Supporting Information

Synthesis and Conformational Studies of Peptides from New C-Linked Carbo- β -

Amino Acids (β-Caas) with Anomeric Methylamino- and Difluorophenyl Moieties

Gangavaram V. M. Sharma,*a Velaparthi Subash, ${ }^{\text {a }}$ Nelli Yella Reddy, ${ }^{\text {a }}$ Kongari
Narsimulu, ${ }^{\text {b }}$ Rapolu Ravi, ${ }^{\text {b }}$ Vivekanand B. Jadhav, ${ }^{a}$ Upadhyayula S. N. Murthy, ${ }^{\text {c }}$ Kankipati. Hara Kishore ${ }^{\text {c }}$ and Ajit C. Kunwar* ${ }^{\text {b }}$
a. D-211, Discovery Laboratory, Organic Chemistry Division III; b. Centre for Nuclear Magnetic Resonance; c. Biology Group, Indian Institute of Chemical Technology, Hyderabad 500007

Contents

Page No.

Supporting Information I

1. Experimental procedures

S3-S6
2. Experimental section of $\mathbf{2 1}, \mathbf{2 , ~ 2 8 , 2 9 , 3 1}, \mathbf{3 2}, \mathbf{5}, \mathbf{6}, \mathbf{3 5}, \mathbf{3 8}, \mathbf{4 0}, \mathbf{4 1}, \mathbf{1 0}, 11 \quad$ S7-S16 9 and 12
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1}$ in CDCl_{3}

S17-S18
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 in CDCl_{3}

S19-S20
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 5 in $\mathrm{CDCl}_{3} \quad$ S21-S22
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 6 in $\mathrm{CDCl}_{3} \quad$ S23-S24
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 7 in $\mathrm{CDCl}_{3} \quad$ S25-S26
8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of 8 in $\mathrm{CDCl}_{3} \quad$ S27-S30
9. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of 9 in $\mathrm{CDCl}_{3} \quad$ S31-S34
10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of $\mathbf{1 0}$ in $\mathrm{CDCl}_{3} \quad$ S35-S38
11. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of $\mathbf{1 1}$ in $\mathrm{CDCl}_{3} \quad$ S39-S42
12. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of 12 in $\mathrm{CDCl}_{3} \quad$ S43-S46
13. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{8 b}$ in $\mathrm{D}_{2} \mathrm{O} \quad \mathrm{S} 47$
14. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{9 b}$ in $\mathrm{D}_{2} \mathrm{O} \quad$ S48
15. ${ }^{1} \mathrm{H}$ NMR Spectra of 11a in $\mathrm{D}_{2} \mathrm{O} \quad$ S49
16. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{9 b}$ in $\mathrm{CD}_{3} \mathrm{OH} \quad$ S50
17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 18 in $\mathrm{CDCl}_{3} \quad$ S51-S52
18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 19 in CDCl_{3} S53-S54
19. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 20 in CDCl_{3} S55-S56
20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 21 in CDCl_{3} S57-S58
21. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{2 3}$ (trans and cis) in CDCl_{3} S59-S62
22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{2 4}$ in CDCl_{3} S63-S64
23. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{2 5}$ in CDCl_{3} S65-S66
24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 31 in CDCl_{3} S67-S68
25. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 32 in CDCl_{3} S69-S70
26. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 36 in CDCl_{3} S71-S72
27. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 41 in CDCl_{3} S73-S74
28. Solvent titration plots for $\mathbf{8 - 1 2}$ S75
29. MD simulated structures and Distance constraints S76-S86
Supporting Information II
30. Conformational analysis of $\mathbf{1 5}$ and $\mathbf{1 6}$ S1
31. Experimental section of 47, 51, 52, 3, 4, 55, 56, 60, 62, 63, 15, 64, 16 S2-S7
32. 1H and 13C NMR Spectra of 46-52 in CDCl3 S8-S19
33. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3 in CDCl_{3} S20-S21
34. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4 in CDCl_{3} S22-S23
35. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 55 in CDCl_{3} S24-S25
36. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 56 in CDCl_{3} S26-S27
37. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 59 in CDCl_{3} S28-S29
38. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 3}$ in CDCl_{3} S30-S31
39. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of $\mathbf{1 3}$ in CDCl_{3} S32-S35
40. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of 14 in CDCl_{3} S36-S39
41. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of 15 in CDCl_{3} S40-S43
42. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, TOCSY and ROESY Spectra of 16 in CDCl_{3} S44-S47
43. Solvent titration plots of 13-16 S48
44. MD simulated structures and Distance constraints S49-S60
45. Antibacterial activity of 13-16 S61

General Experimental: HOBT: (1-Hydroxy-1H benzotriazole), EDCI: (1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride) coupling reagents were used for peptide synthesis. All coupling reactions and Boc deprotection reactions were carried out under nitrogen atmosphere; TLC: Silica gel $60 F_{254}$ plates; detection with UV or dipping into the solution of ninhydrin followed by heating; Dichloromethane was distilled over CaH_{2} and stored over $4 \AA$ molecular sieves, $\mathrm{Et}_{3} \mathrm{~N}$ was dried on KOH and distilled from ninhydrin, amino-acids and peptide coupling reagents were purchased from standard catalogues;
IR spectra were recorded in KBr pallets in the $400-4000 \mathrm{~cm}^{-1}$ range.
Melting points were checked using cover slips.

NMR spectra were recorded in CDCl_{3} in $5-10 \mathrm{mM}$ solution on $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 600 \mathrm{MHz}\right.$, $\left.{ }^{13} \mathrm{C}: 150 \mathrm{MHz}\right), 500 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}: 125 \mathrm{MHz}\right), 400 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 400 \mathrm{Mz},{ }^{13} \mathrm{C}: 100\right.$ MHz), and $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ spectrometers. Chemical shifts (δ) are reported in ppm downfield with respect to TMS $\left(\mathrm{SiMe}_{4}\right)(=0 \mathrm{ppm})$. The proton resonance assignments were carried out by using two-dimensional NMR experiments. Total correlation spectroscopy experiments (TOCSY) were run with mixing time of 0.08 s and spin-lock field of $10 \mathrm{KHz}(500 \mathrm{MHz})$ and while for the rotating frame Overhauser effect spectroscopy (ROESY) experiments mixing time of $0.2-0.3 \mathrm{~s}$ and a spin lock field of about $2.5 \mathrm{KHz}(500 \mathrm{MHz})$ used. ROESY experiments provided information on the spatial proximity of the protons. Information on the H -bonding was carried by solvent titration studies by sequentially adding the polar solvent $\mathrm{DMSO}-d_{6}$ up to $300 \mu \mathrm{~L}$ to $600 \mu \mathrm{~L} \mathrm{CDCl}_{3}$ solution.

Molecular Dynamics (MD): Molecular dynamics simulations were carried out using Insight II(2005)/Discover program ${ }^{1}$ on a Silicon Graphics Octane workstation, IRIX64 (6.5) Operating system, model Onyx3 Infinite Performance Fuel. Peptides were initially drawn using the Sketcher from the Builder module of Insight II. Initially sketching of a peptide is done in two dimensions (2D) which was followed by its conversion to three dimensional (3D) structure, which is a convenient alternative to build the peptide in 3D. All the hydrogen atoms are added automatically in the 3D conversion process. After the
completion of sketching the molecules, consistency of the chirality with that expected for at all the stereocenters was verified. After constructing the peptide model, the atom potential types and partial charges were set using the force field CVFF. We have used the default parameters throughout the simulations. Minimization's were first carried out with steepest decent method, followed by conjugate gradient method for a maximum of 3000 iterations each or RMS deviation of $0.001 \mathrm{kcal} / \mathrm{mol}$, whichever was earlier. After minimization, those dihedral angles which had inputs from NMR data (coupling constants) were modified accordingly. Before these folded structures were subjected to undergo yet another round of minimization, the distance restraints derived from the volume integrals obtained from the ROESY spectra using a two-spin approximation and the reference distance of $1.8 \AA$ for the geminal protons. The upper and lower bound of the distance constraints have been obtained by enhancing and reducing the derived distance by 10%. The distance constraints were applied as a square well potential with a force constant of $15 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$. Using these restraint, energy minimization is carried out by using protocol mentioned above. This permits to remove initial strain in the structures.

The NMR restrained energy-minimized structures were then subjected to MD simulations. For MD runs, a temperature of 300 K was used. The molecules were initially equilibrated for 20 ps and subsequently subjected to a 600 ps dynamics with a step size of 1 fs, sampling the trajectory at equal intervals of 6 ps . In the trajectory 100 samples were generated and minimized with above protocol. Out of these 20 selected lowest energy structures were aligned and compared with the experimental data. For peptide 10 backbone and heavy atom RMSDs are $0.90 \AA$ and $1.25 \AA$ respectively. The corresponding values for the peptides 11, 12, $\mathbf{1 5}$ and $\mathbf{1 6}$ were: $1.15 \AA$ and $1.73 \AA ; 1.20 \AA$ and $1.82 \AA ; 0.83 \AA$ and 1.40 \AA; and $0.93 \AA$ and $1.55 \AA$ (See Supporting information II for 15 and 16) respectively. For clarity all the protons have been removed and sugars are replaced with methyl groups after the MD calculations.

Reference:

1. Discover, Version 2.98, Biosym Molecular Simulations, SanDiego, CA, 1995

Circular Dichroism (CD) Spectra: The CD spectra were recorded at room temperature on a JASCO J-810 spectrometer using a rectangular fused quartz cell of 0.2 cm path length. CD cell was washed with an aqueous NaOH solution before the each new spectral
mesurement to remove any peptide adhering to the inner surface. Sample solutions (peptide concentration, $200 \mu \mathrm{M}$ in methanol) were prepared 20 min before measurements. To improve the signal to noise $(\mathrm{S} / \mathrm{N})$ ratio all spectra were the averages of eight repeats obtained by collecting data from 260 to 190 nm at 0.2 nm intervals, with a response time of 1 sec for each point. Binomial method is used for smoothening the spectra. The plotted values are expressed in terms of $[\theta]$, the total molar ellipticity $\left(\mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{dmol}^{-1}\right)$.

Evaluation of antibacterial activity (MIC):

Test organisms, Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 511), Serratia marcescens (MTCC 97), Pseudomonas oleovorans (MTCC 617), Klebsiella aerogenes (MTCC 39), Chromobacterium violaceum (MTCC 2656) were obtained from the Institute of Microbial Technology, Chandigarh, India. Cultures of test organisms were maintained on nutrient agar slants and were sub cultured prior to testing.

The minimum inhibitory concentration (MIC) was measured by broth dilution method (Villanova, 1982). A set of sterile test tubes with nutrient broth media were capped with cotton plugs (1-9). The test compound is dissolved in sterile water and concentration of $100 \mu \mathrm{~g} / \mathrm{mL}$ of the test compound is added to the first tube, which is serially diluted from 1 to 9 . A fixed volume of 0.5 mL over night culture is added in all the test tubes and incubated at $37{ }^{\circ} \mathrm{C}$ for 24 h . After incubation period the tubes were measured for turbidity with spectrophotometer.

Reference:

Villanova, 1982. National committee for clinical laboratory standards (NCCLS), standard method for dilution antimicrobial susceptibility tests for bacteria, which grows aerobically, p. 242 .

High Performance Liquid Chromatography (HPLC):

Apparatus and chromatographic conditions

The HPLC system consisting of two LC-20AT pumps, an SPD-M20A diode array detector, a SIL-20AC auto sampler, a DGU-20A3 degasser and CBM-20A communications bus module (all from Shimadzu, Kyoto, Japan) was used. A reversed phase Waters C18 (Waters) column ($25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ i.d.; particle size $5 \mu \mathrm{~m}$) was used for separation. The chromatographic and the integrated data were recorded using HP-Vectra (Hewlett Packard, Waldron, Germany) computer system using LC-Solution data acquiring software (Shimadzu, Kyoto, Japan).

The mobile phase was 0.02 M ammonium acetate: acetonitrile. The analysis was carried out in a isocratic elution mode with 67% acetonitrile and 33% (0.02 M) ammonium acetate using a flow rate of $1.0 \mathrm{ml} / \mathrm{min}$. at room temperature. Before delivering into the system the solvent was filtered through $0.455 \mu \mathrm{~m}$, PTFE filter and degassed under vacuum. The chromatograms were recorded at 254 nm .

Experimental Section:

tert.-Butyl $\quad N$-((3aR,4R,6R,6aS)-6-[(1R)-1,2-dihydroxyethyl]-2,2-dimethylperhydro furo[3,4-d][1,3]dioxol-4-ylmethyl)carbamate (21): A solution of 20 ($2.35 \mathrm{~g}, 6.3 \mathrm{mmol}$) in methanol (10 mL) and water (2 mL) containing PTSA (catalytic) was stirred at room temperature for 8 h . Reaction mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, solvent evaporated and residue purified by column chromatography (Silica gel, 50\% EtOAc in petroleum ether) to afford $21(1.82 \mathrm{~g}, 87 \%)$ as a colorless syrup; $[\alpha]_{\mathrm{D}}=+4.0\left(c 2.5, \mathrm{CHCl}_{3}\right)$; IR (neat): 3373, 2978, 2935, 1690, 1527, 1368, 1253, 1085, $893 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.86$ (dd, 1H, $J=3.4,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}$), $4.84(\mathrm{bs}, 1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.05$ (dd, 1H, $\left.J=4.5,10.2 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}\right), 3.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}\right), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.3.4,11.8, \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}\right), 3.75\left(\mathrm{dd}, 1 \mathrm{H}, J=3.0,11.8, \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}\right), 3.02(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~b}\right), 1.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.44(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 156.7,112.8,84.1,82.6,81.0,78.5,69.8,63.6,39.5,28.3,26.1,24.8$; HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{7}\left(\mathrm{M}^{+}+\mathrm{Na}\right) 356.1685$, found 356.1671.

Cbz-(R)- $\boldsymbol{\beta}$-Caa(NHBoc)- $\mathbf{O C H}_{3}$ (2): A mixture of $25(0.83 \mathrm{~g}, 1.78 \mathrm{mmol}$) in methanol (3.0 mL) was treated with $10 \% \mathrm{Pd}-\mathrm{C}(0.1 \mathrm{~g})$ as described for 26 to give methyl (3R)-3-((3aS,4R,6R,6aR)-6-[(tert.-butoxycarbonyl)amino]methyl-2,2-dimethyl perhydrofuro[3,4-d][1,3]dioxol-4-yl)-3-aminopropanoate (27) as a pale yellow liquid, which was used as such for the next reaction.

A solution of $27(0.40 \mathrm{~g}, 1.06 \mathrm{mmol})$ and DIPEA $(0.37 \mathrm{~mL}, 2.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{Cbz}-\mathrm{Cl}(0.21 \mathrm{~g}, 1.23 \mathrm{mmol})$, as described for $\mathbf{1}$ to give $2(0.49 \mathrm{~g}$, 90\%) as a syrup; $[\alpha]_{\mathrm{D}}=+19.2$ (c 0.5, CHCl_{3}); IR (Neat): 3358, 2982, 2289, 1744, 1540, 1447, 1376, 879, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.41-7.23$ (m, 5H, Ar-H), 5.65 (d, $1 \mathrm{H}, J=9.7 \mathrm{~Hz}, \mathrm{NH}$), $5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.73\left(\mathrm{dd}, 1 \mathrm{H}, J=3.8,6.0 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}\right), 4.70$ (br.m, 1H, BocNH), $4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}\right), 4.07(\mathrm{dd}, 1 \mathrm{H}, J=$ 5.7, $\left.9.2 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}\right), 4.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}\right), 3.00$ (ddd, $\left.1 \mathrm{H}, J=4.1,9.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~b}\right), 2.84\left(\mathrm{dd}, 1 \mathrm{H}, J=7.1,15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right), 2.69$ (dd, 1H, $J=5.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}$), 1.49 (s, 3H, Me), 1.44 (s, 9H, Boc), 1.30 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.9,155.8,141.8,136.5,128.4,128.2,127.9,127.8$,
113.0, 83.0, 80.8, 80.7, 78.8, 66.5, 51.7, 47.8, 39.8, 36.1, 28.3, 26.1, 24.6; HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{M}^{+}+\mathrm{H}\right) 509.2499$, found 509.2481.

Cbz-(S)- β-Caa(NHBoc)-OH (28): A solution of ester $\mathbf{1}(0.75 \mathrm{~g}, 1.47 \mathrm{mmol})$ in methanol $(4 \mathrm{~mL})$ was treated with aq. 4 N NaOH solution $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ to room temperature. After 2 h, methanol was removed and adjusted pH to $2-3$ with aq. 1 N HCl solution at $0{ }^{\circ} \mathrm{C}$ and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give $28(0.62 \mathrm{~g}, 83 \%)$ as a white solid, m.p. $78-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+42.2\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3364, 2980, 2934, 1712 1514, 1451, 1371, 1249, 1168, $1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.61(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 5.08(\mathrm{~m}, 2 \mathrm{H}$, PhCH_{2}), 4.88 (br.m, $\left.1 \mathrm{H}, \mathrm{BocNH}\right), 4.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.35$ (m, 1H, $\mathrm{C}_{\beta} \mathrm{H}$), 4.15-4.02 (m, 2H, $\left.\mathrm{C}_{4} \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right)$, $3.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}\right), 3.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~b}\right)$, $2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right), 1.47(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.41(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.28(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me})$; HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 517.2162, found 517.2163.

Cbz-(R)- $\boldsymbol{\beta}$-Caa(NHBoc)-OH (29): A solution of $2(0.50 \mathrm{~g}, 0.98 \mathrm{mmol})$ as described for 28 gave 29 ($0.42 \mathrm{~g}, 86 \%$) as a white solid; m.p. $78-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+56.73\left(\right.$ c $\left.0.25, \mathrm{CHCl}_{3}\right)$; IR(KBr): 3364, 2980, 2934, 1712, 1514, 1451, 1371, 1249, 1168, 1040; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.87(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{NH}), 5.09(\mathrm{~m}, 2 \mathrm{H}$, PhCH_{2}), 4.97 (br.m, 1H, BocNH), $4.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.45$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}\right), 4.15-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}\right), 3.02$ (ddd, $1 \mathrm{H}, J=4.2$, $8.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~b}$), $2.84\left(\mathrm{dd}, 1 \mathrm{H}, J=7.0,15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right.$), $2.70(\mathrm{dd}, 1 \mathrm{H}, J=6.3$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\alpha^{\prime}} \mathrm{H}$), $1.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 175.1,156.2,156.1,136.5,128.4,127.9,127.7,112.9,83.1,82.9$, 80.9, 79.7, 78.5, 66.6, 47.8, 39.8, 36.2, 28.3 26.1, 24.5; HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 517.2162, found 517.2171.
(S)-Methyl-3-(benzylamino)-3-((3aS,4S,6R,6aS)-tetrahydro-4-methoxy-2,2-dimethyl furo[3,4-d][1,3]dioxol-6-yl)propanoate (31) and (R)-methyl-3-(benzylamino)-3((3aS,4S, 6R,6aS)-tetrahydro-4-methoxy-2,2-dimethyl furo[3,4-d][1,3]dioxol-6yl)propanoate (32): As described for the synthesis of $\mathbf{2 4}$, a mixture of $\mathbf{3 0}(10.15 \mathrm{~g}, 39.3$ mmol) and benzylamine ($10 \mathrm{~mL}, 100 \mathrm{mmol}$) was stirred at room temperature for 12 h and purified the reaction mixture by column chromatography. First eluted was (Silica gel, 10\%

EtOAc in petroleum ether) $32(3.68 \mathrm{~g}, 25.6 \%)$ as a pale yellow syrup; $[\alpha]_{\mathrm{D}}=+59.0(c 0.25$, CHCl_{3}); IR (Neat): 3356, 2988, 2938, 2838, 2833, 1736, 1438, 1375, 1194, 1097, $744 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $4.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 4.78\left(\mathrm{dd}, 1 \mathrm{H}, J=3.4,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 3.91$ (dd, $1 \mathrm{H}, J=3.4,8.5 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}$), 3.88 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$), $3.49(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\beta} \mathrm{H}$), 3.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.76 (dd, $1 \mathrm{H}, J=4.5,15.4 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}$), $2.60(\mathrm{dd}, 1 \mathrm{H}, J=7.0,15.4$ $\left.\mathrm{Hz}, \mathrm{C}_{\alpha} \mathrm{H}\right), 1.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 172.7, $140.6,128.2,128.1,126.8,112.4,106.7,85.0,81.2,79.7,54.3,52.9,51.4,51.1,36.1,26.1$, 24.9; HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{6}\left(\mathrm{M}^{+}+\mathrm{H}\right) 366.1916$, found 366.1913.

Second eluted was (Silica gel, 15\% EtOAc in petroleum ether) 31 ($5.51 \mathrm{~g}, 38 \%$) as a pale yellow syrup; $[\alpha]_{\mathrm{D}}=+48.0$ (с 0.25, CHCl_{3}); IR (Neat): 3370, 2991, 2937, 2899, 1739, 1444, 1160, 1087, 1020, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.31$ (m, 2H, ArH), $7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 4.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, J=3.7,5.9 \mathrm{~Hz}, \mathrm{C}_{\delta} \mathrm{H}\right)$, $4.55\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.07\left(\mathrm{dd}, 1 \mathrm{H}, J=3.7,8.7 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right), 3.89\left(\mathrm{qt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$), $3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}\right), 3.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.74(\mathrm{dd}, 1 \mathrm{H}, J=5.2,15.1 \mathrm{~Hz}$, $\left.\mathrm{C}_{\alpha} \mathrm{H}\right), 2.58\left(\mathrm{dd}, 1 \mathrm{H}, J=6.2,15.1 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}\right), 1.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.4,140.3,128.3,126.8,112.5,106.8,85.0,81.4,79.7,54.6,54.1$, 51.6, 51.2, 35.7, 26.0, 24.8; HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{6}\left(\mathrm{M}^{+}+\mathrm{H}\right) 366.1916$, found 366.1918 .

Boc- $(\boldsymbol{S})-\boldsymbol{\beta - C a a - O C H} 3 \mathbf{3}$ (5): A solution of $31(1.10 \mathrm{~g}, 3.01 \mathrm{mmol})$ in methanol $(5.0 \mathrm{~mL})$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(0.10 \mathrm{~g})$ for 12 h as described for 26 to give methyl (3S)-3-[(3aS,4R,6S,6aS)-6-methoxy-2,2-dimethylperhydrofuro[3,4-d][1,3]dioxol-4-yl]-3-aminopropanoate ($33 ; 0.75 \mathrm{~g}, 90 \%$) as a pale yellow liquid, which was used as such for the next reaction.

A solution of $33(0.78 \mathrm{~g}, 2.82 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.76 \mathrm{~mL}, 5.64 \mathrm{mmol})$ in THF (10 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with $(\mathrm{Boc})_{2} \mathrm{O}(0.68 \mathrm{~mL}, 2.82 \mathrm{mmol})$ and stirred at room temperature for 3 h . After completion of the reaction, solvent was evaporated and residue purified by column chromatography (Silica gel, 15% EtOAc in petroleum ether) to give 5 $(0.97 \mathrm{~g}, 92 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}=+54.0\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (Neat): 3380, 2975, 2943, 1710,

1505, 1335, 1165, 1102, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 5.10$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), $4.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 4.66\left(\mathrm{dd}, 1 \mathrm{H}, J=3.8,6.0 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.29$ (m, 1H, C ${ }_{\beta} \mathrm{H}$), 4.14 (br.m, 1H, C ${ }_{4} \mathrm{H}$), 3.69 (s, 3H, COOMe), 3.30 (s, 3H, OMe), 2.80-2.68 (m, $2 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}$), $1.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.44(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3,} 100 \mathrm{MHz}\right): \delta 172.0,155.3,112.7,106.7,85.1,79.6,79.2,54.5,51.7,47.4,36.5$, 28.4, 25.9, 24.6; HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{8}\left(\mathrm{M}^{+}+\mathrm{Na}\right) 398.1790$, found 398.1800 .

Boc- $(\boldsymbol{R})-\boldsymbol{\beta}-\mathbf{C a a}^{-\mathrm{OCH}_{3}} \mathbf{(6)}$: A solution of $32(0.80 \mathrm{~g}, 2.19 \mathrm{mmol})$ in methanol (3 mL) was treated with 10% Pd-C (cat.) as described for 26 gave methyl (3R)-3-[(3aS, 4R, $6 S, 6 a S)-6$ -methoxy-2,2-dimethylperhydrofuro[3,4-d][1,3] dioxol-4-yl]-3-ami- nopropanoate (34; 0.58 $\mathrm{g}, 88 \%$) as a yellow liquid, which was used as such for the next reaction.

As described for 5 , a solution of $34(0.70 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5.4$ $\mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was treated with $\mathrm{Boc}_{2} \mathrm{O}(0.61 \mathrm{~g}, 2.5 \mathrm{mmol})$ to give $6(0.84 \mathrm{~g}, 88 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}=+49.6\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (Neat): 3335, 2960, 2925, 1723, 1702, 1509, 1306, 1230, 1150, 1075, $980,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, $): \delta 5.42(\mathrm{~d}, 1 \mathrm{H}, \quad J=$ $9.4 \mathrm{~Hz}, \mathrm{NH}), 4.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 4.72\left(\mathrm{dd}, 1 \mathrm{H}, J=3.5,5.8 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}\right), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=5.8$, $\mathrm{C}_{2} \mathrm{H}$), $4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}\right), 4.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, $2.84\left(\mathrm{dd}, 1 \mathrm{H}, J=5.4,16.0 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}\right), 2.68\left(\mathrm{dd}, 1 \mathrm{H}, J=5.6,16.0 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}\right), 1.48(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 172.0,155.3$, 112.7, 106.8, 85.0, 79.7, 79.2, 78.7, 54.5, 51.6, 47.2, 36.3, 28.3, 25.9, 24.6; HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{8}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 398.1790, found 398.1783.
Boc-(\boldsymbol{R})- $\boldsymbol{\beta}$-Caa-OH (35): As described for 28, a solution of $\mathbf{6}(1.0 \mathrm{~g}, 2.6 \mathrm{mmol})$ gave 35 $(0.87 \mathrm{~g}, 90 \%)$ as a semi solid; $[\alpha]_{\mathrm{D}}=+51.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3415, 2930, 2590, $1715,1660,1468,1423,1365,1170,1105,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$,): $\delta 6.13$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 5.47 (br.s, $1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}$), 4.87 (s, $1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}$), 4.73 (dd, $1 \mathrm{H}, J=3.5,5.9 \mathrm{~Hz}$, $\mathrm{C}_{3} \mathrm{H}$), $4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.33$ (br.m, $1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.88(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right), 2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right), 1.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.44(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;$ FABMS: m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{8} 384\left[26,(\mathrm{M}+\mathrm{Na})^{+}\right], 362\left[28,(\mathrm{M}+\mathrm{H})^{+}\right], 306$ (50), 262 [100, (M+H-Boc) $\left.{ }^{+}\right], 154$ (12), 58 (68).

Cbz-(S)- β-Caa(NHBoc)-(R)- β-Caa-(S)- β-Caa-OH (38): As described for 28, a solution of $7(0.45 \mathrm{~g}, 0.45 \mathrm{mmol})$ gave $38(0.40 \mathrm{~g}, 91 \%)$ as a white solid, which was used as such for further reaction.

Boc-(S)- $\boldsymbol{\beta}$-Caa-OH (40): As described for 28, a solution of $5(0.60 \mathrm{~g}, 1.60 \mathrm{mmol})$ gave $40(0.54 \mathrm{~g}, 94 \%)$ as a pale yellow syrup; $[\alpha]_{\mathrm{D}}=+32.0\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (Neat): 3331, 2992, 1739, 1713, 1591, 1392, 1367, 1272, 1213, 1190, 1083. $969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.18$ (br.s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 4.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 4.68(\mathrm{dd}, 1 \mathrm{H}, J=3.7,5.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{3} \mathrm{H}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 4.27$ (br.m, $1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}$), $4.15(\mathrm{dd}, 1 \mathrm{H}, J=3.7,7.3 \mathrm{~Hz}$, $\mathrm{C}_{4} \mathrm{H}$), $3.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}\right), 1.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc})$, 1.29 (s, 3H, Me); FABMS: m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{8} 384$ [36, (M+H-Na) ${ }^{+}$], 362 [32, $\left.(\mathrm{M}+\mathrm{H})^{+}\right], 306(44), 262\left[100,(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}\right], 154$ (28), 57 (58).

Boc-(S)- $\boldsymbol{\beta}$-Caa-(\boldsymbol{R})- $\boldsymbol{\beta}$-Caa- $\mathbf{O C H}_{3}(\mathbf{4 1})$: A mixture of $40(1.0 \mathrm{~g}, 2.27 \mathrm{mmol})$, HOBt (0.36 g , $2.7 \mathrm{mmol})$, $\mathrm{EDCI}(0.522 \mathrm{~g}, 2.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0^{\circ} \mathrm{C}$ for 15 min and treated with $34(1.01 \mathrm{~g}, 2.77 \mathrm{mmol})$ under nitrogen atmosphere for 8 h . Workup as described for 36 and purification by column chromatography (Silica gel, 48\% EtOAc in petroleum ether) gave $41(1.43 \mathrm{~g}, 84 \%)$ as a semi solid; $[\alpha]_{\mathrm{D}}=+67.0\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3389, $3296,2938,1748,1703,1655,1507,1374,1317,1277,1178,1099,1027,983,885 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ; \delta 6.61(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{NH}-2), 5.49$ (br.s, $1 \mathrm{H}, \mathrm{NH}-1$), 4.89 (s, $1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-2$), $4.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-1\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, J=3.4,5.9 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-2\right), 4.73(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=3.5,6.2 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-1\right), 4.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-2\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-2\right), 4.53(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=6.2 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-1\right), 4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-1\right), 4.14\left(\mathrm{dd}, 1 \mathrm{H}, J=3.3,6.5 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-2\right), 4.12$ (br.m, $\left.1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}-1\right), 3.69$ (s, 3H, COOMe), 3.29 (s, 6H, OMe-1, OMe-2), 2.81 (dd, $1 \mathrm{H}, J=7.1$, $\left.15.7 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}-1\right), 2.67\left(\mathrm{dd}, 1 \mathrm{H}, J=5.4,15.7 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}-1\right), 2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}-2\right), 1.58$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.7,170.4,155.6,112.7,112.5,106.6,106.5,85.2,84.9$, $79.8,79.7,79.4,77.9,54.6,54.4,51.8,48.1,45.8,38.1,36.1,28.4,26.0,25.9,24.9,24.2 ;$ FABMS: m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{13} 619\left[15,(\mathrm{M}+\mathrm{H})^{+}\right], 519\left[100,(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}\right], 286$ (24), 276 (24), 147 (58), 155 (46); HRMS (ESI): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{13}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 641.2897, found 641.2882.
 mmol) and TFA (0.8 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 2 h . The solvent was evaporated under reduced pressure, resulting 42 was dried under high vaccum and used as such for further reaction.

A mixture of $29(0.63 \mathrm{~g}, 1.27 \mathrm{mmol})$, $\mathrm{HOBt}(0.20 \mathrm{~g}, 1.53 \mathrm{mmol})$, EDCI ($0.29 \mathrm{~g}, 1.53$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and treated with 42 and DIPEA (0.4 mL , 2.54 mmol) under nitrogen atmosphere for 8 h . Workup as described for 36 and purification by column chromatography (Silica gel, 80% EtOAc in petroleum ether) gave $10(0.84 \mathrm{~g}, 67 \%)$ as a white solid; m.p. $119-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+50.2\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3351, 2987, 1717, 1666, 1525, 1449, 1377, 1028, 1100, $970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{NH}-3), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=9.7$ $\mathrm{Hz}, \mathrm{NH}-2), 5.99(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{NH}-1), 5.10\left(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{~A}\right), 5.07(\mathrm{~d}$, $\left.1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{~B}\right), 4.89\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,6.0 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-2\right), 4.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-2\right), 4.86$ (s, 1H, C1H-3), 4.86 (br.s, $1 \mathrm{H}, \mathrm{NHBoc}$), 4.76 (dd, $1 \mathrm{H}, J=3.7,6.0 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-1$), 4.72 (m, 1 H , $\left.\mathrm{C}_{\beta} \mathrm{H}-3\right), 4.70\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6,6.0 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-3\right), 4.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-1\right), 4.52(\mathrm{~d}, 2 \mathrm{H}, J=6.0$ $\left.\mathrm{Hz}, \mathrm{C}_{2} \mathrm{H}-1, \mathrm{C}_{2} \mathrm{H}-3\right), 4.51\left(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-2\right), 4.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-2\right), 4.10(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=5.3,9.1 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}-1\right), 4.07\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,10.0 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-2\right), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=3.6,8.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{4} \mathrm{H}-3\right), 3.95\left(\mathrm{dd}, 1 \mathrm{H}, J=3.7,6.0 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-1\right), 3.67$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$), 3.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}\right), 3.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.01\left(\mathrm{ddd}, 1 \mathrm{H}, J=4.2,9.1,13.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~b}\right), 2.83$ (dd, $\left.1 \mathrm{H}, J=4.5,13.8 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S) }}-3\right), 2.64\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8,13.6 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S) }}-1\right), 2.58$ (dd, $\left.1 \mathrm{H}, J=9.2,13.6 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R })}-1\right), 2.57\left(\mathrm{dd}, 1 \mathrm{H}, J=9.4,13.8 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R })}-3\right), 2.47$ (dd, $\left.1 \mathrm{H}, J=4.2,14.0 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-R)}-2\right), 2.37\left(\mathrm{dd}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, 14.0, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-S)}-2\right), 1.50$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.43 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}$), 1.28 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 1.23 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 173.2,169.9,169.2,156.7,155.9,136.6$, $128.4,127.8,127.4,113.0,112.7,112.5,107.0,106.7,85.1,84.9,83.0,82.9,81.0,79.6$, $79.58,79.5,79.4,79.3,66.6,54.6,54.2,52.0,49.4,46.3,46.1,40.1,39.7,38.0,37.3,28.3$, 26.2, 26.1, 26.0, 24.9, 24.6; FABMS: m / z calculated for $\mathrm{C}_{47} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{19} 1017\left[8,(\mathrm{M}+\mathrm{Na})^{+}\right]$, $995\left[32,(\mathrm{M}+\mathrm{H})^{+}\right], 896\left[18,(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}\right], 519$ (40), 470 (41), 377 (48), 276 (100), 212 (47); HRMS (ESI): m / z calculated for $\mathrm{C}_{47} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{19}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 1017.4531, found 1017.4508.
solution of $7(0.40 \mathrm{~g}, 0.40 \mathrm{mmol})$ as described for 28 , gave $43(0.35 \mathrm{~g}, 90 \%)$ as a white solid, which was used as such for further reaction.

A mixture of $43(0.25 \mathrm{~g}, 0.25 \mathrm{mmol})$, $\mathrm{HOBt}(0.04 \mathrm{~g}, 0.30 \mathrm{mmol})$, EDCI $(0.06 \mathrm{~g}$, $0.30 \mathrm{mmol})$ and DIPEA ($0.13 \mathrm{~mL}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and treated with $26(0.09 \mathrm{~g}, 0.25 \mathrm{mmol})$ under nitrogen atmosphere for 8 h . Workup as described for 36 and purification by column chromatography (Silica gel, 1.6% methanol in CHCl_{3}) gave $11(0.18 \mathrm{~g}, 53 \%)$ as a white solid; m.p. $123-126^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+58.0(c 0.25$, CHCl_{3}); IR (KBr): 3340, 2982, 2938, 1716, 1658, 1522, 1371, 1272, 1209, 1150, $1050 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{NH}-3)$, $7.53(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{NH}-2), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{NH}-4), 6.15(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}$, NH-1), 5.38 (br.s, 1H, NHBoc-1), 5.30 (br.s, 1H, NHBoc-4), 5.10 (d, 1H, $J=12.4 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2} \mathrm{~A}\right), 5.07\left(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{~B}\right), 4.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}-2\right), 4.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-2\right)$, 4.86 (s, 1H, C 1 H-3), 4,74 (dd, $1 \mathrm{H}, J=3.6,6.1 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-1$), 4.72 (dd, $1 \mathrm{H}, J=3.6,6.1 \mathrm{~Hz}$, $\left.\mathrm{C}_{3} \mathrm{H}-3\right), 4.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-3\right), 4.62\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6,6.0 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-3\right), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{2} \mathrm{H}-4\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-3\right), 4.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-2\right), 4.52(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{2} \mathrm{H}-1, \mathrm{C}_{2} \mathrm{H}-2\right), 4.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-1\right), 4.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-4\right), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=4.9,8.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{1} \mathrm{H}-4\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, J=4.3,8.8 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}-1\right), 4.10\left(\mathrm{dd}, 1 \mathrm{H}, J=3.4,7.9 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-2\right), 4.09$ (dd, $\left.1 \mathrm{H}, J=3.6,8.5 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-4\right), 3.98$ (dd, $\left.1 \mathrm{H}, J=3.6,8.9 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-3\right), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=$ $3.6,7.9 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-1$), 3.67 (s, $3 \mathrm{H}, \mathrm{COOMe}$), 3.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.30 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}-1$), 3.29 (m, 1H, CH2c-4), 3.27 (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.97 (ddd, $2 \mathrm{H}, J=4.3,8.9,14.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~b}-1, \mathrm{CH}_{2} \mathrm{~d}-4$), 2.67 (dd, $\left.1 \mathrm{H}, J=5.5,16.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S) }}-4\right), 2.65\left(\mathrm{dd}, 1 \mathrm{H}, J=5.9,15.7 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S) }}-3\right)$, $2.62\left(\mathrm{dd}, 1 \mathrm{H}, J=4.4,13.8 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro- }-S}-1\right), 2.56\left(\mathrm{dd}, 1 \mathrm{H}, J=9.2,13.8 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R })}-1\right)$, $2.48\left(\mathrm{dd}, 1 \mathrm{H}, J=9.3,15.7 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-3\right), 2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R })}-2\right), 2.44(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-s) }}-2\right), 1.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.45$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 1.43 ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}\right), 1.29$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), $1.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 172.7,170.7,170.3,170.0$, 156.8, 156.1, 156.0, 136.7, 128.4, 127.8, 127.4, 113.0, 112.9, 112.6, 112.5, 107.0, 106.9, $85.1,85.0,83.5,83.2,83.1,83.0,81.1,80.5,79.7,79.6,79.5,79.4,79.2,79.1,66.5,54.7$, $54.3,51.8,49.8,46.8,46.4,46.1,40.3,39.7,39.6,39.5,38.4,34.9,28.4,26.2(2), 26.1$,
26.0, 25.0, 24.8, 24.7, 24.6; HRMS (ESI): m / z calculated for $\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{~N}_{6} \mathrm{O}_{25}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 1359.6322, found 1359.6298.

Cbz-(S)- β-Caa(NHBoc)-(R)- β-Caa-(S)- β-Caa-(R)- β-Caa(NHBoc)-(S)- $\beta-\mathbf{C a a}-(R)-\beta-$

Caa- $\mathbf{O C H}_{3}$ (9): Deprotection of $\mathbf{1 0}(0.17 \mathrm{~g}, 0.48 \mathrm{mmol})$ with $10 \% \mathrm{Pd}-\mathrm{C}$ in methanol (2.0 mL) was performed as described for 26, to afford $\mathbf{4 4}$, which was used as such which was used as such for further reaction.

A mixture of $38(0.20 \mathrm{~g}, 0.20 \mathrm{mmol})$, $\mathrm{HOBt}(0.03 \mathrm{~g}, 0.24 \mathrm{mmol})$, EDCI (0.03 g , 0.24 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0^{\circ} \mathrm{C}$ for 15 min and treated with 44, and DIPEA (0.05 $\mathrm{mL}, 0.030 \mathrm{mmol}$) under nitrogen atmosphere for 8 h . Workup as described for 36 and purification by column chromatography (Silica gel, 2.1% methanol in CHCl_{3}) to give $\mathbf{9}$ $(0.20 \mathrm{~g}, 54 \%)$ as a white solid; m.p. $158-159{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+124.5\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) : 3292, 3089, 2986, 2940, 1719, 1653, 1529, 1378, 1268, 1167, 1101, 969, $872 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.07(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{NH}-4), 8.72$ (d, $1 \mathrm{H}, J=9.7 \mathrm{~Hz}, \mathrm{NH}-3$), $8.55(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{NH}-6), 7.70$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-5)$, $7.25(\mathrm{~d}, 1 \mathrm{H}, ~ J=9.7 \mathrm{~Hz}, \mathrm{NH}-2), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{NH}-1), 5.21(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}$, BocNH-1), 5.17 (d, 1H, $J=12.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{~A}$), 5.11 (d, $\left.1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{~B}\right), 5.09$ (dd, $\left.1 \mathrm{H}, J=3.4,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-5\right), 4.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-2\right), 4.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-6\right), 4.89(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\beta} \mathrm{H}-2\right), 4.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-3\right), 4.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-5, \mathrm{C}_{1} \mathrm{H}-6\right), 4.85(\mathrm{dd}, 1 \mathrm{H}, J=3.4,5.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{3} \mathrm{H}-3\right), 4.81\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, 5.9, \mathrm{C}_{3} \mathrm{H}-1\right), 4.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}-6\right), 4.73(\mathrm{dd}, 1 \mathrm{H}, J=3.0$, $\left.5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-2\right), 4.72$ (dd, $1 \mathrm{H}, J=3.3,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-4$), 4.70 (m, 1H, C ${ }_{\beta} \mathrm{H}-6$), 4.69 (br.s, 1 H , BocNH-2), $4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-4\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-1\right), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{2} \mathrm{H}-2, \mathrm{C}_{2} \mathrm{H}-6\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-4\right), 4.51\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-5\right), 4.49(\mathrm{~d}$, $\left.1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-3\right), 4.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-5\right), 4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-3\right), 4.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-1\right)$, 4.19 (dd, $\left.1 \mathrm{H}, J=5.0,9.7 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}-1\right), 4.10\left(\mathrm{dd}, 1 \mathrm{H}, J=3.4,10.4 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-5\right), 4.06$ (dd, $\left.1 \mathrm{H}, J=3.4,10.2 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-3\right), 4.03\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6,8.8 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-1\right), 4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}-2\right.$, $\mathrm{C}_{1} \mathrm{H}-4$), 3.92 (dd, $1 \mathrm{H}, J=3.4,9.2 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-6$), 3.78 (dd, $1 \mathrm{H}, J=3.4,8.5 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-4$), 3.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$), $3.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}\right), 3.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.31(\mathrm{~s}, 3 \mathrm{H}$, OMe), $3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{c}\right.$), 3.26 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.00 (ddd, $1 \mathrm{H}, J=2.9,8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~d}$), 2.96 (dd, $\left.1 \mathrm{H}, J=3.0,12.1 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S })}-6\right), 2.94\left(\mathrm{dd}, 1 \mathrm{H}, J=3.4,12.5 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S) }}-4\right), 2.88$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~b}$), $2.73\left(\mathrm{dd}, 1 \mathrm{H}, J=2.1,12.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-S)^{-2}}\right), 2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-S)^{-1}}\right.$,
$\left.\mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R })}-1\right), 2.54\left(\mathrm{dd}, 1 \mathrm{H}, J=2.8,12.5 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-3\right), 2.46(\mathrm{dd}, 1 \mathrm{H}, J=3.3,13.2 \mathrm{~Hz}$, $\left.\mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-5\right), 2.38\left(\mathrm{t}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-6\right), 2.37\left(\mathrm{dd}, 1 \mathrm{H}, J=5.2,12.4 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro- }}\right.$ $\left.\left.s^{-}\right)^{-3}\right), 2.34\left(\mathrm{t}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-R)}-2\right), 2.32\left(\mathrm{dd}, 1 \mathrm{H}, J=4.9,13.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S) }}-5\right)$, $2.12\left(\mathrm{t}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-4\right), 1.47(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.42(\mathrm{~s}, 6 \mathrm{H}$, Me), 1.41 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}$), 1.40 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 1.28 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 1.27 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 174.0,171.3,170.6,170.1,169.2,156.0,155.8,155.7,136.7,128.4$, 127.8, 127.6, 113.1, 112.7, 112.6(2), 112.4, 112.0, 108.2, 106.9, 106.7, 106.1, 85.0, 84.9, $84.8,84.0,83.3,83.0,82.9,81.6,81.5,80.5,80.4,80.0,79.9,79.6(2), 79.3,79.2,79.1$, $78.5,78.0,66.3,55.3,54.6,54.1,53.6,52.4,49.3,48.7,47.3,46.6,46.5,46.0,42.1,40.3$, $40.2,40.0,39.5,39.4,37.7,37.4,28.3,26.7,26.2,26.0,25.9,25.8,25.7,25.1,24.6(2)$, 24.5, 23.8; HRMS (ESI): m / z calculated for $\mathrm{C}_{85} \mathrm{H}_{130} \mathrm{~N}_{8} \mathrm{O}_{35}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 1845.8536, found 1845.8606.

Cbz-(R)- β-Caa(NHBoc)-(S)- β-Caa-(R)- β-Caa-(S)- β-Caa(NHBoc)-(R)- β-Caa-(S)- β -

Caa]- OCH_{3} (12): Deprotection of $7(0.21 \mathrm{~g}, 0.48 \mathrm{mmol})$ with $10 \% \mathrm{Pd}-\mathrm{C}$ in methanol (2.0 mL) was performed as described for $\mathbf{2 6}$, furnished $\mathbf{3 9}$, which was used as such for further reaction.

A mixture of $43(0.20 \mathrm{~g}, 0.20 \mathrm{mmol})$, $\mathrm{HOBt}(0.03 \mathrm{~g}, 0.24 \mathrm{mmol})$, EDCI $(0.03 \mathrm{~g}$, 0.24 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0^{\circ} \mathrm{C}$ for 15 min and treated with 39, and DIPEA (0.05 $\mathrm{mL}, 0.30 \mathrm{mmol}$) under nitrogen atmosphere for 8 h . Workup as described for 36 and purification by column chromatography (Silica gel, 2.6% methanol in CHCl_{3}) to give $\mathbf{1 2}$ $(0.2 \mathrm{~g}, 56 \%)$ as a white solid; m.p. $140-143{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+112.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (KBr) : $3307,2986,2940,1716,1658,1525,1450,1378,1266,1207,1166,1100,971,870 \mathrm{~cm}^{-11} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}+30 \mu \mathrm{~L} \mathrm{DMSO}_{6} d_{6}, 500 \mathrm{MHz}\right) ; \delta 8.47(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{NH}-2), 8.38(\mathrm{~d}, 1 \mathrm{H}$, $J=9.5 \mathrm{~Hz}, \mathrm{NH}-3), 8.27$ (d, 1H, $J=8.6 \mathrm{~Hz}, \mathrm{NH}-4), 8.25$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{NH}-3), 7.05$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{NH}-6), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}, \mathrm{NH}-1), 5.20$ (br.s, $1 \mathrm{H}, \mathrm{NHBoc}-1), 5.30$ (br.s, $1 \mathrm{H}, \mathrm{NHBoc}-4), 5.13\left(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{~A}\right), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2} \mathrm{~B}\right), 5.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}-4\right), 4.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-6\right), 4.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-5\right), 4.86(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{1} \mathrm{H}-2\right), 4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}-2\right), 4.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}-3\right), 4.76\left(\mathrm{dd}, 1 \mathrm{H}, J=3.5,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-1\right)$, 4.75 (dd, $\left.1 \mathrm{H}, J=3.5,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-5\right), 4.63\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6,5.9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}-6\right), 4.57(\mathrm{~d}, J=$ $\left.5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}-1\right), 4.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-3\right), 4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-1,5\right), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}$,
$\left.\mathrm{C}_{2} \mathrm{H}-4\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-6\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-5\right), 4.53(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\beta} \mathrm{H}-2\right), 4.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-6\right), 4.46\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}-2\right), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{2} \mathrm{H}-3\right), 4.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}-2\right), 4.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}-6\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, J=6.3,8.6 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}-4\right)$, $4.11\left(\mathrm{dd}, 1 \mathrm{H}, J=6.3,8.6 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}-1\right), 4.04\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6,9.8 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-2\right), 4.02(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=3.5,9.4 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-4\right), 3.95\left(\mathrm{dd}, 1 \mathrm{H}, J=3.5,8.9 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}-5\right), 3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}-3\right), 3.93(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}-1$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$), 3.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.23-3.06 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{a}-1\right), 3.32-2.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{c}-4\right), 2.94\left(\mathrm{dd}, 1 \mathrm{H}, J=5.6,14.7 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-R)}-6\right), 2.88$ (dd, $\left.1 \mathrm{H}, J=4.1,12.6 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-S)^{-2}}\right), 2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,13 . .1 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro- }-5}-1\right), 2.72$ (dd, $1 \mathrm{H}, J=2.1,12.5 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{\left.(p r o-S)^{-5}\right)}$, $2.62\left(\mathrm{dd}, 1 \mathrm{H}, J=5.4,14.7 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-S)^{-}}\right.$), 2.45 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-1\right), 2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-2\right), 2.41\left(\mathrm{dd}, 1 \mathrm{H}, J=3.5,13.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R })}{ }^{-}\right.$ 4), $2.32\left(\mathrm{dd}, 1 \mathrm{H}, J=5.0,13.2 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S })}-4\right), 2.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-S })}-2\right), 2.26(\mathrm{t}, 1 \mathrm{H}, J=$ $\left.12.5 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(\text {pro-R) }}-5\right), 2.20\left(\mathrm{t}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}, \mathrm{C}_{\alpha} \mathrm{H}_{(p r o-R)}-3\right), 1.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.46(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 1.45(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.29(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.27(\mathrm{~s}, 3 \mathrm{H}$, Me), 1.26 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), $1.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 172.6,171.0$, $170.6,170.5,169.7,169.6,157.1,155.9,155.7,136.8,128.4,127.7,127.1,113.1,112.7$, $112.5,112.4,112.2,108.0,107.4,107.0,106.0,85.0,84.9,83.4,83.3,83.0,81.1,80.7$, $80.3,79.7,79.6$ (2), 79.5 (2), 79.4, 79.3, 79.1, 79.0, 66.6, 55.2, 54.7, 54.6, 53.6, 51.9, 50.3, $47.2,46.9,46.0,45.8,42.2,41.5,40.5,39.9,39.6,38.5,37.7,35.3,28.3,26.4,26.3,26.2$, 26.1, 26.0, 25.8, 25.0, 24.9, 24.7, 24.5, 24.4; HRMS (ESI): m / z calculated for $\mathrm{C}_{85} \mathrm{H}_{130} \mathrm{~N}_{8} \mathrm{O}_{35}$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right) 1845.8536$, found 1845.8581 .

Supporting Fig $1:{ }^{1} \mathrm{H}$ NMR Spectrum of $1\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 2: ${ }^{13} \mathrm{C}$ NMR Spectrum of $1\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig $3:{ }^{1} \mathrm{H}$ NMR Spectrum of $2\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 4: ${ }^{13} \mathrm{C}$ NMR Spectrum of $2\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

$\mathrm{R}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{Boc}$
[Boc-(S)- β-Caa-OMe]

Supporting Fig $5:{ }^{1} \mathrm{H}$ NMR Spectrum of $5\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 7: ${ }^{1} \mathrm{H}$ NMR Spectrum of $6\left(\mathbf{C D C l}_{3}, \mathbf{3 0 3} \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 8: ${ }^{13} \mathrm{C}$ NMR Spectrum of $6\left(\mathbf{C D C l}_{3}, 294 \mathrm{~K}, 75 \mathrm{MHz}\right)$

Supporting Fig 9: ${ }^{1} \mathrm{H}$ NMR Spectrum of $7\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 11: ${ }^{1} \mathrm{H}$ NMR Spectrum of $8\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 13: TOCSY Spectrum of $8\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 14: ROESY Spectrum of $8\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 15: ${ }^{1} \mathrm{H}$ NMR Spectrum of $9\left(\mathrm{CDCl}_{3}, \mathbf{3 0 3} \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 16: ${ }^{13} \mathrm{C}$ NMR Spectrum of $9\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 150 \mathrm{MHz}\right)$

Supporting Fig 17: TOCSY Spectrum of $9\left(\mathbf{C D C l}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 18: ROESY Spectrum of $9\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 19: ${ }^{1} \mathrm{H}$ NMR Spectrum of $10\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 20: ${ }^{13} \mathrm{C}$ NMR Spectrum of $10\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 150 \mathrm{MHz}\right)$

Supporting Fig 21: TOCSY Spectrum of $10\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 22: ROESY Spectrum of $10\left(\mathbf{C D C l}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 24: ${ }^{13} \mathrm{C}$ NMR Spectrum of $11\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 150 \mathrm{MHz}\right)$

Supporting Fig 25: TOCSY Spectrum of $11\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 26: ROESY Spectrum of $11\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 27: ${ }^{1} \mathrm{H}$ NMR Spectrum of $12\left(\mathrm{CDCl}_{3}+30 \mu \mathrm{~L}\right.$ DMSO- $\left.d_{6}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 28: ${ }^{13} \mathrm{C}$ NMR Spectrum of $12\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 150 \mathrm{MHz}\right)$

Supporting Fig 29: TOCSY Spectrum of $12\left(\mathrm{CDCl}_{3}+30 \mu \mathrm{~L}\right.$ DMSO- $\left.d_{6}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 30: ROESY Spectrum of $12\left(\mathrm{CDCl}_{3}+30 \mu \mathrm{~L}\right.$ DMSO- $\left.d_{6}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 31: ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{8 b}\left(\mathbf{9 0} \% \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathbf{1 0} \% \mathrm{D}_{2} \mathrm{O}, \mathbf{3 0 3} \mathrm{K}, 500 \mathrm{MHz}\right)$

Supporting Fig 32: ${ }^{1} \mathrm{H}$ NMR Spectrum of $9 \mathrm{~b}\left(\mathbf{9 0} \% \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathbf{1 0} \% \mathrm{D}_{\mathbf{2}} \mathrm{O}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 33: ${ }^{1} \mathrm{H}$ NMR Spectrum of 11a ($\left.\mathbf{9 0 \%} \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathbf{1 0} \% \mathrm{D}_{\mathbf{2}} \mathrm{O}, \mathbf{3 0 3} \mathrm{K}, 500 \mathrm{MHz}\right)$

Supporting Fig 36: ${ }^{13} \mathrm{C}$ NMR Spectrum of $18\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 37: ${ }^{1} \mathrm{H}$ NMR Spectrum of $19\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 38: ${ }^{13} \mathrm{C}$ NMR Spectrum of $19\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 39: ${ }^{1} \mathrm{H}$ NMR Spectrum of $20\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 40: ${ }^{13} \mathrm{C}$ NMR Spectrum of $20\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 44: ${ }^{13} \mathrm{C}$ NMR Spectrum of 23 (trans) ($\left.\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 45: ${ }^{1} \mathrm{H}$ NMR Spectrum of 23 (cis) ($\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}$)

Supporting Fig 46: ${ }^{13} \mathrm{C}$ NMR Spectrum of 23 (cis) ($\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}$)

Supporting Fig 48: ${ }^{13} \mathrm{C}$ Spectrum of $24\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 150 \mathrm{MHz}\right)$

Supporting Fig 49: ${ }^{1} \mathrm{H}$ NMR Spectrum of $25\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 50 : ${ }^{13} \mathrm{C}$ Spectrum of $25\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 150 \mathrm{MHz}\right)$

Supporting Fig 51: ${ }^{1} \mathrm{H}$ NMR Spectrum of $31\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 52: ${ }^{13} \mathrm{C}$ Spectrum of $31\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig $53:{ }^{1} \mathrm{H}$ NMR Spectrum of $32\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 54: ${ }^{13} \mathrm{C}$ Spectrum of $32\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 55: ${ }^{1} \mathrm{H}$ NMR Spectrum of $36\left(\mathrm{CDCl}_{3}, \mathbf{3 0 3} \mathrm{~K}, 400 \mathrm{MHz}\right)$

Supporting Fig 56: ${ }^{13} \mathrm{C}$ Spectrum of $36\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 57: ${ }^{1} \mathrm{H}$ NMR Spectrum of $41\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 500 \mathrm{MHz}\right)$

Supporting Fig 58: ${ }^{13} \mathrm{C}$ Spectrum of $41\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, 100 \mathrm{MHz}\right)$

Supporting Fig 59: Solvent titration plots for 8-12

Supporting Fig 60: Superimposed 20 minimum energy structures for 8 (A) side view and (B) top view with sugars

(A)

(B)

Supporting Table 1: Distance constraints used in MD calculations for 8, derived from ROESY experiment in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, \mathbf{3 0 3 K})$

Residue	Atom	Residue	Atom	Lower	Upper
bound	bound				
1	NH	1	$\mathrm{C}_{4} \mathrm{H}$	2.33	2.85
1	NH	1	$\mathrm{C}_{\alpha} \mathrm{H}$	2.06	2.52
1	NH	2	NH	2.80	3.43
1	$\mathrm{C}_{\alpha} \mathrm{H}$	1	$\mathrm{C}_{4} \mathrm{H}$	2.23	2.72
1	$\mathrm{C}_{\alpha} \mathrm{H}$	2	NH_{2}	2.00	2.45
2	NH	2	$\mathrm{C}_{4} \mathrm{H}$	2.51	3.07
2	NH	2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R })}$	2.55	3.12

2	$\mathrm{C}_{\beta} \mathrm{H}$	3	NH	2.35	2.88
2	$\mathrm{C}_{\beta} \mathrm{H}$	4	NH	2.52	3.08
2	$\mathrm{C}_{\beta} \mathrm{H}$	4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.13	2.65
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	2	$\mathrm{C}_{4} \mathrm{H}$	2.00	2.45
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	3	NH	2.25	2.75
3	NH	1(Boc)	NH	2.74	3.35
3	NH	3	$\mathrm{C}_{4} \mathrm{H}$	2.07	2.53
3	NH	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	2.52	3.08
3	NH	4	NH	3.20	3.91
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3	$\mathrm{C}_{4} \mathrm{H}$	2.46	3.01
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	4	NH	2.50	3.05
4	NH	4	$\mathrm{C}_{4} \mathrm{H}$	2.35	2.88
4	NH	4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.49	3.04
4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	4	$\mathrm{C}_{4} \mathrm{H}$	2.15	2.63

Supporting Fig 61: Superimposed 20 minimum energy structures for 9
(A) side view and (B) top view with sugars

Supporting Table 2: Distance constraints used in MD calculations for 9, derived from ROESY experiment in $\left.\mathrm{CDCl}_{3} \mathbf{(5 0 0} \mathbf{~ M H z}, 303 \mathrm{~K}\right)$

Residue	Atom	Residue	Atom	Lower	Upper
bound	bound				
1	NH	1	$\mathrm{C}_{4} \mathrm{H}$	2.54	3.10
1	NH	1	$\mathrm{C}_{\alpha} \mathrm{H}$	3.51	4.29
1	$\mathrm{C}_{\alpha} \mathrm{H}$	1	$\mathrm{C}_{4} \mathrm{H}$	2.77	3.38
1	$\mathrm{C}_{\alpha} \mathrm{H}$	2	NH	2.33	2.85
1	$\mathrm{C}_{4} \mathrm{H}$	$\mathrm{Boc}-1$	NH	2,82	3.44
2	NH	2	$\mathrm{C}_{4} \mathrm{H}$	2.88	3.52

2	NH	2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.71	3.31
2	$\mathrm{C}_{\beta} \mathrm{H}$	3	NH	2.57	3.14
2	$\mathrm{C}_{\beta} \mathrm{H}$	4	NH	2.37	2.90
2	$\mathrm{C}_{\beta} \mathrm{H}$	4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.19	2.68
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	2	$\mathrm{C}_{4} \mathrm{H}$	2.16	2.64
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	3	NH	2.49	3.04
3	NH	3	$\mathrm{C}_{4} \mathrm{H}$	2.37	2.90
3	NH	4	NH	3.47	4.24
3	$\mathrm{C}_{\beta} \mathrm{H}$	Boc-1	NH	2.59	3.16
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	3	$\mathrm{C}_{4} \mathrm{H}$	2.07	2.53
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	4	NH	2.66	3.25
4	NH	4	$\mathrm{C}_{4} \mathrm{H}$	2.52	3.08
4	NH	4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3.77	4.61
4	$\mathrm{C}_{\beta} \mathrm{H}$	5	NH	2.65	3.24
4	$\mathrm{C}_{\beta} \mathrm{H}$	6	NH	2.62	3.20
4	$\mathrm{C}_{\beta} \mathrm{H}$	6	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.25	2.75
4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	4	$\mathrm{C}_{4} \mathrm{H}$	2.26	2.77
4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	5	NH	2.26	2.77
5	NH	5	$\mathrm{C}_{4} \mathrm{H}$	2.23	2.73
5	NH	5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	3.48	4.25
5	NH	6	NH	2.95	3.61

5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	5	$\mathrm{C}_{4} \mathrm{H}$	2.58	3.15
5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	6	NH	2.51	3.07
5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R })}$	5	$\mathrm{C}_{4} \mathrm{H}$	2.92	3.57
6	NH	6	$\mathrm{C}_{4} \mathrm{H}$	2.51	3.07
6	NH	6	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3.14	3.88
6	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R })}$	6	$\mathrm{C}_{4} \mathrm{H}$	2.29	2.80

Supporting Fig 62: Superimposed 20 minimum energy structures for 10
(A) side view and (B) top view with sugars

(A)

(B)

Supporting Table 3: Distance constraints used in MD calculations for 10, derived from ROESY experiment in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, \mathbf{2 8 8 K})$

Residue	Atom	Residue	Atom	Lower bound	Upper bound
1	NH	1	$\mathrm{C}_{4} \mathrm{H}$	2.42	2.96
1	NH	1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.80	3.43
1	NH	Boc	NH	2.98	3.64
1	$\mathrm{C}_{\beta} \mathrm{H}$	2	NH	2.35	2.88
1	$\mathrm{C}_{\beta} \mathrm{H}$	3	NH	2.65	3.24
1	$\mathrm{C}_{\beta} \mathrm{H}$	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.11	2.58
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	1	$\mathrm{C}_{4} \mathrm{H}$	2.26	2.76
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	2	NH	2.53	3.09
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	1	$\mathrm{C}_{4} \mathrm{H}$	2.23	2.72
1	$\mathrm{C}_{4} \mathrm{H}$	Boc	NH	2.70	3.30
2	NH	2	$\mathrm{C}_{4} \mathrm{H}$	2.22	2.71
2	NH	3	NH	2.70	3.30
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	2	$\mathrm{C}_{4} \mathrm{H}$	2.78	3.40
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	3	NH	2.49	3.04
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2	$\mathrm{C}_{4} \mathrm{H}$	2.60	3.18
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3	NH	2.80	3.43
3	NH	3	$\mathrm{C}_{4} \mathrm{H}$	2.40	2.93
3	NH	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.99	3.66

3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	3	$\mathrm{C}_{4} \mathrm{H}$	2.44	2.98
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R })}$	3	$\mathrm{C}_{4} \mathrm{H}$	2.30	2.81

Supporting Fig 63: Superimposed 20 minimum energy structures for 11
(A) side view and (B) top view with sugars

(A)

(B)

Supporting Table 4: Distance constraints used in MD calculations for 11, derived from ROESY experiment in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, 288 \mathrm{~K})$

Residue	Atom	Residue	Atom	Lower bound	Upper bound
1	NH	1	$\mathrm{C}_{4} \mathrm{H}$	2.38	2.91
1	NH	1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.72	3.33
1	$\mathrm{C}_{\beta} \mathrm{H}$	2	NH	2.53	3.09
1	$\mathrm{C}_{\beta} \mathrm{H}$	3	NH	2.56	3.13
1	$\mathrm{C}_{\beta} \mathrm{H}$	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.20	2.69
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	1	$\mathrm{C}_{4} \mathrm{H}$	2.09	2.56
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	2	NH	2.70	3.30
2	NH	2	$\mathrm{C}_{4} \mathrm{H}$	2.41	2.94
2	NH	2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3.16	3.86
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2	$\mathrm{C}_{4} \mathrm{H}$	2.43	2.97
3	NH	3	$\mathrm{C}_{4} \mathrm{H}$	2.37	2.90
3	NH	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.35	2.88
3	$\mathrm{C}_{\beta} \mathrm{H}$	4	NH	2.21	2.70
3	$\mathrm{C}_{\alpha} \mathrm{H}_{\text {(Pro-S) }}$	4	NH	2.44	2.98
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3	$\mathrm{C}_{4} \mathrm{H}$	2.31	2.82
4	NH	4	$\mathrm{C}_{4} \mathrm{H}$	2.15	2.63
4	NH	4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	2.44	2.98

4	$\mathrm{C}_{\alpha} \mathrm{H}_{\text {(Pro-R) }}$	4	$\mathrm{C}_{4} \mathrm{H}$	2.10	2.57

Supporting Fig 64: Superimposed 20 minimum energy structures for 12
(A) side view and (B) top view with sugars

(A)

(B)

Supporting Table 5: Distance constraints used in MD calculations for 12, derived from ROESY experiment in $\mathrm{CDCl}_{3} \mathbf{(5 0 0 ~ M H z , ~ 3 0 3 K) ~}$

Residue	Atom	Residue	Atom	Lower bound	Upper bound
1	NH	1	$\mathrm{C}_{4} \mathrm{H}$	2.27	2.77
1	NH	1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.56	3.13

1	$\mathrm{C}_{\beta} \mathrm{H}$	2	NH	2.60	3.20
1	$\mathrm{C}_{\beta} \mathrm{H}$	3	NH	2.35	2.89
1	$\mathrm{C}_{\beta} \mathrm{H}$	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.20	2.69
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	1	$\mathrm{C}_{4} \mathrm{H}$	2.32	2.84
1	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	2	NH	2.43	2.97
1	$\mathrm{C}_{4} \mathrm{H}$	Boc-1	NH	2.82	3.44
2	NH	2	$\mathrm{C}_{4} \mathrm{H}$	2.86	3.50
2	NH	2	$\mathrm{C}_{\alpha} \mathrm{H}_{\text {(Pro-S) }}$	2.71	3.31
2	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3	NH	2.63	3.22
3	NH	3	$\mathrm{C}_{4} \mathrm{H}$	2.20	2.69
3	NH	3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.63	3.22
3	$\mathrm{C}_{\beta} \mathrm{H}$	4	NH	2.70	3.30
3	$\mathrm{C}_{\beta} \mathrm{H}$	5	NH	2.40	2.98
3	$\mathrm{C}_{\beta} \mathrm{H}$	5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	2.10	2.56
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	3	$\mathrm{C}_{4} \mathrm{H}$	1.99	2.43
3	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S) }}$	3	$\mathrm{C}_{4} \mathrm{H}$	2.43	2.97
4	NH	4	$\mathrm{C}_{4} \mathrm{H}$	2.40	2.98
4	NH	4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	2.99	3.66
4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	4	$\mathrm{C}_{4} \mathrm{H}$	2.10	2.57
4	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R) }}$	5	NH	2.43	2.97
5	NH	5	$\mathrm{C}_{4} \mathrm{H}$	2.43	2.97

5	NH	5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R })}$	2.71	3.31
5	$\mathrm{C}_{\beta} \mathrm{H}$	6	NH	2.60	3.20
5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-R })}$	5	$\mathrm{C}_{4} \mathrm{H}$	2.24	2.74
5	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	6	NH	2.44	2.98
6	NH	6	$\mathrm{C}_{4} \mathrm{H}$	2.42	2.96
6	NH	6	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	2.56	3.13
6	$\mathrm{C}_{\alpha} \mathrm{H}_{(\text {Pro-S })}$	6	$\mathrm{C}_{4} \mathrm{H}$	2.40	2.88

