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (12d) was prepared from 11a ($845 \mathrm{mg}, \quad 2.70 \mathrm{mmol}$) and of 3methoxythioxanthone ${ }^{[5]}(653 \mathrm{~g}, 2.70 \mathrm{mmol})$. Purification in 10% acetone in toluene containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$. Yield $1.14 \mathrm{~g}(94 \%)$, white amorphous solid. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=459.1637$ [M$\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$459.1625. NMR (DMSO-d d_{6}): 7.98 (d, $1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-8$ (thioxanthene)); 7.86 (d, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-1$ (thioxanthene)); 7.42-7.36 (m, 2H, H-5,7 (thioxanthene)); 7.29 (m, 1H, H-6 (thioxanthene)); 7.00-6.94 (m, 2H, ${ }^{4} J=2.6 \mathrm{~Hz}, \mathrm{H}-2,4$ (thioxanthene)); $6.93\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \operatorname{ArH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right) ; 6.77\left(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right.$); $6.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 1.71(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 0.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

11a

12e

1-\{2-[4-(9-Hydroxy-3,6-dimethoxythioxanthen-9-yl)phenyl]ethyl\}-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (12e) was pepared from 11a ($313 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 3,6dimethoxythioxanthone ($272 \mathrm{mg}, 1.00 \mathrm{mmol}$). The compound was chromatographed on silica gel in $10 \rightarrow 15 \%$ acetone in toluene containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$. Yield $415 \mathrm{mg}(82 \%)$, white foam (from DCM). ESI-TOF HRMS: $m / z=489.1717[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~S}\right]^{+}$489.1730. NMR (DMSO-d d_{6}): 7.83 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, H-1,8$ (thioxanthene)); 6.95 (m, $6 \mathrm{H}, H-2,4,5,7$ (thioxanthene), $\left.\mathrm{ArH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right) ; 6.79\left(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \operatorname{ArH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right) ; 6.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.81(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{OCH}_{2}$); $3.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 0.74(\mathrm{~s}, 3 \mathrm{H}$, CCH_{3}).

1-\{2-[4-(9-Hydroxy-3,6-dimethoxyxanthen-9-yl)phenyl]ethyl\}-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (12f) was prepared from $11 \mathrm{a}(5.86 \mathrm{~g}, 0.0187 \mathrm{~mol})$ and 3,6 -dimethoxyxanthone (4 $\mathrm{g}, 0.0187 \mathrm{~mol})$. The compound was chromatographed on a silica gel. The column was eluted with 10% acetone in toluene containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$. Yield $2.4 \mathrm{~g}, 31.3 \%$. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $473.1975[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{6}\right]^{+} 473.1959 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.2(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.4(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~m}, 7 \mathrm{H}), 6.5(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~m}, 12 \mathrm{H}), 2.7(\mathrm{~m}, 2 \mathrm{H}), 2(\mathrm{~m}$, $2 \mathrm{H}), 0.8(\mathrm{~s}, 3 \mathrm{H})$.

1-(3-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy\}propyl)-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (12g) was prepared from 1-[3-(4-bromophenoxy)propyl]-4-methyl-2,6,7trioxabicyclo[2.2.2]octane 11b $(1.716 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 4,4'-dimethoxybenzophenone (1.211 g , 5.0 mmol). The trityl orthoester was purified on silica gel using stepwise gradient $5 \rightarrow 10 \rightarrow 15 \%$ EtOAc in toluene containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$. The desired product was triturated in petroleum ether filtered off and dried in vacuo. Yield 720 mg (28%), colorless crystals, mp $132^{\circ} \mathrm{C}$ (dec.). $R_{\mathrm{f}} 0.40$ (toluene-EtOAc, 1:1). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=489.2284[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{6}\right]^{+}$ 489.2272.

1-(3-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenoxy\}propyl)-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (12h) was prepared from 11b ($1.716 \mathrm{~g}, 5.0 \mathrm{mmol}$) and 4,4'bis(methylthio)benzophenone ($1.372 \mathrm{~g}, 5.0 \mathrm{mmol}$). The desired tritanol ortho ester was isolated by a column chromatography. The column was eluted with stepwise gradient $8 \rightarrow 12 \rightarrow 15 \%$ EtOAc in toluene containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$. The isolated $\mathbf{1 2 h}(810 \mathrm{mg}, 1.5 \mathrm{mmol}, 30 \%$ yield) was used in the next step without purification.

General procedure for preparation of tritanol acids 14 . Orthoester $\mathbf{1 2}(5.0 \mathrm{mmol})$ was dissolved in the THF-water mixture ($9: 1,10 \mathrm{~mL}$), and trifluoroacetic acid $(0.77 \mathrm{~mL}, 10 \mathrm{mmol}$) was added. After stirring for 10 min the mixture was evaporated and diluted with $10 \% \mathrm{NaOH}$ in ethanol-water ($8: 2,30 \mathrm{~mL}$). The reaction mixture was refluxed for 30 min , cooled, and evaporated, the residue was diluted with water (50 mL), washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, filtered, acidified with 5% oxalic acid, and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The solution was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography in an appropriate solvent system.

Intermediate diolesters isolated by chromatography:
3-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}propionic acid, 2-hydroxymethyl-2-methyl-3-hydroxypropyl ester (13a), colorless oil. ESI-TOF HRMS: m/z $=477.2261$ [M$\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{6}\right]^{+}$477.2272. NMR (DMSO-d d_{6}): 7.15-7.04 (m, 8H, ArH); $6.83(\mathrm{~m}, 4 \mathrm{H}$, ArH); $6.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COH}) ; 4.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCO}\right) ; 3.72(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ; 3.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 2.83\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ; 2.61(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, COCH_{2}); 0.74 (s, $3 \mathrm{H}, \mathrm{CCH}_{3}$).
3-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl\}propionic acid 2-hydroxymethyl-2-methyl-3-hydroxypropyl ester (13c) was obtained as a colorless oil, yield 895 mg (85%). ESITOF HRMS: $m / z=509.1829[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~S}_{2}\right]^{+}$509.1815. NMR (DMSO- d_{6}): 7.20-7.07 (m, 12H, ArH); 6.32 (s, 1H, trityl OH); 4.43 (m, 2H, CH2OH); 3.87 (s, 2H, CH2OCO); $3.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH}_{3}\right) ; 0.74(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

Acids 14 were converted to the activated esters $\mathbf{1 5}$ and $\mathbf{1 6}$ using general procedures for corresponding esters 7 and $\mathbf{8}$.
3-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}propionic acid, N-oxysuccinimide ester (15a) was prepared from $\mathbf{1 2 a}(2.38 \mathrm{~g}, 5.0 \mathrm{mmol})$ and purified by column chromatography (10 to 40% EtOAc in toluene). Yield $2.05 \mathrm{~g}(86 \%)$, white amorphous solid. $R_{\mathrm{f}} 0.31$ (toluene-EtOAc, 1:1). ESI-TOF HRMS: $m / z=472.1770[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{6}\right]^{+}$472.1755. NMR (DMSO-d $)_{\text {) }}$: 7.20 (d, 2H, $J=8.3 \mathrm{~Hz}, \mathrm{ArH}$); 7.12-7.05 (m, 6H, ArH); 6.83 (d, 4H, J = 9.0 Hz, $\mathrm{ArH}) ; 6.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.02-2.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 2.81(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$).

3-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl\}propionic acid, N-oxysuccinimide ester (15c) 1-(2-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl\}ethyl)-4-methyl-2,6,7-
trioxabicyclo-[2.2.2]octane ($1.08 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dissolved in the THF-water mixture (19:1, $10 \mathrm{~mL})$, and trifluoroacetic acid ($0.08 \mathrm{~mL}, 1 \mathrm{mmol}$) was added. After stirring for 10 min the mixture was evaporated, the residue was dissolved with EtOAc (200 mL), washed with 5% $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and chromatographed on silica gel column in $10 \rightarrow 40 \% \mathrm{Me}_{2} \mathrm{CO}$ in toluene to give 3-\{4-[hydroxy-bis(4methylthiophenyl)methyl]phenyl\}propionic acid 2-hydroxymethyl-2-methyl-3hydroxypropyl ester (13c) as a colorless oil, yield 895 mg (85%). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $509.1804[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~S}_{2}\right]^{+}$509.1815. NMR (DMSO- d_{6}): 7.20-7.07 (m, 12 H , ArH); 6.32 (s, 1 H , trityl OH); 4.43 (m, 2H, $\mathrm{CH}_{2} \mathrm{OH}$); 3.87 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCO}$); 3.24 (m, 4H, $\mathrm{CH}_{2} \mathrm{OH}$); $2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH}_{3}\right) ; 0.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$. The ester was dissolved in $10 \% \mathrm{NaOH}$ in ethanol-water ($8: 2,10 \mathrm{~mL}$), stirred overnight, then evaporated, coevaporated with water ($2 \times 50 \mathrm{~mL}$), dissolved in water (100 mL), washed with ether $(2 \times 100 \mathrm{~mL})$, and then acidified with solid citric acid to pH 4 . The reaction mixture was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$, the combined organic layers were washed with water $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The resulting 3-\{4-[hydroxy-bis(4methylthiophenyl)methyl]phenyl\}propionic acid (14c) was obtained as a colorless oil, 637 mg (88\%). ESI-TOF HRMS: $m / z=407.1140[M-O H]^{+}$, calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}\right]^{+}$407.1134. NMR (DMSO-d d_{6}): $12.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right) ; 7.20-7.08(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}) ; 6.32(\mathrm{~s}, 1 \mathrm{H}$, trityl OH); $2.81(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArCH}_{2}$); $2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH}_{3}\right)$. This was dissolved in anhydrous DCM $(20 \mathrm{~mL})$ and triethylamine ($0.35 \mathrm{~mL}, 2.5 \mathrm{mmol}$) and N, N^{\prime}-disuccinimidyl carbonate ($512 \mathrm{~g}, 2.0$ mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-EtOAc, 1:1), then evaporated, dissolved in EtOAc (200 mL), washed with 5% $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography (5 to 10% EtOAc in toluene). Yield $542 \mathrm{mg}(69 \%$), white crystalline solid, $\mathrm{mp} 137^{\circ} \mathrm{C} . R_{\mathrm{f}} 0.36$ (toluene-EtOAc, $4: 1$). ESI-TOF HRMS: $m / z=504.1282$ $[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}_{2}\right]^{+}$504.1298. NMR (DMSO- d_{6}): 7.24-7.10 (m, 12H, ArH); $6.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.02-2.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 2.81\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.45(\mathrm{~s}, 6 \mathrm{H}$, SCH_{3}).

3-[4-(9-Hydroxy-3-methoxythioxanthen-9-yl)phenyl] propionic acid, N oxysuccinimide ester (15d). 1-\{2-[4-(9-Hydroxy-3-methoxythioxanthen-9-yl)phenyl]ethyl\}-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane ($1.14 \mathrm{~g}, 2.54 \mathrm{mmol}$) was dissolved in the THF-water mixture ($4: 1,60 \mathrm{~mL}$), and trifluoroacetic acid ($290 \mu \mathrm{~L}, 3.82 \mathrm{mmol}$) was added. After stirring for 1 h the mixture was half evaporated, the residue was dissolved with EtOAc (100 mL), washed with $5 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in $\mathrm{EtOH}(120 \mathrm{~mL})$, and $\mathrm{NaOH}(1.22 \mathrm{~g}, 30.5 \mathrm{mmol})$ was added. The solution was stirred overnight at ambient temperature, filtered and evaporated. The residue was dissolved in water $(100 \mathrm{~mL})$, washed with EtOAc $(50 \mathrm{~mL})$, acidified with solid citric acid to pH 3, and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to volume 30 mL . Triethylamine ($1.76 \mathrm{~mL}, 13.7 \mathrm{mmol}$) and N, N^{\prime}-disuccinimidyl carbonate ($1.95 \mathrm{~g}, 7.60 \mathrm{mmol}$) were added and the mixture was stirred until the reaction is complete (monitoring by TLC), then dissolved in EtOAc (50 mL), washed with $5 \% \mathrm{NaHCO}_{3}$ $(2 \times 50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography (15% EtOAc in toluene). Yield 528 mg (45%), white amorphous solid. ESI-TOF HRMS: $m / z=472.1208[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}\right]^{+}$472.1213. NMR (DMSO$\left.d_{6}\right): 7.99(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}$ (thioxanthene)); $7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-1$ (thioxanthene)); 7.39 (m, 2H, ArH (thioxanthene)); 7.29 (m, 1H, ArH (thioxanthene)); 7.07 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, $\left.\operatorname{ArH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right) ; 7.00\left(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, H-4\right.$ (thioxanthene)); $6.96\left(\mathrm{dd}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz},{ }^{4} J=2.5 \mathrm{~Hz}\right.$, $\mathrm{H}-2$ (thioxanthene)); $6.81\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \operatorname{ArH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right.$); 6.67 (s, $1 \mathrm{H}, \mathrm{OH}$); 3.79 (s, 3 H , $\left.\mathrm{OCH}_{3}\right) ; 2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 2.81\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{COCH}_{2}\right)$.
3-[4-(9-Hydroxy-3,6-dimethoxythioxanthen-9-yl)phenyl] propionic acid, \boldsymbol{N}-oxysuccinimide ester (15e). 1-\{2-[4-(9-Hydroxy-3,6-dimethoxythioxanthen-9-yl)phenyl]ethyl\}-4-methyl-2,6,7-
trioxabicyclo[2.2.2]octane ($253 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in the THF-water mixture ($4: 1$, 20 mL), and trifluoroacetic acid ($76 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added. After stirring for 1 h the mixture was half evaporated, the residue was dissolved with EtOAc (50 mL), washed with $5 \% \mathrm{NaHCO}_{3}$ $(50 \mathrm{~mL})$ and water $(2 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in EtOH (40 mL), and $\mathrm{NaOH}(0.61 \mathrm{~g}, 15 \mathrm{mmol})$ was added. The solution was stirred overnight at ambient temperature, filtered and evaporated. The residue was dissolved in water (50 mL), washed with EtOAc (50 mL), acidified with solid citric acid to pH 3 , and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Triethylamine $(0.59 \mathrm{~mL}, 4.5 \mathrm{mmol})$ and N, N^{\prime}-disuccinimidyl carbonate ($256 \mathrm{mg}, 1.0 \mathrm{mmol}$) were added and the mixture was stirred until the reaction is complete (monitoring by TLC), then dissolved in EtOAc $(50 \mathrm{~mL})$, washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography ($15 \rightarrow 20 \%$ EtOAc in toluene). Yield $159 \mathrm{mg}(61 \%)$, white amorphous solid. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=502.1328$ [M$\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}^{+}\right.$502.1319. NMR (DMSO-d d_{6}): 7.84 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-1,8$ (thioxanthene)); 7.06 (d, 2H, J = $8.2 \mathrm{~Hz}, \operatorname{ArH}$ (phenyl)); 6.98-6.92 (m, 4H, H-2,4,5,7 (thioxanthene)); $6.84\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}\right.$ (phenyl)); $6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; $2.89(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H})\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 2.79$ (br.s, $\left.4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$.

3-[4-(9-Hydroxy-3,6-dimethoxyxanthen-9-yl)phenyl] propionic acid, \boldsymbol{N}-oxysuccinimide ester (15f). 2 g of starting material (4.07 mmol) was dissolved in the THF-water mixture ($4: 1,60$ $\mathrm{mL})$, and trifluoroacetic acid ($374 \mu \mathrm{~L}, 4.89 \mathrm{mmol}$) was added. After stirring for 1 h the mixture was half evaporated, the residue was dissolved with EtOAc (100 mL), washed with $5 \% \mathrm{NaHCO}_{3}$ $(100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in EtOH (120 mL), and $\mathrm{NaOH}(1.22 \mathrm{~g}, 30.5 \mathrm{mmol}$) was added. The solution was stirred overnight at ambient temperature, filtered and evaporated. The residue was dissolved in water $(100 \mathrm{~mL})$, washed with EtOAc (50 mL), acidified with solid citric acid to pH 3 , and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to volume 30 mL . Triethylamine ($2.26 \mathrm{~mL}, 0.162 \mathrm{~mol}$) and N, N^{\prime}-disuccinimidyl carbonate (1.35 g , 5.27 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC), then dissolved in EtOAc (50 mL), washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and water (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography (15% EtOAc in toluene). Yield $1.45 \mathrm{~g}, 71 \%$. ESI-TOF HRMS: $m / z=486.1559[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{7}\right]^{+} 486.1547 .{ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7(\mathrm{~m}, 8 \mathrm{H}), 6.5(\mathrm{~m}, 2 \mathrm{H}), 3.6(\mathrm{~s}, 6 \mathrm{H})$, 2.8 ($\mathrm{s}, 4 \mathrm{H}$), 2.7 (m, 2H).

4-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy\}butanoic acid, N-oxysuccinimide ester (15g). 1-(3-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy\} propyl)-4-methyl-2,6,7-trioxabicyclo-[2.2.2]octane ($1.01 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dissolved in the THF-water mixture ($4: 1,50$ mL), and trifluoroacetic acid $(0.23 \mathrm{~mL}, 3 \mathrm{mmol})$ was added. After stirring for 1 h the mixture was half evaporated and diluted with EtOAc (200 mL), washed with water (100 mL), 5% $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, evaporated. The resudue was dissolved in EtOH (100 mL), and NaOH $(1.0 \mathrm{~g}, 25 \mathrm{mmol})$ was added and dossolved in the mixture. The solution was stirred overnight at ambient temperature, filtered and evaporated. The residue was dissolved in water (200 mL), washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, acidified with solid citric acid to pH 3.5 , and extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL})$. A combined organic lauer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to volume 20 mL . Triethylamine ($0.7 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and N, N^{\prime}-disuccinimidyl carbonate ($0.64 \mathrm{~g}, 2.5 \mathrm{mmol}$) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-acetone, 2:1), then evaporated, dissolved in EtOAc (200 mL), washed with $5 \% \mathrm{NaHCO}_{3}$ $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography (10 to 30% EtOAc in toluene). Yield $0.800 \mathrm{~g}(77 \%)$, white amorphous solid. $R_{\mathrm{f}} 0.30$ (toluene-EtOAc, 1:1). ESI-TOF HRMS: $m / z=502.1848[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{7}\right]^{+}$502.1860.

4-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenoxy\}butyric acid, N-oxysuccinimide ester ($\mathbf{1 5 h}$). To a stirred and coolled to $-70^{\circ} \mathrm{C}$ mixture of THF (40 mL) and 0.9 M BuLi in hexane $(11.1 \mathrm{~mL}, \quad 10 \mathrm{mmol})$ the solution of 1-[3-(4-Bromophenoxy)propyl]-4-methyl-2,6,7trioxabicyclo[2.2.2]octane ($1.716 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (50 mL) was added dropwise within 30 min . The mixture was left for 1 h at $-70^{\circ} \mathrm{C}$ and the solution of $4,4^{\prime}$-bis(methylthio)benzophenone $(1.372 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF (50 mL) was added dropwise within 30 min . The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (200 mL), washed with 5% $\mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was dissolved in toluene containing $1 \% \mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ and the desired tritanol ortho ester was isolated by a column chromatography. The column was eluted with stepwise gradient $8 \rightarrow 12 \rightarrow 15 \%$ EtOAc in toluene containing $1 \% \quad \mathrm{Et}_{3} \mathrm{~N}$. The isolated 1-(3-\{4-[hydroxy-bis(4methylthiophenyl)methyl]phenyl $\}$ propoxy)-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (810 mg , $1.5 \mathrm{mmol}, 30 \%$ yield) was dissolved in the THF-water mixture ($19: 1,10 \mathrm{~mL}$), and trifluoroacetic $\operatorname{acid}(0.08 \mathrm{~mL}, 1 \mathrm{mmol})$ was added. After stirring for 10 min the mixture was evaporated, the residue was dissolved with EtOAc (200 mL), washed with $5 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, diluted with $10 \% \mathrm{NaOH}$ in ethanol-water (8:2, $10 \mathrm{~mL})$, stirred overnight, then evaporated, coevaporated with water $(2 \times 50 \mathrm{~mL})$, dissolved in water $(100 \mathrm{~mL})$, washed with ether $(2 \times 100 \mathrm{~mL})$, and then acidified with solid citric acid to pH 4 . The reaction mixture was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$), the combined organic layers were washed with water (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The resulting acid was dissolved in dry DCM (30 mL). Triethylamine ($0.7 \mathrm{~mL}, 5 \mathrm{mmol}$) and N, N^{\prime}-disuccinimidyl carbonate $(0.51 \mathrm{~g}, 2.0 \mathrm{mmol})$ were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-EtOAc, 1:1), then evaporated, dissolved in EtOAc (200 mL), washed with $5 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and water (100 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography (10 to 40% EtOAc in toluene). Yield 348 mg (42% from ortho ester), white amorphous solid. ESI-TOF HRMS: $m / z=534.1415$ [M$\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}_{2}\right]^{+}$534.1403. NMR (DMSO- d_{6}): $7.18(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$); $7.12(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ; 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 6.27$ (s, $1 \mathrm{H}, \mathrm{OH}$); $4.03\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.87-2.79\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{COCH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.45$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$); 2.10-2.03 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).
3-\{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}propionic acid, \mathbf{N}-oxysulfosuccinimide ester, sodium salt (16a) was prepared from $\mathbf{1 4 a}(0.96 \mathrm{~g}, 2.0 \mathrm{mmol})$ using the general procedure for oxysulfosuccinimide esters. Yield 793 mg (67%), brown solid, $R_{\mathrm{f}} 0.54$ (n-propanol-EtOAcwater, 8:1:1).
3-\{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl\}propionic acid, $\quad \mathrm{N}$ oxysulfosuccinimide ester, sodium salt ($\mathbf{1 6 b}$) was prepared from $\mathbf{1 4 c}(425 \mathrm{mg}, 1.0 \mathrm{mmol})$. Yield $412 \mathrm{mg}(66 \%)$, white solid, $R_{\mathrm{f}} 0.58$ (n-propanol-EtOAc-water, $8: 1: 1$). ESI-TOF HRMS: $m / z=606.0697[M-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NNaO}_{7} \mathrm{~S}_{3}\right]^{+}$606.0685. NMR (DMSO- d_{6}): 7.24-7.08 (m, 12H, ArH); 6.35 (s, 1H, OH); 3.94 (br., 1H, COCHS); 3.15 (br. s, 1H, COCHHCHS); 3.022.83 (m, 5H, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}, \mathrm{COCHHCHS}\right) ; 2.45$ (s, $6 \mathrm{H}, \mathrm{SCH}_{3}$).
N, N^{\prime}-Bis(3-\{4-[bis(4-methoxyphenyl)hydroxymethyl]phenyl\}propionyl)ethylenediamine
(17c). The acid $\mathbf{1 4 a}(200 \mathrm{mg}, 0.51 \mathrm{mmol})$ and HATU were dissolved in DMF (5 mL), following DIEA ($174 \mu \mathrm{~L} ; 1.0 \mathrm{mmol}$) was added and the reaction mixture was left for 5 min at ambient temperature. After that this solution was added by one portion into the solution of ethylene diamine ($16.7 \mu \mathrm{~L} ; 0.25 \mathrm{mmol}$) in DMF (3 ml) and the reaction mixture was left for 1 h . TLC showed completion of the reaction ($R_{\mathrm{f}} 0.21 ; 30 \%$ acetone in $\mathrm{PhMe}+0.5 \% \mathrm{Et}_{3} \mathrm{~N}$). The reaction was diluted with ethylacetate $(150 \mathrm{~mL})$, washed with water $(2 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was separated by column chromatography. The target product was obtained as white solid. Yield $186 \mathrm{mg}(92 \%)$. ESI-TOF HRMS: $m / z=791.3702[M-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 791.3691 .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): 7.82
(m, 2H, NH); 7.09-7.05 (m, 16H, ArH); 6.84-6.80 (m, 8H, ArH); 6.12 (br.s, 2H, OH); 3.72 (s, $\left.12 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.04(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~m}, 4 \mathrm{H})\left(\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): 171.50$ (2C, CO), 157.83 (4C), 146.04 (2C), 140.41 (4C), 139.40 (2C), 128.92 (8 C$), 128.30,128.21$, 127.68 (2C), 127.26 (2C), 112.78 (8C), 79.82 (2C), 55.05 (4 C), 38.37 (2C), 37.11, 37.03 (2C), 31.09, 30.67 (2C).

1,3,5-Tris[3-(2-\{4-[bis(4-methoxyphenyl)hydroxymethyl]phenyl\}ethylcarbonylamino)-

 propylaminocarbonyl]benzene (17d). A solution of activated ester $\mathbf{1 5 a}(245 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DCM (300 mL) was added dropwise to a solution of 1,3-diaminopropane ($7.40 \mathrm{~g}, 100 \mathrm{mmol}$) in DCM (300 mL) within 2 h and the mixture was stirred further for 2 h . The resulting solution was washed with water $(15 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in DCM (10 mL) and trimesic chloride ($26.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added in one portion. The mixture was stirred for 6 h , after that it diluted with ethyl acetate (200 mL) and successively washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was cromatographed on silica gel (eluent $\mathrm{PhMe}-$ acetone $1: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give target product as white solid. Yield $132 \mathrm{mg}(88 \%) . R_{\mathrm{f}} 0.44$ (acetone + $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$). ESI-TOF HRMS: $m / z=1483.6917[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{90} \mathrm{H}_{95} \mathrm{~N}_{6} \mathrm{O}_{14}\right]^{+} 1483.6901$. ${ }^{1} \mathrm{H}$ NMR ([D6]DMSO): $8.67(\mathrm{t}, 3 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{NH}) ; 8.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}) ; 7.84(\mathrm{t}, 3 \mathrm{H}, J=5.6 \mathrm{~Hz}$, NH); 7.13-7.04 (m, 24H, ArH); 6.82 (d, 12H, J = 8.9 Hz, ArH); 6.11 (br.s, 3H, OH); 3.26 (m, $6 \mathrm{H}), 3.10(\mathrm{~m}, 6 \mathrm{H})\left(\mathrm{NHCH}_{2}\right) ; 2.78\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ; 2.36\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{COCH}_{2}\right) ; 1.65(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $171.35(3 \mathrm{C}, \mathrm{CO}), 165.49$ (3C, CO), 157.82 (6C), 146.02 (2C), 140.40 (C), 139.44 (C), 135.07, 128.91 (12C), 128.40, 127.69 (C), 127.26 (C), 112.77 (12C), 79.81 (3C), $68.55,55.88,55.02$ (6C), 45.73, 37.25, 37.09, 36.44, 32.13, 30.78, 29.65, 29.19.

4,4'-Dimethoxybenzophenone ($2.42 \mathrm{~g}, 10 \mathrm{mmol}$) was iodinated with N-iodosuccinimide (2.24 g , $10 \mathrm{mmol})$ in boiling acetonitrile (200 mL) in the presence of trifluoroacetic acid $(0.2 \mathrm{~mL})$. After 5 h the mixture was cooled, evaporated, and neutralized with $5 \% \mathrm{NaHCO}_{3}$. The residue was dissolved in EtOAc (150 mL), washed with water ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and chromatographed in toluene. A sample (140 mg) of $\mathbf{3 , 3} \mathbf{3}^{\prime}$-diiodo-4,4'-
dimethoxybenzophenone was isolated. NMR (DMSO- d_{6}): $8.10\left(\mathrm{~d}, 2 \mathrm{H}, J_{2,6}=J_{2^{\prime}, 6^{\prime}}=2.0 \mathrm{~Hz}\right.$, ArH); $7.74\left(\mathrm{dd}, 2 \mathrm{H}, J_{2,6}=J_{2^{\prime}, 6},=2.0 \mathrm{~Hz}, J_{5,6}=J_{5}, 6^{\prime}=8.5 \mathrm{~Hz}, \mathrm{ArH}\right) ; 7.15\left(\mathrm{~d}, 2 \mathrm{H}, J_{5,6}=J_{5,6},{ }^{\prime}=8.5\right.$ $\mathrm{Hz}, \mathrm{ArH}$); $3.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$. The resulting mixture of 3-iodo-4,4'-dimethoxybenzophenone and 3,3'-diiodo-4,4'-dimethoxybenzophenone (3.55 g) was dissolved in DMF (100 mL) and tertbutyl 5-hexynoate ($2.02 \mathrm{~g}, 12.0 \mathrm{mmol}$), triethylamine ($3.34 \mathrm{~mL}, 24 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(925 \mathrm{mg}$, $0.8 \mathrm{mmol})$ and $\mathrm{CuI}(305 \mathrm{mg}, 1.6 \mathrm{mmol})$ were added, and the reaction mixture was stirred for 24 h at room temperature. Then the mixture was diluted with EtOAc (400 mL), washed with 3\% aqueous EDTA- $\left(\mathrm{NH}_{4}\right)_{2}(5 \times 200 \mathrm{~mL})$ and water $(2 \times 200 \mathrm{~mL})$, dried, and evaporated to dryness. The residue was chromatographed on a silica gel column $(4.5 \times 15 \mathrm{~cm})$ in a $0 \rightarrow 8 \%$ gradient of EtOAc in toluene to give 3-[5-(tert-butyloxycarbonyl)pent-1-ynyl]-4,4'dimethoxybenzophenone (22a) ($2.12 \mathrm{~g}, 52 \%$). ESI-TOF HRMS: $m / z=423.2175[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{5}\right]^{+}$423.2166. NMR (DMSO- d_{6}): 7.72-7.67 (m, 3H, ArH); $7.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}\right.$, ArH); 7.17 (d, 1H, J = 8.7 Hz, ArH); 7.08 (d, 2H, J = $9.0 \mathrm{~Hz}, \mathrm{ArH}$); 3.91 (s, 3H, OCH $)_{3}$); 3.86 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); $2.47\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \equiv \mathrm{CCH}_{2}\right) ; 2.38\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.75(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); 1.39 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CCH}_{3}$) and 3,3'-bis[5-(tert-butyloxycarbonyl)pent-1-ynyl]-4,4'dimethoxybenzophenone ($1.26 \mathrm{~g}, 22 \%$) NMR (DMSO-d d_{6} : $7.67\left(\mathrm{dd}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz},{ }^{4} J=2.0\right.$ $\mathrm{Hz}, \mathrm{ArH}) ; 7.64\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{ArH}\right) ; 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \operatorname{ArH}) ; 3.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$; $2.47\left(\mathrm{t}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}, \equiv \mathrm{CCH}_{2}\right) ; 2.37\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CCH}_{3}\right)$ as colourless oils.

anisole, l_{2} reflux

Methyl 3-iodo-4-methoxybenzoate. To a solution of methyl 4-methoxybenzoate ($29.7 \mathrm{~g}, 0.18$ $\mathrm{mol})$ in $\mathrm{CCl}_{4}(110 \mathrm{~mL})$ iodine $(22.7 \mathrm{~g}, 0.89 \mathrm{~mol})$ was added and the mixture was stirred for 10 min . Nitric acid $(58 \%, 50 \mathrm{~mL})$ was added dropwise wiwhin 30 min and the mixture was refluxed for 3 h . The mixture was cooled to room temperature and precipitate formed was filtered off. The organic layer was separated, washed with $5 \% \mathrm{Na}_{2} \mathrm{SO}_{3}(100 \mathrm{~mL})$, dried over CaCl_{2} and evaporated. The residue was combined with the precipitate and recrystallized twice from EtOH . Yield 30.4 g (58\%).

3-Iodo-4-methoxybenzoyl chloride. Methyl 3-iodo-4-methoxybenzoate ($29.2 \mathrm{~g}, 0.1 \mathrm{~mol}$) was suspended in EtOH (150 mL), the solution of $\mathrm{NaOH}(4.4 \mathrm{~g}, 0.11 \mathrm{~mol})$ was added in one portion. The mixture was stirred and heated at $40^{\circ} \mathrm{C}$ overnight, then cooled, diluted with water (400 mL). 3-Iodo-4-methoxybenzoic acid was precipitated with conc. HCl , filtered off, washed with cold water, and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$. The acid was suspended in $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$, and $\mathrm{SOCl}_{2}(9.5 \mathrm{~mL}$, 0.13 mmol) was added. The mixture was stirred overnight, then evaporated and the residue was distilled under reduced pressure to give the desired acid chloride as a solid (mp ca. $50^{\circ} \mathrm{C}$, bp $145-150^{\circ} \mathrm{C} / 1$ Torr). Yield 18.2 g (61%).
3-Iodo-4,4'-dimethoxybenzophenone (18). A. The mixture of 3-iodo-4-methoxybenzoyl chloride ($14.8 \mathrm{~g}, 0.05 \mathrm{~mol}$), anisole ($11.0 \mathrm{~mL}, 0.1 \mathrm{~mol}$) and iodine (0.5 g) was refluxed for 10 h , then cooled to $60^{\circ} \mathrm{C}$, diluted with $\mathrm{PrOH}(200 \mathrm{~mL})$, refluxed for 30 min , cooled and kept in
freezer overnight. The precipitate was filtered off, washed with cold $\mathrm{iPrOH}(10 \mathrm{~mL})$, dried, and recrystallized from EtOH. Yield 10.4 (56.5%), off-white solid. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=383.0139$ $[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{IO}_{3}\right]^{+} 383.0139 .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $8.09\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{2,6}=2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\right.$ 2), $7.73\left(\mathrm{dd}, J_{5,6}=8.7 \mathrm{~Hz},{ }^{4} J_{2,6}=2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 7.70\left(\mathrm{~d}, J_{2^{\prime}, 3^{\prime}}=J_{5^{\prime}, 6^{\prime}}=8.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime}, 6^{\prime}\right)$, 7.12 (d, $\left.J_{5,6}=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5\right), 7.07\left(\mathrm{~d}, J_{2^{\prime}, 3^{\prime}}=J_{5^{\prime}, 6^{\prime}}=8.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-3^{\prime}, 5^{\prime}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3}\right)$, 3.86 (s, 3H, $4^{\prime}-\mathrm{OCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): 191.95 (CO), $162.80\left(\mathrm{C}-4^{\prime}\right), 160.88$ (C-4), 140.25 (C-2), 132.03 (C-6), 131.91 (2C, C-2', 6^{\prime}), $131.85(\mathrm{C}-1), 129.55$ (C-1'), 113.90 ($2 \mathrm{C}, \mathrm{C}-3^{\prime}, 5^{\prime}$), $110.90(\mathrm{C}-5), 86.15(\mathrm{C}-3), 56.87\left(4-\mathrm{OCH}_{3}\right), 55.57\left(4^{\prime}-\mathrm{OCH}_{3}\right)$.
B. $4,4^{\prime}$-Dimethoxybenzophenone ($18.1 \mathrm{~g}, 75 \mathrm{mmol}$) was dissolved in dioxane (70 mL) at $60^{\circ} \mathrm{C}$, iodine ($9.9 \mathrm{~g}, 39 \mathrm{mmol}$) was added and the mixture was stirred for 15 min . Water $(20 \mathrm{~mL})$ was added, and $58 \% \mathrm{HNO}_{3}(41 \mathrm{~mL})$ was added dropwise within 2 h . The mixture was stirred at $60^{\circ} \mathrm{C}$ until iodine colouring disappears ($\mathrm{ca} .6-7 \mathrm{~h}$). The flask was evacuated to remove nitrogen oxides, the mixture was diluted with water $(100 \mathrm{~mL})$, cooled, and the precipitate was filtered off, washed with $5 \% \mathrm{NaHCO}_{3}$ and water. The solid was suspended in $\mathrm{EtOH}(200 \mathrm{~mL})$, refluxed for 15 min , filtered hot, and cooled in freezer to $4^{\circ} \mathrm{C}$. The solid (16 g) was filtered off and dried. It contains (GLC) 75% of desired 3-iodo-4,4'-dimethoxybenzophenone, 24% of starting 4,4'dimethoxybenzophenone and 0.7% of $3,3^{\prime}$-diiodo-4,4'-dimethoxybenzophenone. This was purified by column chromatography in toluene. Yield $11.2 \mathrm{~g}(40 \%)$.

3-Iodo-4,4'-diethoxybenzophenone (20). 4,4'-Diethoxybenzophenone was iodinated according to procedure for iodination of 4,4'-dimethoxybenzophenone. The resulting compound was purified by column chromatography in toluene. Yield 36%. ESI-TOF HRMS: $m / z=411.0441$ $[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{IO}_{3}\right]^{+} 411.0452$. NMR (DMSO- d_{6}): $8.08\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{2,6}=2.0 \mathrm{~Hz}, \mathrm{H}-2\right)$; $7.73-7.67$ (m, 3H, H-2', 6,6'); $7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-5)$; 7.06 (d, 2H, $\left.J=8.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right)$; $4.20(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.13(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})\left(\mathrm{OCH}_{2}\right) ; 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.36(\mathrm{t}, 2 \mathrm{H}, J$ $=7.0 \mathrm{~Hz})\left(\mathrm{CH}_{3}\right)$.
3-[5-(tert-Butyloxycarbonyl)pent-1-ynyl]-4,4'-diethoxybenzophenone (22b). To a solution of 3-iodo-4,4'-diethoxybenzophenone ($4.54 \mathrm{~g}, 11.5 \mathrm{mmol}$) and tert-butyl 5-hexynoate ($2.14 \mathrm{~g}, 12.7$ $\mathrm{mmol})$ in DMF $(50 \mathrm{~mL}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.40 \mathrm{~g}, 1.22 \mathrm{mmol}), \mathrm{CuI}(465 \mathrm{mg}, 2.44 \mathrm{mmol}), \mathrm{Et} \mathrm{t}_{3} \mathrm{~N}(3.2$ $\mathrm{mL}, 23 \mathrm{mmol}$) were subsequently added. The mixture was stirred overnight under argon, then diluted with water $(200 \mathrm{~mL})$ and extracted with EtOAc $(200 \mathrm{~mL})$. The organic layer was washed with water $(4 \times 200 \mathrm{~mL}), 0.1 \mathrm{M}$ solution $\left(\mathrm{NH}_{4}\right)_{2}$ EDTA $(4 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was chromatographed column in gradient of EtOAc in toluene ($0 \rightarrow 5 \%$). Yield 4.53 g (90%), viscous yellowish oil. ESI-TOF HRMS: $m / z=451.2494[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{5}\right]^{+}$ 451.2479. NMR (DMSO- d_{6}): 7.72-7.61 (m, 4H, H-2, 2', $6,6^{\prime}$); 7.15 (d, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-5$); 7.06 (d, 2H, $\left.J=8.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right) ; 4.21-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 2.47(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.42(\mathrm{t}, 2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.74(\mathrm{~m}, 2 \mathrm{H})\left(\equiv \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.42-1.34\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4,4'-Dihydroxy-3-iodobenzophenone (19). To a solution of 4,4'-dimethoxy-3iodobenzophenone ($6.0 \mathrm{~g}, 16.3 \mathrm{mmol}$) in DCM $(100 \mathrm{~mL})$ boron tribromide ($4.6 \mathrm{~mL}, 49.0 \mathrm{mmol}$) was added in one portion. The mixture was stirred for 12 h . The progress of the reaction was monitored by TLC (30% EtOAc in toluene). Then the mixture was poured in water (200 mL) and the suspension was extracted with EtOAc $(3 \times 250 \mathrm{~mL})$. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was coevaporated with $\mathrm{MeOH}(3 \times 100 \mathrm{~mL})$. Yield 5.5 g (99\%), brownish solid. ESI-TOF HRMS: $m / z=354.9815[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{IO}_{3}\right]^{+}$ 354.9826. NMR (DMSO- d_{6}): 11.18 (br.s, $1 \mathrm{H}, \mathrm{OH}$); 10.32 (br.s, $1 \mathrm{H}, \mathrm{OH}$); 8.01 (d, $1 \mathrm{H},{ }^{4} J_{2,6}=2.0$ Hz, H-2); 7.63-7.55 (m, 3H, H-6,2', 6^{\prime}); 6.98 (d, 1H, J = $8.4 \mathrm{~Hz}, \mathrm{H}-5$); 6.88 (d, 2H, J = 8.4 Hz , H-3',5').

4,4'-Dibenzyloxy-3-iodobenzophenone (21). Sodium ($0.46 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in MeOH and the resulting solution of MeONa was added to a solution of 4,4'-dihydroxy-3iodobenzophenone ($3.40 \mathrm{~g}, 10 \mathrm{mmol}$) in methanol $(50 \mathrm{~mL})$. The mixture was evaporated to dryness, the residue was dissolved in HMPA (30 mL) and benzyl chloride ($2.78 \mathrm{~g}, 22 \mathrm{mmol}$) was added in one portion. The mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h , then cooled, diluted with water $(200 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 150 \mathrm{~mL})$. The combined organic layers were washed with water ($5 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was chromatographed on silica gel in $0 \rightarrow 3 \%$ EtOAc in toluene to give the desired benzophenone ($4.10 \mathrm{~g}, 79 \%$). ESITOF HRMS: $m / z=535.0752[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{IO}_{3}\right]^{+}$535.0765. NMR (DMSO- d_{6}): 8.11 $\left(\mathrm{d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{2,6}=1.9 \mathrm{~Hz}, \mathrm{H}-2\right) ; 7.76-7.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, 6,6^{\prime}\right) ; 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}$, $4 \mathrm{H}), 7.35$ (m, 2H) (ArH (phenyl)); 7.22 (d, 1H, $J=8.7 \mathrm{~Hz}, \mathrm{H}-5$); 7.17 (d, 2H, $J=8.7 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{\prime}, 5^{\prime}\right) ; 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H})\left(\mathrm{OCH}_{2}\right)$.

3-[5-(tert-Butyloxycarbonyl)pent-1-ynyl]-4,4'-dibenzyloxybenzophenone (22c). To a solution of 3-iodo-4,4'-dibenzyloxybenzophenone $(4.50 \mathrm{~g}, 8.65 \mathrm{mmol})$ and tert-butyl 5-hexynoate (1.60 $\mathrm{g}, 9.51 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.00 \mathrm{~g}, 0.86 \mathrm{mmol}), \mathrm{CuI}(330 \mathrm{mg}, 1.783 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($2.4 \mathrm{~mL}, 17 \mathrm{mmol}$) were subsequently added. The mixture was stirred overnight under argon, then diluted with water $(200 \mathrm{~mL})$ and extracted with EtOAc $(200 \mathrm{~mL})$. The organic layer was washed with water $(4 \times 200 \mathrm{~mL}), 0.1 \mathrm{M}$ solution $\left(\mathrm{NH}_{4}\right)_{2}$ EDTA $(4 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was chromatographed column in gradient of EtOAc in toluene ($0 \rightarrow 10 \%$). Yield $4.10 \mathrm{~g}(84 \%)$, viscous yellowish oil. ESI-TOF HRMS: $m / z=575.2805[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{O}_{5}\right]^{+} 575.2792$. NMR (DMSO-d d_{6} : 7.75-7.65 (m, 4H, H-2, 2',6,6'); 7.49 (m, 4H), 7.41 (m, 4H), 7.35 (m, 2H) (ArH (phenyl)); 7.26 (d, 1H, $J=8.9 \mathrm{~Hz}, \mathrm{H}-5$); 7.16 (d, 2H, J = $8.9 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{\prime}, 5^{\prime}\right) ; 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H})\left(\mathrm{OCH}_{2}\right) ; 2.48(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.35(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.75(\mathrm{~m}, 2 \mathrm{H})\left(\equiv \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.38\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
3-[5-(tert-Butyloxycarbonyl)pentyl]-4,4'-(1, $\left.\mathbf{1}^{\prime}, \mathbf{2}, 2^{\prime}-\left[{ }^{13} \mathrm{C}\right]\right)$ diethoxybenzophenone (23d). ESITOF HRMS: $m / z=459.2941[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{24}{ }^{13} \mathrm{C}_{4} \mathrm{H}_{39} \mathrm{O}_{5}\right]^{+}$459.2926. NMR (DMSO- d_{6}): $7.67\left(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right) ; 7.55\left(\mathrm{dd}, 1 \mathrm{H},{ }^{4} J_{2,6}=2.1 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, \mathrm{H}-6\right) ; 7.52(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.1 \mathrm{~Hz}, \mathrm{H}-2) ; 7.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5,3^{\prime}, 5^{\prime}\right) ; 4.13\left(\mathrm{ddq}, 4 \mathrm{H}, J=6.8 \mathrm{~Hz},{ }^{1} J_{\mathrm{H}, \mathrm{C}}=145 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}, \mathrm{C}}=2.5 \mathrm{~Hz}\right.$, OCH_{2}); 2.59 (t, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}$); 2.17 (t, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}$); 1.59-1.45 (m, 7H, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}(3 \mathrm{H})\right) ; 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right) ; 1.33-1.20\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}(3 \mathrm{H})$).

3-[5-(tert-Butyloxycarbonyl)pentyl]-4,4'-diethoxybenzophenone (23b). To a solution of 3-[5-(tert-butyloxycarbonyl)pent-1-ynyl]-4,4'-diethoxybenzophenone ($2.27 \mathrm{~g}, 5.20 \mathrm{mmol}$) in EtOAc $(100 \mathrm{~mL}) 10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg})$ was added and the mixture was hydrogenated for 72 h at ambient pressure. The mixture was filtered, evaporated and the residue was chromatographed on silica gel (0 to 10% gradient of EtOAc in toluene) to give the desired compound as a viscous colourless oil ($1.92 \mathrm{~g}, 84 \%$). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=455.2778[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{5}\right]^{+}$ 455.2792. NMR (DMSO- d_{6}): 7.67 (d, 2H, $\left.J=8.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right) ; 7.55$ (dd, $1 \mathrm{H},{ }^{4} J_{2,6}=2.1 \mathrm{~Hz}, J=$ $8.6 \mathrm{~Hz}, \mathrm{H}-6$); 7.52 (d, 1H, $J=2.1 \mathrm{~Hz}, \mathrm{H}-2$); 7.05 (d, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}-5$); 7.04 (d, 2H, $J=8.7$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right) ; 4.16-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 2.59\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ; 2.17(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, COCH_{2}); $1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.39-1.34\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.28(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

3-[5-(tert-Butyloxycarbonyl)pent-1-ynyl]-4,4'-dibenzyloxybenzophenone (22c). To a solution of 3-iodo-4,4'-dibenzyloxybenzophenone ($4.50 \mathrm{~g}, 8.65 \mathrm{mmol}$) and tert-butyl 5-hexynoate (1.60 g, 9.51 mmol) in DMF (50 mL) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.00 \mathrm{~g}, 0.86 \mathrm{mmol}), \mathrm{CuI}(330 \mathrm{mg}, 1.783 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(2.4 \mathrm{~mL}, 17 \mathrm{mmol})$ were subsequently added. The mixture was stirred overnight under argon, then diluted with water (200 mL) and extracted with EtOAc $(200 \mathrm{~mL})$. The organic layer was washed with water $(4 \times 200 \mathrm{~mL}), 0.1 \mathrm{M}$ solution $\left(\mathrm{NH}_{4}\right)_{2}$ EDTA $(4 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was chromatographed column in gradient of EtOAc in toluene $(0 \rightarrow 10 \%)$. Yield $4.10 \mathrm{~g}(84 \%)$, viscous yellowish oil. ESI-TOF HRMS: $m / z=575.2788[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{O}_{5}\right]^{+} 575.2792$. NMR (DMSO-d d_{6}): 7.75-7.65 (m, 4H, H-2, 2', 6, 6^{\prime}); $7.49(\mathrm{~m}, 4 \mathrm{H}), 7.41$ (m, 4H), 7.35 (m, 2H) (ArH (phenyl)); 7.26 (d, 1H, $J=8.9 \mathrm{~Hz}, \mathrm{H}-5$); 7.16 (d, 2H, J = $8.9 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{\prime}, 5^{\prime}\right) ; 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H})\left(\mathrm{OCH}_{2}\right) ; 2.48(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.35(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.75(\mathrm{~m}, 2 \mathrm{H})\left(\equiv \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.38\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-[5-(tert-Butyloxycarbonyl)pentyl]-4,4'-dihydroxybenzophenone (23c). To a solution of 3-[5-(tert-butyloxycarbonyl)pent-1-ynyl]-4,4'-dibenzyloxybenzophenone ($2.05 \mathrm{~g}, 3.66 \mathrm{mmol}$) in EtOAc (100 mL) $10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg})$ was added and the mixture was hydrogenated for 72 h at ambient pressure. The mixture was filtered, evaporated and the residue was chromatographed on silica gel (0 to 10% gradient of EtOAc in toluene) to give the desired compound as a viscous colourless oil ($1.03 \mathrm{~g}, 73 \%$). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=399.2177[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5}\right]^{+}$ 399.2166. NMR (DMSO-d d_{6}) $10.22(\mathrm{~s}, 1 \mathrm{H}), 10.14(\mathrm{~s}, 1 \mathrm{H})(\mathrm{OH}) ; 7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-$ $2^{\prime}, 6^{\prime}$); $7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}-2) ; 7.41\left(\mathrm{dd}, 1 \mathrm{H},{ }^{4} J_{2,6}=2.0 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{H}-6\right) ; 6.87(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}-5,3^{\prime}, 5^{\prime}\right) ; 2.55\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ; 2.16\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.53(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.36\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

23c

25d

27b

3-[5-(tert-Butyloxycarbonyl)pentyl]-4,4'-(1, $\left.\mathbf{1}^{\prime}, \mathbf{2 , 2} \mathbf{2}^{\prime}-\left[{ }^{13} \mathrm{C}\right]\right)$-diethoxybenzophenone (23d). To a magnetically stirred solution of 3-[5-(tert-butyloxycarbonyl)pentyl]-4,4'dihydroxybenzophenone ($1.00 \mathrm{~g}, 2.6 \mathrm{mmol}$), [${ }^{13} \mathrm{C}$]ethanol (400 mg) and triphenylphosphine $(1.36 \mathrm{~g}, 5.20 \mathrm{mmol})$ in dry THF (30 mL) DIAD ($2.46 \mathrm{ml}, 8.1 \mathrm{mmol}$) was added dropwise within 15 min . The reaction mixture was heated to $40-45^{\circ} \mathrm{C}$ until starting benzophenone is consumed according to TLC, then cooled to room temperature, diluted with EtOAc (250 mL), washed with washed with 3% citric acid $(150 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by column chromatography on silica gel (elution $0 \rightarrow 15 \%$ EtOAc in toluene). Yield ($490 \mathrm{~g}, 42 \%$), colourless oil. ESI-TOF HRMS: $m / z=459.2931[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{24}{ }^{13} \mathrm{C}_{4} \mathrm{H}_{39} \mathrm{O}_{5}\right]^{+}$459.2926. NMR (DMSO-d d_{6}): 7.68 (d, $\left.2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}^{\prime} 2^{\prime}, 6^{\prime}\right) ; 7.55$ (dd, 1 H , $\left.{ }^{4} J_{2,6}=2.0 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, \mathrm{H}-6\right) ; 7.52(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2) ; 7.07-7.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-3^{\prime}, 5^{\prime}\right) ;$ 4.13 (app. ddq, $\left.4 \mathrm{H},{ }^{1} J_{\mathrm{H}, \mathrm{C}}=141.0 \mathrm{~Hz}, J=6.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}, \mathrm{C}}=2.5 \mathrm{~Hz},\left[{ }^{13} \mathrm{C}\right] \mathrm{CH}_{2}\right) ; 2.59(\mathrm{t}, 2 \mathrm{H}, J=7.3$ $\left.\mathrm{Hz}, \mathrm{ArCH}_{2}\right) ; 2.17\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.58-1.45\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\left[{ }^{13} \mathrm{C}\right] \mathrm{CH}_{3}\right) ; 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.33-1.19\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2},\left[{ }^{13} \mathrm{C}\right] \mathrm{CH}_{3}\right)$.

6-\{2-(1,2-[$\left.\left.{ }^{13} \mathrm{C}\right]\right)$ Ethoxy-5-[hydroxy-(4-(1,2-[$\left.\left.{ }^{13} \mathrm{C}\right]\right)$ ethoxyphenyl)-(4-methoxyphenyl)-

 methyl]phenyl\}hexanoic acid, tert-butyl ester (24d). To a stirred solution of 3-[5-(tert-butyloxycarbonyl)pentyl]-4,4'-(1, $\left.1^{\prime}, 2,2^{\prime}-\left[{ }^{13} \mathrm{C}\right]\right)$-diethoxybenzophenone (470 mg ; 1.06 mmol) in dry THF (10 mL) 0.5 M 4-methoxyphenylmagnesium bromide ($2.53 \mathrm{~mL}, 1.27 \mathrm{mmol}$) was added in one portion under argon, and the mixture was stirred at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:3). After the disappearance of the starting ketone the reaction was diluted with water $(100 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and chromatographed on silica gel in $0 \rightarrow 6 \% \mathrm{EtOAc}$ in toluene with 0.5% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired compound as a colourless oil. Yield $351 \mathrm{~g}(60 \%)$. ESI-TOF HRMS: $m / z=503.3355[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30}{ }^{13} \mathrm{C}_{4} \mathrm{H}_{43} \mathrm{O}_{3}\right]^{+} 503.3341$. NMR (DMSO- d_{6}): $7.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.97\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.1\right.$ $\mathrm{Hz}, \mathrm{ArH}) ; 6.81(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.98$ (app. ddq, $4 \mathrm{H},{ }^{1} J_{\mathrm{H}, \mathrm{C}}=139.5 \mathrm{~Hz}, J=6.9$ $\left.\mathrm{Hz},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{C}}=2.5 \mathrm{~Hz},{ }^{13} \mathrm{C}^{2} \mathrm{CH}_{2}\right) ; 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ; 2.13(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.50-1.40\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2},\left[{ }^{13} \mathrm{C}\right] \mathrm{CH}_{3}\right) ; 1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}) ;$ 1.25-1.13 (m, 5H, $\left.\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2},{ }^{13}{ }^{1} \mathrm{C}\right] \mathrm{CH}_{3}\right)$.6-\{2-(1,2- $\left.\left.{ }^{13} \mathrm{C}\right]\right)$ Ethoxy-5-[hydroxy-(4-(1,2-[$\left.\left.{ }^{13} \mathrm{C}\right]\right)$ ethoxyphenyl)-(4-methoxyphenyl)-methyl]phenyl\}hexanoic acid, sulphosuccinimide ester (27b). To a stirred solution of tert-butyl ester of $\quad 6-\left\{2-\left(1,2-\left[{ }^{13} \mathrm{C}\right]\right)\right.$ ethoxy-5-[hydroxy-(4-(1,2-[$\left.\left.{ }^{13} \mathrm{C}\right]\right)$ ethoxyphenyl)-(4-methoxyphenyl)methyl]phenyl \} hexanoic acid (271 mg ; 0.5 mmol) in dry DCM (1 mL) trifluoroacetic acid (1
mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h , then evaporated, and co-evaporated with DCM $(3 \times 10 \mathrm{~mL})$ to give the acid. The residue was chromatographed on silica gel in $0 \rightarrow 25 \%$ acetone in toluene to give the desired compound as a yellowish oil, 30 mg (12% yield). It was dissolved in dry DMF (0.5 mL), then N oxysulfosuccinimide sodium salt ($13 \mathrm{mg}, 0.06 \mathrm{mmol}$) and DCC ($19 \mathrm{mg}, 0.09 \mathrm{mmol}$) were added and the mixture was left under stirring overnight, then cooled to $+4^{\circ} \mathrm{C}$ and stirred for 2 h , and the precipitate formed was filtered off. The solution was diluted with EtOAc (6 mL), cooled to $+4^{\circ} \mathrm{C}$ overnight, filtered, and diluted with dry $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The mixture was kept at ambient temperature for $2-3 \mathrm{~h}$ and the desired compound was collected by filtration, washed with ether and dried in vacuo. Yield 41 mg (98%), white solid. ESI-TOF HRMS: $m / z=544.2891$ [M$\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{30}{ }^{13} \mathrm{C}_{4} \mathrm{H}_{38} \mathrm{NO}_{5}\right]^{+} 544.2879$. NMR (DMSO-d d_{6}): $7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; 6.97(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{ArH}\right) ; 6.81(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H) ; 6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.98\left(\mathrm{app} . \mathrm{ddq}, 4 \mathrm{H},{ }^{1} \mathrm{~J}_{\mathrm{H}, \mathrm{C}}=138.8 \mathrm{~Hz}, J\right.$ $\left.=6.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}, \mathrm{C}}=2.0 \mathrm{~Hz},{ }^{13}{ }^{3} \mathrm{C}\right] \mathrm{CH}_{2}$); 3.94 (br., $1 \mathrm{H}, \mathrm{COCHS}$); $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.15$ (br. s, 1 H , COCHHCHS); 2.86 (m, 1H, COCHHCHS); 2.45 (t, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}$); 2.15 (t, 2H, $J=7.3$ $\left.\mathrm{Hz}, \mathrm{COCH}_{2}\right) ; 1.50-1.40\left(\mathrm{~m}, 7 \mathrm{H}, \quad \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \quad\left[{ }^{13} \mathrm{C}\right] \mathrm{CH}_{3}\right) ; 1.25-1.13(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2},\left[{ }^{13} \mathrm{C}^{2} \mathrm{CH}_{3}\right)$.
Amides 28a-h were prepared using procedure similar to used for amides $\mathbf{1 0}$. The compounds were chromatographed in $30 \% \mathrm{EtOAc}$ in toluene $+0.5 \% \mathrm{Et}_{3} \mathrm{~N}$. The following compounds were obtained:
N-Octyl-6-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}hexanamide (28d), yellowish oil, yield 90%. ESI-TOF HRMS: $m / z=574.3535[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NO}_{5}\right]^{+}$ 574.3527. NMR (DMSO-d d_{6}): $7.65(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{NH}) ; 7.06$ (d, 4H, $J=8.9 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-$ $\left.2^{\prime}, 6^{\prime}\right) ; 6.98\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-6\right) ; 6.85\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz},{ }^{4} J=2.3 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-4\right)$; 6.82 (d, 4H, J = $\left.8.9 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-3^{\prime}, 5^{\prime}\right) ; 6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 6.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.74$ (s, 3H), 3.72 (s, $6 \mathrm{H})\left(\mathrm{OCH}_{3}\right) ; 2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 2.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.99(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.42(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 12 \mathrm{H}),\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 0.85\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CCH}_{3}\right)$.
N-Nonyl-6-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}hexanamide (28e), yellowish oil, yield 96%. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=588.3675[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{NO}_{5}\right]^{+}$ 588.3684. NMR (DMSO-d d_{6}): $7.65(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{NH}) ; 7.07$ (d, $4 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-$ $\left.2^{\prime}, 6^{\prime}\right) ; 6.98\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.2 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-6\right) ; 6.85\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-4\right) ;$ 6.82 (d, 4H, J= $\left.8.7 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-3^{\prime}, 5^{\prime}\right) ; 6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}$, $6 \mathrm{H})\left(\mathrm{OCH}_{3}\right) ; 2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 2.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.99(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.44(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 14 \mathrm{H}),\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 0.84\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CCH}_{3}\right)$.
\mathbf{N}-Decyl-6-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}hexanamide (28f), yellowish oil, yield 100%. ESI-TOF HRMS: $m / z=602.3830[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{NO}_{5}\right]^{+}$ 602.3840. NMR (DMSO-d d_{6}): 7.65 (t, $1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{NH}$); 7.07 (d, 4H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-$ $\left.2^{\prime}, 6^{\prime}\right) ; 6.98\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.1 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-6\right) ; 6.86\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-4\right) ;$ 6.82 (d, 4H, J = 8.7 Hz, ArH, H-3', 5^{\prime}); $6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 6.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}$, $6 \mathrm{H})\left(\mathrm{OCH}_{3}\right) ; 2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 2.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.99(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.45(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 16 \mathrm{H}),\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 0.84\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CCH}_{3}\right)$.

N -(2-Phenylethyl)-6-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}-

hexanamide ($\mathbf{2 8 g}$), yellowish oil, 93% yield. ESI-TOF HRMS: $m / z=566.2909[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{NO}_{5}\right]^{+} 566.2901$. NMR (DMSO-d d_{6}): $7.78(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{NH}) ; 7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$, $\left.\mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right) ; 7.17$ (m, 3H, ArH, H-2"', $4^{\prime \prime}, 6^{\prime \prime}$); 7.07 (d, 4H, J = $8.9 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-2^{\prime}, 6^{\prime}$); 6.99 (d, 1H, ${ }^{4} J$ $=2.1 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-6) ; 6.86\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-4\right) ; 6.82(\mathrm{~d}, 4 \mathrm{H}, J=8.9 \mathrm{~Hz}$, ArH, H-3', 5^{\prime}); $6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})\left(\mathrm{OCH}_{3}\right) ; 3.24(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCH}_{2}$); $2.68\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.44(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$,
$\mathrm{NCH}_{2} \mathrm{CH}_{2}$); 1.99 (t, 2H, $J=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2}$); $1.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$); 1.17 (m, 2 H , $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).
N-(3-Phenylpropyl)-6-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}-
hexanamide (28h), yellowish oil 90\% yield. ESI-TOF HRMS: $m / z=580.3043[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{NO}_{5}\right]^{+} 580.3057$. NMR (DMSO-d d_{6}): $7.73(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{NH}) ; 7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$, H-3", $5^{\prime \prime}$); 7.17 (m, 3H, ArH, H-2"', $4^{\prime \prime}, 6^{\prime \prime}$); 7.06 (d, 4H, $J=8.9 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-2^{\prime}, 6^{\prime}$); 6.99 (d, 1H, ${ }^{4} J$ $=2.0 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-6) ; 6.85\left(\mathrm{dd}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-4\right) ; 6.82(\mathrm{~d}, 4 \mathrm{H}, J=8.9 \mathrm{~Hz}$, $\left.\operatorname{ArH}, \mathrm{H}-3^{\prime}, 5^{\prime}\right) ; 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{H}-3) ; 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})$ $\left(\mathrm{OCH}_{3}\right) ; 3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 2.55\left(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.45(\mathrm{t}, 2 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $2.02\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 1.45(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

6-\{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}-5-hexynoic acid, tert-butyl ester (29). To a stirred solution 3-[5-(tert-butyloxycarbonyl)pent-1-ynyl]-4,4'-dimethoxy benzophenone ($1.18 \mathrm{~g} ; 2.88 \mathrm{mmol}$) in dry THF (20 mL) 0.9 M 4-methoxyphenylmagnesium bromide ($5.8 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added in one portion under argon, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:3). The reaction was diluted with water $(50 \mathrm{~mL})$ and 5% citric acid $(15 \mathrm{~mL})$, and extracted with EtOAc $(100 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and chromatographed on silica gel in $0 \rightarrow 5 \%$ EtOAc in toluene with 1% of $\mathrm{Et}_{3} \mathrm{~N}$ to give the desired compound as a colourless oil. Yield 516 mg (35\%). ESI-TOF HRMS: $m / z=499.2474[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{5}\right]^{+}$499.2479. NMR (DMSO-d d_{6}): $7.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.1 \mathrm{~Hz}, \mathrm{ArH}\right.$); 7.09-7.02 (m, $\left.5 \mathrm{H}, \mathrm{ArH}\right) ; 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$, ArH); $6.84(\mathrm{~d}, 4 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H})\left(\mathrm{OCH}_{3}\right) ; 2.40$ (t, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \equiv \mathrm{CCH}_{2}$); $2.33\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) ; 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.39$ (s, $9 \mathrm{H}, \mathrm{CCH}_{3}$).
6-\{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}-5-hexynoic acid, N oxysuccinimide ester (31). To a stirred solution of tert-butyl ester of 6-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}-5-hexynoic acid (516 mg ; 1.0 mmol) in dry DCM (3.5 mL) trifluoroacetic acid (3.5 mL) was added in one portion and the mixture was stirred at ambient temperature for 5 h , then evaporated, and co-evaporated with DCM $(4 \times 20 \mathrm{~mL})$ to give free acid. Product were dissolved in DCM (10 mL), and triethylamine ($0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}$) and N, N-disuccinimidyl carbonate ($384 \mathrm{mg}, 1.5 \mathrm{mmol}$) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (50 mL), washed with $5 \% \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and water (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and the residue was purified by column chromatography ($5 \rightarrow 10 \%$ acetone in toluene). Yield $218 \mathrm{mg}(39 \%)$, white amorphous solid. ESI-TOF HRMS: $m / z=540.2022[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NO}_{7}\right]^{+}$540.2017. NMR (DMSO$\left.d_{6}\right): 7.14\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, \mathrm{ArH}\right) ; 7.09-7.02(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; 6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.84$ (d, 4H, J = 8.7 Hz, ArH); $6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H})\left(\mathrm{OCH}_{3}\right) ; 2.81(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{COCH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ; 2.51\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \equiv \mathrm{CCH}_{2}\right) ; 1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

3-Methoxy-9-0xo-9H-xanthen-6-yl trifluoromethanesulfonate (34). To a ice cooled solution of 6-hydroxy-3-methoxy- 9 H -xanthen- 9 -one ($0.70 \mathrm{~g}, 0.29 \mathrm{mmol}$) in dry pyridine (40 mL) trifluoromethanesulphonic anhydride ($0.90 \mathrm{~g}, 0.32 \mathrm{mmol}$) was added dropwise within 1 h and the reaction was left overnight at room temperature, then poured into $5 \% \mathrm{HCl}(150 \mathrm{~mL})$, and the product was extracted with dichloromethane $(2 \times 100 \mathrm{~mL})$. The solution was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo to give the desired product, 0.86 g (79.3%). ESI-TOF HRMS: $m / z=375.0151[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}\right]^{+} 375.0145$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.30((\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.9(\mathrm{~s}, 1 \mathrm{H}), 4(\mathrm{~s}, 3 \mathrm{H})$.
tert-Butyl 6-(3-methoxy-9-0xo-9H-xanthen-6-yl)hex-5-ynoate (35) was prepared as described for ketones 22 from triflate $34(0.864,2.30 \mathrm{mmol}$), tert butyl 5 -hexynoate ($1.55 \mathrm{~g}, 9.23 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.162 \mathrm{~g}, 0.230 \mathrm{mmol})$, $\mathrm{CuI}(0.0439 \mathrm{~g}, 0.230 \mathrm{mmol})$, and DIEA ($1.61 \mathrm{~mL}, 9.2$ $\mathrm{mmol})$. The product was purified by column chromatography, hexane-ethyl acetate, gradient elution (7:1); yield $0.753 \mathrm{~g}(83 \%)$. ESI-TOF HRMS: $m / z=393.1689[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{5}\right]^{+} 393.1697 .{ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) $\delta 8.2(\mathrm{dd}, J=8.2,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.5(\mathrm{~s}, 1 \mathrm{H}), 7$ (dd, $J=8.8,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.9(\mathrm{~s}, 1 \mathrm{H}), 4(\mathrm{~s}, 3 \mathrm{H}), 2.6(\mathrm{t}, 2 \mathrm{H}), 2.4(\mathrm{t}, 2 \mathrm{H}), 1.9(\mathrm{t}, 2 \mathrm{H}), 1.5(\mathrm{~s}, 9 \mathrm{H})$.
tert-Butyl 6-(9-hydroxy-3-methoxy-9-(4-methoxyphenyl)-9H-xanthen-6-yl)hex-5-ynoate (36) was prepared from ketone $35(0.720 \mathrm{~g}, 1.83 \mathrm{mmol})$ and 4-methoxyphenyl magnesium bromide (0.5 M solution in THF, $7.35 \mathrm{~mL}, 3.66 \mathrm{mmol}$) in THF (30 mL). After usual workup the product was purified by column chromatography, hexane-ethyl acetate (4:1), gradient elution; ($0.52 \mathrm{~g}, 57 \%$ yield). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=483.2173$ [M-OH] , calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{5}\right]^{+}$ 483.2166. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.2(\mathrm{~m}, 5 \mathrm{H}), 7.1(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.4(\mathrm{~m}, 1 \mathrm{H}), 6.6$ (m, 2H), $3.8(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.5(\mathrm{t}, 2 \mathrm{H}), 2.4(\mathrm{t}, 2 \mathrm{H}), 1.9(\mathrm{t}, 2 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H})$.

6-(9-Hydroxy-3-methoxy-9-(4-methoxyphenyl)-9H-xanthen-6-yl)hex-5-ynoic acid (37) was prepared using general procedure for compounds $\mathbf{6}$ from ester $36(0.520 \mathrm{~g}, 1.04 \mathrm{mmol})$. Yield $0.461 \mathrm{~g}(100 \%)$.
6-(9-Hydroxy-3-methoxy-9-(4-methoxyphenyl)-9H-xanthen-6-yl)hex-5-ynoate-Nhydroxysuccinimide (38) was prepared using usual procedure from acid $37(0.461,1.04 \mathrm{mmol})$. Yield $0.561 \mathrm{~g}(100 \%)$. ESI-TOF HRMS: $m / z=524.1702[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{7}\right]^{+}$
524.1704. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.2(\mathrm{~m}, 4 \mathrm{H}), 7(\mathrm{~m}, 2 \mathrm{H}), 6.7(\mathrm{~m}, 2 \mathrm{H}), 6.5(\mathrm{~m}, 2 \mathrm{H}), 3.8$ ($\mathrm{s}, 3 \mathrm{H}$), $3.7(\mathrm{~s}, 3 \mathrm{H}), 2.8(\mathrm{~m}, 6 \mathrm{H}), 2.5(\mathrm{t}, 2 \mathrm{H}), 2(\mathrm{~m}, 2 \mathrm{H})$.
6-(9-Hydroxy-3-methoxy-9-(4-methoxyphenyl)-9H-xanthen-6-yl)hexanoate- N -
hydroxysuccinimide (39) was prepared by hydrogenation of compound $\mathbf{3 8}$ ($0.275 \mathrm{~g}, 0.51 \mathrm{mmol}$) in EtOAc. Yield $0.277 \mathrm{~g}(100 \%)$. ESI-TOF HRMS: $m / z=528.2020[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{7}\right]^{+}$528.2017.

4-(3-\{Tetrahydropyran-2-yloxy\}propyl)-4',4'-dimethoxytritanol (42). A solution of 1-bromo-4-(3-\{2-tetrahydropyranyl\}oxypropyl)benzene ($2.99 \mathrm{~g}, 10 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ placed into a three-necked flask equipped with a septa and an argon inlet. n-BuLi (4 mL of 2.5 M solution in petroleum ether, 10 mmol) was introduced with a syringe. The mixture was kept at rt for one hour, and a solution of 4,4'-dimethoxybenzophenone ($2.42 \mathrm{~g}, 10 \mathrm{mmol}$) in dry THF (70 mL) was added dropwise. After 24 hours of stirring the solution was half evaporated and poured into EtOAc (100 mL) and water (100 mL), organic layer was separated and washed with citric acid $(5 \%$ in water, $2 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was chromatographed on silica gel in $1 \% \mathrm{Et}_{3} \mathrm{~N}+2 \% \mathrm{EtOAc}$ in PhMe . Yield $2.47 \mathrm{~g}(53 \%)$, colourless oil, $\mathrm{R}_{\mathrm{f}} 0.20$ (10% EtOAc in PhMe). ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=$ $445.2379[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4}\right]^{+}$445.2373. NMR (DMSO-d d_{6}): 7.12-7.05 (m, 8H, ArH); $6.83(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}) ; 6.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 4.53(\mathrm{~m}, 1 \mathrm{H}, H-2) ; 3.75-3.70\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{OCH}_{3}, H-\right.$ $6(1)) ; 3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THPOCH}_{2}(1)\right) ; 3.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6(1)) ; 3.37-3.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THPOCH}_{2}(1)\right)$; $2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5(1)) ; 1.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3(1))$; 1.50-1.39 (m, 4H, H-3(1), H-4(2), H-5(1)).

4-(3-Hydroxypropyl)-4', $\mathbf{4}^{\prime \prime}$-dimethoxytritanol (43). A solution of 4-(3-\{tetrahydropyran-2-yloxy\}propyl)-4',4"-dimethoxytritanol ($2.29 \mathrm{~g}, 4.95 \mathrm{mmol}$) was dissolved in methanol (150 mL). p-Toluenesulphonic acid monohydrate (20 mg) was added in one portion and the solution was stirred for 48 hours. Solid $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g})$ was added and the mixture was evaporated. The residue was twice co-evaporated with toluene (20 mL) and chromatographed on silica gel in $1 \% \mathrm{Et}_{3} \mathrm{~N}$ and 3% to $10 \% \mathrm{Me}_{2} \mathrm{CO}$ in PhMe. Yield $0.696 \mathrm{~g}(37 \%)$, colourless oil, $\mathrm{R}_{\mathrm{f}} 0.21\left(10 \% \mathrm{Me}_{2} \mathrm{CO}\right.$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in PhMe$)$. ESI-TOF HRMS: $m / z=361.1792[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{3}\right]^{+} 361.1798$. NMR (DMSO-d $)_{6}$: 7.27-7.19 (m, 6H, ArH); $7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) ; 6.87(\mathrm{~d}, 4 \mathrm{H}, J=8.9$
$\mathrm{Hz}, \mathrm{ArH}) ; 4.43$ (t, 1H, J = $5.1 \mathrm{~Hz}, \mathrm{OH}$); 3.73 (s, 6H, ArOCH_{3}); 3.40 (m, 2H, $\mathrm{CH}_{2} \mathrm{OH}$); 2.91 (s, $3 \mathrm{H}, \mathrm{Ar}_{3} \mathrm{COCH}_{3}$); 2.57 (m, 2H, ArCH_{2}); 1.69 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$).
N-(3-\{4-Methoxydi(4-methoxyphenyl)methylphenylpropyl)maleimide (44). To a stirred solution of 4-(3-hydroxypropyl)-4',4"-dimethoxytritanol ($660 \mathrm{mg} ; 1.68 \mathrm{mmol}$) in toluene (10 mL) maleimide ($179 \mathrm{mg}, 1.85 \mathrm{mmol}$), $\mathrm{PPh}_{3}(485 \mathrm{mg}, 1.85 \mathrm{mmol})$ were added followed by DEAD ($0.30 \mathrm{~mL}, 1.93 \mathrm{mmol}$). The mixture was kept at ambient temperature for 24 h (monitoring by TLC in EtOAc-toluene 1:9 + $1 \% \mathrm{Et}_{3} \mathrm{~N}$), evaporated and chromatographed on silica gel in $5 \% \mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ in toluene. $\mathrm{R}_{\mathrm{f}} 0.40$ ($10 \% \mathrm{EtOAc}$ in PhMe). Yield 657 mg (83%). ESI-TOF HRMS: $m / z=440.1861$ [M-OMe] ${ }^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{4}\right]^{+}$440.1856. NMR (DMSO-d d_{6}) 7.26-7.19 (m, 6H, ArH); $7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) ; 6.91$ (s, 2H, $\mathrm{COCH}=\mathrm{CHCO}) ; 6.87$ (d, $4 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 3.73$ (s, $6 \mathrm{H}, \mathrm{ArOCH}_{3}$); 3.43 (m, 2H, NCH ${ }_{2}$); 2.90 (s, 3H, $\mathrm{Ar}_{3} \mathrm{COCH}_{3}$); 2.52 (m, 2H, ArCH_{2}); $1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$.
N-(3-\{4-Hydroxydi(4-methoxyphenyl)methylphenylpropyl)maleimide (45). Trifluoroacetic acid $(0.20 \mathrm{~mL}, \quad 2.60 \mathrm{mmol})$ was added to a solution of N-(3-\{4-methoxydi(4methoxyphenyl)methylphenylpropyl)maleimide (614 mg .1 .304 mmol) in toluene (15 mL). The solution was stirred for 15 minutes and water $(20 \mathrm{~mL})$ was added. The mixture was quenched by addition of saturated aqueous NaHCO_{3} solution. Organic layer separated was washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was chromatographed on silica gel (10% to $15 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in toluene). Yield $478 \mathrm{mg}(80 \%)$ colourless oil. $\mathrm{R}_{\mathrm{f}} 0.20$ (10% EtOAc in PhMe). ESI-TOF HRMS: $m / z=440.1855[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{4}\right]^{+}$440.1856. NMR (DMSO- d_{6}): 7.11-7.03 (m, 8H, ArH); 6.96 (s, 2H, COCH=CHCO); 6.83 (d, 4H, J = $8.9 \mathrm{~Hz}, \mathrm{ArH}) ; 6.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.72$ (s, $6 \mathrm{H}, \mathrm{OCH}_{3}$); $3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) ; 1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$.

4-Carbomethoxy-4'-hydroxybiphenyl. 4-Carboxy-4'-hydroxybiphenyl ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$) was suspended in $\mathrm{MeOH}(30 \mathrm{~mL}$) and thionyl chloride $(0.80 \mathrm{~mL}, 11 \mathrm{mmol})$ was added dropwise. The mixture was stirred overnight, evaporated, and precipitated from THF in hexane. Yield 1.89 g (83\%). NMR (DMSO- d_{6}): 9.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$); 7.97 (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{ArH}$); 7.73 (d, 2H, $J=8.5$ $\mathrm{Hz}, \mathrm{ArH}) ; 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ; 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ; 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

4-Carbomethoxy-4'-trifluoromethansulfonylbiphenyl. To a solution of 4-carbomethoxy-4'hydroxybiphenyl $(2.28 \mathrm{~g}, \quad 10 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ cooled to $-20^{\circ} \mathrm{C}$ trifluoromethanesulfonic anhydride ($1.85 \mathrm{~mL}, 11 \mathrm{mmol}$) was added dropwise within 30 min . The
mixture was allowed to warm to room temperature and left overnight, then diluted with EtOAc $(150 \mathrm{~mL})$, washed with water $(100 \mathrm{~mL}), 5 \%$ citric acid $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue (yellow oil) was dissolved in toluene and passed through silica gel to the desired compound as a white solid ($3.38 \mathrm{~g}, 94 \%$). NMR (DMSO- d_{6}): $8.05(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}, \mathrm{ArH}) ; 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 7.86(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) ; 7.62(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 3.88$ (s, 3H, OCH_{3}).

Methyl 4-(4-triisopropylethynylphenyl)benzoate (54). To a solution of methyl 4-(4trifluoromethanesulfonylphenyl)benzoate ($720 \mathrm{mg}, 2.0 \mathrm{mmol}$) and triisopropylsilylacetylene $(490 \mu \mathrm{~L}, 2.2 \mathrm{mmol})$ in dry DMF $(10 \mathrm{~mL}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(115 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(560 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ were added under Ar and the mixture was kept for 24 h at room temperature. The mixture was then diluted with EtOAc (100 mL), washed with 3% aqueous EDTA- $\left(\mathrm{NH}_{4}\right)_{2}(3 \times 100 \mathrm{~mL})$ and water $(2 \times 50 \mathrm{~mL})$, dried, and evaporated to dryness. The residue was chromatographed on a short silica gel column in toluene to give the title compound ($438 \mathrm{mg}, 56 \%$) as white solid. ESI-TOF HRMS: $\mathrm{m} / \mathrm{z}=393.2250[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}\right]^{+}$ 393.2244. NMR (CDCl_{3}): 8.09 (d, 2H, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}$); 7.63 (d, 2H, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}$); 7.56 (s, $4 \mathrm{H}, \mathrm{ArH}$); 3.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$); 1.14 (s, 21H, Pr^{i}).
 methyl 4-(4-triisopropylethynylphenyl)benzoate ($784 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (3 mL) 0.86 M 4 methoxyphenylmagnesium bromide in THF ($11.6 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was added in one portion and the mixture was refluxed for 3 h , then cooled, diluted with EtOAc (100 mL), washed with water $(2 \times 50 \mathrm{~mL}), 5 \%$ citric acid $(2 \times 50 \mathrm{~mL})$, water $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The desired compound was isolated by column chromatography on silica gel (toluene $+1 \% \mathrm{Et}_{3} \mathrm{~N}$). Yield $192 \mathrm{mg}(33 \%)$, white foam. NMR (CDCl_{3}): $7.51(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) ; 7.35(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$, $\mathrm{ArH}) ; 7.20(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.84(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.70(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$); 1.14 (s, 21H, Pr^{i}).

Bis(4-methoxyphenyl)-4-(4-ethynylphenyl)phenylmethanol (55). To a solution of bis(4-methoxyphenyl)-4-(4-triisopropylethynylphenyl)phenylmethanol ($180 \mathrm{mg}, 0.31 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ a solution of TBAF $(113 \mathrm{mg}, 0.47 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added in one portion and the progress of the reaction was monitored by TLC (2% EtOAc in toluene). After 30 min the deprotection was complete. The reacton mixture was evaporated and the residue was purified by column chromatography on silica gel (toluene $+1 \% \mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$). Yield $136 \mathrm{mg}(100 \%)$, white foam. ESI-TOF HRMS: $m / z=403.1688[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{O}_{2}\right]^{+}$403.1693. NMR $\left(\mathrm{CDCl}_{3}\right): 7.54(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}) ; 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}) ; 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}) ; 7.20$ (d, 4H, J = $8.8 \mathrm{~Hz}, \mathrm{ArH}$); 6.84 (d, 4H, J = $8.8 \mathrm{~Hz}, \mathrm{ArH}$); $3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.11$ (s, 1H, 三CH); 2.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$).

1,3,5,7-Tetrakis[4-(4-\{4-[4-bis(4-methoxyphenyl)hydroxymethyl]phenyl\}phenyl-ethynyl)-

phenyl]adamantan (56). To a solution of bis(4-methoxyphenyl)-4-(4ethynylphenyl)phenylmethanol ($122 \mathrm{mg}, 0.29 \mathrm{mmol}$), tetra(4-iodophenyl)adamantane ${ }^{[6]}$ (55 mg , $0.058 \mathrm{mmol})$ in DMF $(4 \mathrm{~mL}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(27 \mathrm{mg}, 0.023 \mathrm{mmol})$, $\mathrm{CuI}(9.0 \mathrm{mg}, 0.046 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 0.46 \mathrm{mmol})$ were added and the solution was stirred for 24 h under Ar. The mixture was partitioned between water (50 mL) and EtOAc $(50 \mathrm{~mL})$, and the organic layer was washed with 0.1 M EDTA $(3 \times 30 \mathrm{~mL})$ and water $(3 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and chromatographed on silica gel in 5% acetone $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ in toluene. Yield $107 \mathrm{mg}(87 \%)$ yellowish foam, $R_{\mathrm{f}} 0.18$ in $10 \% \mathrm{Me}_{2} \mathrm{CO}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ in PhMe). ESI-TOF HRMS: $m / z=2095.8755[\mathrm{M}-\mathrm{OH}]^{+}$, calc. for $\left[\mathrm{C}_{150} \mathrm{H}_{119} \mathrm{O}_{11}\right]^{+}$2095.8747. NMR (CDCl_{3}): $7.58(\mathrm{~s}, 16 \mathrm{H}, \mathrm{ArH}) ; 7.54(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArH}) ; 7.48(\mathrm{~d}, 8 \mathrm{H}$, $J=8.3 \mathrm{~Hz}, \mathrm{ArH}) ; 7.36$ (d, $8 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}) ; 7.20(\mathrm{~d}, 16 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 6.84$ (d, 16H, J $=8.8 \mathrm{~Hz}, \mathrm{ArH}) ; 3.80\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.71$ (s, 4H, OH); 2.18 (br.s, 12H, CH_{2}).

References

(1) Hahn, W., Fredriksen, S.B., Dollé, V., Nakatani, Y., and Ourisson, G. (1997) Studies on the topography of biomembranes: regioselective photolabelling in vesicles with the tandem use of cholesterol and a half-membrane phospholipidic probe. Bull. Soc. Chim. Fr. 134, 915-926.
(2) Coulson, D.R., Satek L.C., and Grim, S.O. Tetrakis(triphenyphosphine)palladium(0). (1972) Inorg. Synth. 13, 121-124.
(3) Banville, J., Plamondon, S., Gai, Y., and Balasubramanian, N. (2002) US Pat. 6,492,550.
(4) Tóth, G., and Kövér, K.E. (1995) Simple, safe, large scale synthesis of 5-arylmethyl-2,2-dimethyl-1,3-dioxane-4,6-diones and 3-arylpropanoic acids. Synth. Commun. 25, 30673074.
(5) Khan, S., Bernad, P., Korshun, V. A., Southern, E. M., and Shchepinov, M. S. (2005) Synthesis of S-pixyl derivatives for mass spectrometric application. Synlett, 2453-2456.
(6) Reichert, V.R., and Mathias, L.J. (1994) Expanded tetrahedral molecules from 1,3,5,7tetraphenyladamantane. Macromolecules 27, 7015-7023.

