Supporting Information

Synthesis and Conformational Studies of Peptides from New C-Linked Carbo- β -

Amino Acids (β-Caas) with Anomeric Methylamino- and Difluorophenyl Moieties

Gangavaram V. M. Sharma,*^a Velaparthi Subash, ^a Nelli Yella Reddy,^a Kongari

Narsimulu,^b Rapolu Ravi,^b Vivekanand B. Jadhav,^a Upadhyayula S. N. Murthy,^c

Kankipati. Hara Kishore^c and Ajit C. Kunwar*^b

 a. D-211, Discovery Laboratory, Organic Chemistry Division III; b. Centre for Nuclear Magnetic Resonance; c. Biology Group, Indian Institute of Chemical Technology, Hyderabad 500 007

Co	nte	nts

Page No.

Supporting Information I

1. Experimental procedures	S3-S6
2. Experimental section of 21, 2, 28, 29, 31, 32, 5, 6, 35, 38, 40, 41, 10, 12	I S7-S16
9 and 12	
3. ¹ H and ¹³ C NMR Spectra of 1 in $CDCl_3$	S17-S18
4. ¹ H and ¹³ C NMR Spectra of 2 in $CDCl_3$	S19-S20
5. ¹ H and ¹³ C NMR Spectra of 5 in $CDCl_3$	S21-S22
6. ¹ H and ¹³ C NMR Spectra of 6 in $CDCl_3$	S23-S24
7. ¹ H and ¹³ C NMR Spectra of 7 in $CDCl_3$	S25-S26
8. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 8 in CDCl ₃	S27-S30
9. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 9 in CDCl ₃	S31-S34
10. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 10 in CDCl ₃	
11. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 11 in CDCl ₃	S39-S42
12. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 12 in CDCl ₃	S43-S46
13. ¹ H NMR Spectra of 8b in D_2O	
14. ¹ H NMR Spectra of 9b in D_2O	S48
15. ¹ H NMR Spectra of 11a in D_2O	
16. ¹ H NMR Spectra of 9b in CD ₃ OH	
17. ¹ H and ¹³ C NMR Spectra of 18 in CDCl ₃	S51-S52

18. ¹ H and ¹³ C NMR Spectra of 19 in CDCl ₃	S53-S54
19. ¹ H and ¹³ C NMR Spectra of 20 in CDCl ₃	S55-S56
20. ¹ H and ¹³ C NMR Spectra of 21 in $CDCl_3$	S57-S58
21. ¹ H and ¹³ C NMR Spectra of 23 (<i>trans</i> and <i>cis</i>) in CDCl ₃	S59-S62
22. ¹ H and ¹³ C NMR Spectra of 24 in CDCl ₃	S63-S64
23. ¹ H and ¹³ C NMR Spectra of 25 in CDCl ₃	S65-S66
24. ¹ H and ¹³ C NMR Spectra of 31 in $CDCl_3$	S67-S68
25. ¹ H and ¹³ C NMR Spectra of 32 in $CDCl_3$	S69-S70
26. ¹ H and ¹³ C NMR Spectra of 36 in CDCl ₃	S71-S72
27. ¹ H and ¹³ C NMR Spectra of 41 in CDCl ₃	S73-S74
28. Solvent titration plots for 8-12	S75
29. MD simulated structures and Distance constraints	S76-S86

Supporting Information II

30. Conformational analysis of 15 and 16	S 1
31. Experimental section of 47, 51, 52, 3, 4, 55, 56, 60, 62, 63, 15, 64, 16	S2-S7
32. 1H and 13C NMR Spectra of 46-52 in CDCl3	S8-S19
33. ¹ H and ¹³ C NMR Spectra of 3 in $CDCl_3$	S20-S21
34. ¹ H and ¹³ C NMR Spectra of 4 in CDCl ₃	S22-S23
35. ¹ H and ¹³ C NMR Spectra of 55 in CDCl ₃	S24-S25
36. ¹ H and ¹³ C NMR Spectra of 56 in CDCl ₃	S26-S27
37. ¹ H and ¹³ C NMR Spectra of 59 in CDCl ₃	S28-S29
38. ¹ H and ¹³ C NMR Spectra of 63 in CDCl ₃	S30-S31
39. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 13 in CDCl ₃	S32-S35
40. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 14 in CDCl ₃	S36-S39
41. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 15 in CDCl ₃	S40-S43
42. ¹ H, ¹³ C, TOCSY and ROESY Spectra of 16 in CDCl ₃	S44-S47
43. Solvent titration plots of 13-16	S48
44. MD simulated structures and Distance constraints	S49-S60
45. Antibacterial activity of 13-16	S61

General Experimental: HOBT: (1-Hydroxy-1H benzotriazole), EDCI: (1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride) coupling reagents were used for peptide synthesis. All coupling reactions and Boc deprotection reactions were carried out under nitrogen atmosphere; TLC: Silica gel 60 F_{254} plates; detection with UV or dipping into the solution of ninhydrin followed by heating; Dichloromethane was distilled over CaH₂ and stored over 4Å molecular sieves, Et₃N was dried on KOH and distilled from ninhydrin, amino-acids and peptide coupling reagents were purchased from standard catalogues;

IR spectra were recorded in KBr pallets in the 400 - 4000 cm⁻¹ range. **Melting** points were checked using cover slips.

NMR spectra were recorded in CDCl₃ in 5-10 mM solution on 600 MHz (¹H: 600 MHz, ¹³C: 150 MHz), 500 MHz (¹H: 500 MHz, ¹³C: 125 MHz), 400 MHz (¹H: 400 Mz, ¹³C: 100 MHz), and 300 MHz (¹H: 300 MHz, ¹³C: 75 MHz) spectrometers. Chemical shifts (δ) are reported in ppm downfield with respect to TMS (SiMe₄) (= 0 ppm). The proton resonance assignments were carried out by using two-dimensional NMR experiments. Total correlation spectroscopy experiments (TOCSY) were run with mixing time of 0.08s and spin-lock field of 10 KHz (500 MHz) and while for the rotating frame Overhauser effect spectroscopy (ROESY) experiments mixing time of 0.2-0.3s and a spin lock field of about 2.5 KHz (500 MHz) used. ROESY experiments provided information on the spatial proximity of the protons. Information on the H-bonding was carried by solvent titration studies by sequentially adding the polar solvent DMSO-*d*₆ up to 300 μ L to 600 μ L CDCl₃ solution.

Molecular Dynamics (MD): Molecular dynamics simulations were carried out using Insight II(2005)/Discover program¹ on a Silicon Graphics Octane workstation, IRIX64 (6.5) Operating system, model Onyx3 Infinite Performance Fuel. Peptides were initially drawn using the Sketcher from the Builder module of Insight II. Initially sketching of a peptide is done in two dimensions (2D) which was followed by its conversion to three dimensional (3D) structure, which is a convenient alternative to build the peptide in 3D. All the hydrogen atoms are added automatically in the 3D conversion process. After the completion of sketching the molecules, consistency of the chirality with that expected for at all the stereocenters was verified. After constructing the peptide model, the atom potential types and partial charges were set using the force field CVFF. We have used the default parameters throughout the simulations. Minimization's were first carried out with steepest decent method, followed by conjugate gradient method for a maximum of 3000 iterations each or RMS deviation of 0.001 kcal/mol, whichever was earlier. After minimization, those dihedral angles which had inputs from NMR data (coupling constants) were modified accordingly. Before these folded structures were subjected to undergo yet another round of minimization, the distance restraints derived from the volume integrals obtained from the ROESY spectra using a two-spin approximation and the reference distance of 1.8 Å for the geminal protons. The upper and lower bound of the distance constraints have been obtained by enhancing and reducing the derived distance by 10%. The distance constraints were applied as a square well potential with a force constant of 15 kcal mol⁻¹ Å⁻². Using these restraint, energy minimization is carried out by using protocol mentioned above. This permits to remove initial strain in the structures.

The NMR restrained energy-minimized structures were then subjected to MD simulations. For MD runs, a temperature of 300K was used. The molecules were initially equilibrated for 20 ps and subsequently subjected to a 600 ps dynamics with a step size of 1 fs, sampling the trajectory at equal intervals of 6 ps. In the trajectory 100 samples were generated and minimized with above protocol. Out of these 20 selected lowest energy structures were aligned and compared with the experimental data. For peptide **10** backbone and heavy atom RMSDs are 0.90 Å and 1.25 Å respectively. The corresponding values for the peptides **11**, **12**, **15** and **16** were: 1.15 Å and 1.73Å; 1.20 Å and 1.82 Å; 0.83 Å and 1.40 Å; and 0.93 Å and 1.55 Å (See Supporting information II for **15** and **16**) respectively. For clarity all the protons have been removed and sugars are replaced with methyl groups after the MD calculations.

Reference:

1. Discover, Version 2.98, Biosym Molecular Simulations, SanDiego, CA, 1995

Circular Dichroism (CD) Spectra: The CD spectra were recorded at room temperature on a JASCO J-810 spectrometer using a rectangular fused quartz cell of 0.2 cm path length. CD cell was washed with an aqueous NaOH solution before the each new spectral mesurement to remove any peptide adhering to the inner surface. Sample solutions (peptide concentration, 200 μ M in methanol) were prepared 20 min before measurements. To improve the signal to noise(S/N) ratio all spectra were the averages of eight repeats obtained by collecting data from 260 to 190 nm at 0.2 nm intervals, with a response time of 1 sec for each point. Binomial method is used for smoothening the spectra. The plotted values are expressed in terms of [θ], the total molar ellipticity (deg cm² dmol⁻¹).

Evaluation of antibacterial activity (MIC):

Test organisms, *Bacillus subtilis* (MTCC 441), *Bacillus sphaericus* (MTCC 511), *Serratia marcescens* (MTCC 97), *Pseudomonas oleovorans* (MTCC 617), *Klebsiella aerogenes* (MTCC 39), *Chromobacterium violaceum* (MTCC 2656) were obtained from the Institute of Microbial Technology, Chandigarh, India. Cultures of test organisms were maintained on nutrient agar slants and were sub cultured prior to testing.

The minimum inhibitory concentration (MIC) was measured by broth dilution method (Villanova, 1982). A set of sterile test tubes with nutrient broth media were capped with cotton plugs (1-9). The test compound is dissolved in sterile water and concentration of $100\mu g/mL$ of the test compound is added to the first tube, which is serially diluted from 1 to 9. A fixed volume of 0.5 mL over night culture is added in all the test tubes and incubated at 37 $^{\circ}$ C for 24 h. After incubation period the tubes were measured for turbidity with spectrophotometer.

Reference:

Villanova, 1982. National committee for clinical laboratory standards (NCCLS), standard method for dilution antimicrobial susceptibility tests for bacteria, which grows aerobically, p.242.

High Performance Liquid Chromatography (HPLC):

Apparatus and chromatographic conditions

The HPLC system consisting of two LC-20AT pumps, an SPD-M20A diode array detector, a SIL-20AC auto sampler, a DGU-20A3 degasser and CBM-20A communications bus module (all from Shimadzu, Kyoto, Japan) was used. A reversed phase Waters C18 (Waters) column (25 cm×4.6mm i.d.; particle size 5 μ m) was used for separation. The chromatographic and the integrated data were recorded using HP-Vectra (Hewlett Packard, Waldron, Germany) computer system using LC-Solution data acquiring software (Shimadzu, Kyoto, Japan).

The mobile phase was 0.02M ammonium acetate: acetonitrile. The analysis was carried out in a isocratic elution mode with 67% acetonitrile and 33% (0.02M) ammonium acetate using a flow rate of 1.0 ml/min. at room temperature. Before delivering into the system the solvent was filtered through 0.455 μ m, PTFE filter and degassed under vacuum. The chromatograms were recorded at 254 nm.

Experimental Section:

tert.-Butyl *N*-((3*aR*,4*R*,6*R*,6*aS*)-6-[(1*R*)-1,2-dihydroxyethyl]-2,2-dimethylperhydro furo[3,4-*d*][1,3]dioxol-4-ylmethyl)carbamate (21): A solution of 20 (2.35 g, 6.3 mmol) in methanol (10 mL) and water (2 mL) containing PTSA (catalytic) was stirred at room temperature for 8 h. Reaction mixture was neutralized with Et₃N, solvent evaporated and residue purified by column chromatography (Silica gel, 50% EtOAc in petroleum ether) to afford 21 (1.82 g, 87%) as a colorless syrup; $[\alpha]_D = +4.0$ (*c* 2.5, CHCl₃); IR (neat): 3373, 2978, 2935, 1690, 1527, 1368, 1253, 1085, 893 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δ 4.86 (dd, 1H, *J* = 3.4, 5.9 Hz, C₃H), 4.84 (bs, 1H, m, NH), 4.54 (d, 1H, *J* = 5.9 Hz, C₂H), 4.05 (dd, 1H, *J* = 4.5, 10.2 Hz, C₁H), 3.97 (m, 1H, C₄H), 3.95 (m, 1H, C₅H), 3.79 (dd, 1H, *J* = 3.4, 11.8, Hz, C₆H), 3.75 (dd, 1H, *J* = 3.0, 11.8, Hz, C₆·H), 3.28 (m, 1H, CH₂a), 3.02 (m, 1H, CH₂b), 1.49 (s, 3H, Me), 1.44 (s, 9H, Boc), 1.34(s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 156.7, 112.8, 84.1, 82.6, 81.0, 78.5, 69.8, 63.6, 39.5, 28.3, 26.1, 24.8; HRMS (ESI): *m/z* calculated for C₁₅H₂₇NO₇ (M⁺+Na) 356.1685, found 356.1671.

Cbz-(R**)-\beta-Caa(NHBoc)-OCH₃ (2):** A mixture of **25** (0.83 g, 1.78 mmol) in methanol (3.0 mL) was treated with 10% Pd-C (0.1 g) as described for **26** to give *methyl* (3R)-3-((3aS,4R,6R,6aR)-6-[(tert.-butoxycarbonyl)amino]methyl-2,2-dimethyl perhydrofiuro[3,4-d][1,3]dioxol-4-yl)-3-aminopropanoate (27) as a pale yellow liquid, which was used as such for the next reaction.

A solution of **27** (0.40 g, 1.06 mmol) and DIPEA (0.37 mL, 2.12 mmol) in CH₂Cl₂ (10 mL) at 0 °C was treated with Cbz-Cl (0.21 g, 1.23 mmol), as described for **1** to give **2** (0.49 g, 90%) as a syrup; $[\alpha]_D = +19.2$ (*c* 0.5, CHCl₃); IR (Neat): 3358, 2982, 2289, 1744, 1540, 1447, 1376, 879, 754 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.41-7.23 (m, 5H, Ar-H), 5.65 (d, 1H, *J* = 9.7 Hz, NH), 5.10 (m, 2H, PhCH₂), 4.73 (dd, 1H, *J* = 3.8, 6.0 Hz, C₃H), 4.70 (br.m, 1H, BocNH), 4.53 (d, 1H, *J* = 6.0 Hz, C₂H), 4.43 (m, 1H, C_βH), 4.07 (dd, 1H, *J* = 5.7, 9.2 Hz, C₁H), 4.04 (m, 1H, C₄H), 3.67 (s, 3H, COOMe), 3.28 (m, 1H, CH₂a), 3.00 (ddd, 1H, *J* = 4.1, 9.2, 13.9 Hz, 1H, CH₂b), 2.84 (dd, 1H, *J* = 7.1, 15.8 Hz, 1H, C_αH), 2.69 (dd, 1H, *J* = 5.6, 15.8 Hz, 1H, C_αH), 1.49 (s, 3H, Me), 1.44 (s, 9H, Boc), 1.30 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 171.9, 155.8, 141.8, 136.5, 128.4, 128.2, 127.9, 127.8,

113.0, 83.0, 80.8, 80.7, 78.8, 66.5, 51.7, 47.8, 39.8, 36.1, 28.3, 26.1, 24.6; HRMS (ESI): m/z calculated for C₂₅H₃₆N₂O₉ (M⁺+H) 509.2499, found 509.2481.

Cbz-(*S***)-β-Caa(NHBoc)-OH (28):** A solution of ester **1** (0.75 g, 1.47 mmol) in methanol (4 mL) was treated with aq. 4N NaOH solution (4 mL) at 0 °C to room temperature. After 2 h, methanol was removed and adjusted pH to 2-3 with aq. 1N HCl solution at 0 °C and extracted with EtOAc (2 x 10 mL). The organic layer was dried (Na₂SO₄) and concentrated to give **28** (0.62 g, 83%) as a white solid, m.p. 78-80 °C; $[\alpha]_D = +42.2$ (*c* 0.25, CHCl₃); IR (KBr): 3364, 2980, 2934, 1712 1514, 1451, 1371, 1249, 1168, 1040 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.39-7.26 (m, 5H, Ar-H), 5.61 (d, 1H, *J* = 8.3 Hz, NH), 5.08 (m, 2H, PhCH₂), 4.88 (br.m, 1H, BocNH), 4.68 (m, 1H, C₃H), 4.53 (d, 1H, *J* = 5.9 Hz, C₂H), 4.35 (m, 1H, C_βH), 4.15-4.02 (m, 2H, C₄H, C₁H), 3.31 (m, 1H, CH₂a), 3.11 (m, 1H, CH₂b), 2.83 (m, 1H, C_αH), 2.61 (m, 1H, C_αH), 1.47 (s, 3H, Me), 1.41 (s, 9H, Boc), 1.28 (s, 3H, Me); HRMS (ESI): *m/z* calculated for C₂₄H₃₄N₂O₉ (M⁺+Na) 517.2162, found 517.2163.

Cbz-(*R***)-β-Caa(NHBoc)-OH (29):** A solution of **2** (0.50 g, 0.98 mmol) as described for **28** gave **29** (0.42 g, 86%) as a white solid; m.p. 78-80 °C; $[\alpha]_D = +56.73$ (*c* 0.25, CHCl₃); IR(KBr): 3364, 2980, 2934, 1712, 1514, 1451, 1371, 1249, 1168, 1040; ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.26 (m, 5H, Ar-H), 5.87 (d, 1H, *J* = 9.6 Hz, NH), 5.09 (m, 2H, PhCH₂), 4.97 (br.m, 1H, BocNH), 4.74 (m, 1H, C₃H), 4.53 (d, 1H, *J* = 5.9 Hz, C₂H), 4.45 (m, 1H, C_βH), 4.15-4.05 (m, 2H, C₄H, C₁H), 3.28 (m, 1H, CH₂a), 3.02 (ddd, 1H, *J* = 4.2, 8.9, 14.0 Hz, 1H, CH₂b), 2.84 (dd, 1H, *J* = 7.0, 15.9 Hz, 1H, C_αH), 2.70 (dd, 1H, *J* = 6.3, 15.9 Hz, 1H, C_α'H), 1.49 (s, 3H, Me), 1.43 (s, 9H, Boc), 1.30 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 175.1, 156.2, 156.1, 136.5, 128.4, 127.9, 127.7, 112.9, 83.1, 82.9, 80.9, 79.7, 78.5, 66.6, 47.8, 39.8, 36.2, 28.3 26.1, 24.5; HRMS (ESI): *m/z* calculated for C₂₄H₃₄N₂O₉ (M⁺+Na) 517.2162, found 517.2171.

(*S*)-Methyl-3-(benzylamino)-3-((3a*S*,4*S*,6*R*,6a*S*)-tetrahydro-4-methoxy-2,2-dimethyl furo[3,4-*d*][1,3]dioxol-6-yl)propanoate (31) and (*R*)-methyl-3-(benzylamino)-3-((3a*S*,4*S*, 6*R*,6a*S*)-tetrahydro-4-methoxy-2,2-dimethyl furo[3,4-*d*][1,3]dioxol-6yl)propanoate (32): As described for the synthesis of 24, a mixture of 30 (10.15 g, 39.3 mmol) and benzylamine (10 mL, 100 mmol) was stirred at room temperature for 12 h and purified the reaction mixture by column chromatography. First eluted was (Silica gel, 10%

EtOAc in petroleum ether) 32 (3.68 g, 25.6%) as a pale yellow syrup; $[\alpha]_{D} = +59.0$ (c 0.25, CHCl₃); IR (Neat): 3356, 2988, 2938, 2838, 2833, 1736, 1438, 1375, 1194, 1097, 744 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.34 (m, 2H, ArH), 7.29 (m, 2H, ArH), 7.22 (m, 1H, ArH), 4.84 (s, 1H, C₁H), 4.78 (dd, 1H, J = 3.4, 5.9 Hz, C₃H), 4.54 (d, 1H, J = 5.9Hz, C₂H), 3.91 $(dd, 1H, J = 3.4, 8.5 Hz, C_4H), 3.88 (s, 2H, ArCH_2), 3.67 (s, 3H, COOMe), 3.49 (m, 1H, 1H, 2H)$ $C_{\beta}H$), 3.29 (s, 3H, OMe), 2.76 (dd, 1H, J = 4.5, 15.4 Hz, $C_{\alpha}H$), 2.60 (dd, 1H, J = 7.0, 15.4 Hz, C_α'H), 1.42 (s, 3H, Me), 1.31 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 172.7, 140.6, 128.2, 128.1, 126.8, 112.4, 106.7, 85.0, 81.2, 79.7, 54.3, 52.9, 51.4, 51.1, 36.1, 26.1, 24.9; HRMS (ESI): *m/z* calculated for C₁₉H₂₈NO₆ (M⁺+H) 366.1916, found 366.1913. Second eluted was (Silica gel, 15% EtOAc in petroleum ether) **31** (5.51 g, 38%) as a pale yellow syrup; $[\alpha]_{\rm D} = +48.0$ (c 0.25, CHCl₃); IR (Neat): 3370, 2991, 2937, 2899, 1739, 1444, 1160, 1087, 1020, 738 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.34 (m, 2H, ArH), 7.31 (m, 2H, ArH), 7.23 (m, 1H, ArH), 4.89 (s, 1H, C₁H), 4.74 (dd, 1H, J = 3.7, 5.9 Hz, C₈H), 4.55 (d, 1H, J = 5.9 Hz, C₂H), 4.07 (dd, 1H, J = 3.7, 8.7 Hz, C₄H), 3.89 (qt, 2H, CH₂), 3.69 (s, 3H, COOMe), 3.46 (m, 1H, $C_{B}H$), 3.31 (s, 3H, OMe), 2.74 (dd, 1H, J = 5.2, 15.1 Hz, $C_{\alpha}H$, 2.58 (dd, 1H, J = 6.2, 15.1 Hz, $C_{\alpha}H$), 1.42 (s, 3H, Me), 1.29 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 140.3, 128.3, 126.8, 112.5, 106.8, 85.0, 81.4, 79.7, 54.6, 54.1, 51.6, 51.2, 35.7, 26.0, 24.8; HRMS (ESI): m/z calculated for C₁₉H₂₈NO₆ (M⁺+H) 366.1916, found 366.1918.

Boc-(*S*)- β -**Caa-OCH**₃ (5): A solution of 31 (1.10 g, 3.01 mmol) in methanol (5.0 mL) was treated with 10% Pd-C (0.10 g) for 12 h as described for 26 to give *methyl* (3S)-3- [(3aS,4R,6S,6aS)-6-methoxy-2,2-dimethylperhydrofuro[3,4-d][1,3]dioxol-4-yl]-3-amino-propanoate (33; 0.75 g, 90%) as a pale yellow liquid, which was used as such for the next reaction.

A solution of **33** (0.78 g, 2.82 mmol) and Et₃N (0.76 mL, 5.64 mmol) in THF (10 mL) at 0 °C was treated with (Boc)₂O (0.68 mL, 2.82 mmol) and stirred at room temperature for 3 h. After completion of the reaction, solvent was evaporated and residue purified by column chromatography (Silica gel, 15% EtOAc in petroleum ether) to give **5** (0.97 g, 92%) as a syrup; $[\alpha]_D = +54.0$ (*c* 0.25, CHCl₃); IR (Neat): 3380, 2975, 2943, 1710,

1505, 1335, 1165, 1102, 1010 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz,): δ 5.10 (br.s, 1H, NH), 4.90 (s, 1H, C₁H), 4.66 (dd, 1H, J = 3.8, 6.0 Hz, C₃H), 4.54 (d, 1H, J = 6.0 Hz, C₂H), 4.29 (m, 1H, C_βH), 4.14 (br.m, 1H, C₄H), 3.69 (s, 3H, COOMe), 3.30 (s, 3H, OMe), 2.80-2.68 (m, 2H, C_αH, C_αH), 1.46 (s, 3H, Me), 1.44 (s, 9H, Boc), 1.29 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 172.0, 155.3, 112.7, 106.7, 85.1, 79.6, 79.2, 54.5, 51.7, 47.4, 36.5, 28.4, 25.9, 24.6; HRMS (ESI): *m/z* calculated for C₁₇H₂₉NO₈ (M⁺+Na) 398.1790, found 398.1800.

Boc-(*R*)-β-Caa-OCH₃ (6): A solution of 32 (0.80 g, 2.19 mmol) in methanol (3 mL) was treated with 10% Pd-C (cat.) as described for 26 gave *methyl* (3*R*)-3-[(3aS,4R,6S,6aS)-6-*methoxy-2,2-dimethylperhydrofuro*[3,4-d][1,3] *dioxol-4-yl*]-3-ami- nopropanoate (34; 0.58 g, 88%) as a yellow liquid, which was used as such for the next reaction.

As described for **5**, a solution of **34** (0.70 g, 2.5 mmol) and Et₃N (0.7 mL, 5.4 mmol) in THF (10 mL) was treated with Boc₂O (0.61 g, 2.5 mmol) to give **6** (0.84 g, 88%) as a syrup; $[\alpha]_D = +49.6$ (*c* 0.25, CHCl₃); IR (Neat): 3335, 2960, 2925, 1723, 1702, 1509, 1306, 1230, 1150, 1075, 980, 847 cm⁻¹; ¹H NMR (CDCl₃, 500MHz,): δ 5.42 (d, 1H, *J* = 9.4 Hz, NH), 4.87 (s, 1H, C₁H), 4.72 (dd, 1H, *J* = 3.5, 5.8 Hz, C₃H), 4.53 (d, 1H, *J* = 5.8, C₂H), 4.34 (m, 1H, C_βH), 4.11 (m, 1H, C₄H), 3.69 (s, 3H, COOMe), 3.28 (s, 3H, OMe), 2.84 (dd, 1H, *J* = 5.4, 16.0 Hz, C_αH), 2.68 (dd, 1H, *J* = 5.6, 16.0 Hz, C_αH), 1.48 (s, 3H, Me), 1.43 (s, 9H, Boc), 1.30 (s, 3H, Me); ¹³C NMR (CDCl₃, 75 MHz): δ 172.0, 155.3, 112.7, 106.8, 85.0, 79.7, 79.2, 78.7, 54.5, 51.6, 47.2, 36.3, 28.3, 25.9, 24.6; HRMS (ESI): *m/z* calculated for C₁₇H₂₉NO₈ (M⁺+Na) 398.1790, found 398.1783.

Boc-(*R*)-β-Caa-OH (35): As described for 28, a solution of 6 (1.0 g, 2.6 mmol) gave 35 (0.87 g, 90%) as a semi solid; $[\alpha]_D = +51.2$ (*c* 0.5, CHCl₃); IR (KBr): 3415, 2930, 2590, 1715, 1660, 1468, 1423, 1365, 1170, 1105, 844 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz,): δ 6.13 (br.s, 1H, NH), 5.47 (br.s, 1H, C₄H), 4.87 (s, 1H, C₁H), 4.73 (dd, 1H, *J* = 3.5, 5.9 Hz, C₃H), 4.54 (d, 1H, *J* = 5.9 Hz, C₂H), 4.33 (br.m, 1H, C_βH), 3.30 (s, 3H, OMe), 2.88 (m, 1H, C_αH), 2.73 (m, 1H, C_αH), 1.48 (s, 3H, Me), 1.44 (s, 9H, Boc), 1.30 (s, 3H, Me); FABMS: *m/z* calculated for C₁₆H₂₇NO₈ 384 [26, (M+Na)⁺],362 [28, (M+H)⁺], 306 (50), 262 [100, (M+H-Boc)⁺], 154 (12), 58 (68).

Cbz-(S)- β -Caa(NHBoc)-(R)- β -Caa-(S)- β -Caa-OH (38): As described for 28, a solution of 7 (0.45 g, 0.45 mmol) gave 38 (0.40 g, 91%) as a white solid, which was used as such for further reaction.

Boc-(*S*)-β-Caa-OH (40): As described for 28, a solution of **5** (0.60 g, 1.60 mmol) gave 40 (0.54 g, 94%) as a pale yellow syrup; $[\alpha]_D = +32.0$ (*c* 0.25, CHCl₃); IR (Neat): 3331, 2992, 1739, 1713, 1591, 1392, 1367, 1272, 1213, 1190, 1083. 969 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 5.18 (br.s, 1H, NH), 4.91 (s, 1H, C₁H), 4.68 (dd, 1H, *J* = 3.7, 5.9 Hz, C₃H), 4.56 (d, 1H, *J* = 5.9 Hz, C₂H), 4.27 (br.m, 1H, C_βH), 4.15 (dd, 1H, *J* = 3.7, 7.3 Hz, C₄H), 3.32 (s, 3H, OMe), 2.80 (m, 2H, C_αH, C_αH), 1.46 (s, 3H, Me), 1.45 (s, 9H, Boc), 1.29 (s, 3H, Me); FABMS: *m/z* calculated for C₁₆H₂₇NO₈ 384 [36, (M+H-Na)⁺], 362 [32, (M+H)⁺], 306 (44), 262 [100, (M+H-Boc)⁺], 154 (28), 57 (58).

Boc-(S)-β-Caa-(R)-β-Caa-OCH₃ (41): A mixture of 40 (1.0 g, 2.27 mmol), HOBt (0.36 g, 2.7 mmol), EDCI (0.522 g, 2.7 mmol) in CH₂Cl₂ was stirred at 0 °C for 15 min and treated with 34 (1.01 g, 2.77 mmol) under nitrogen atmosphere for 8 h. Workup as described for 36 and purification by column chromatography (Silica gel, 48% EtOAc in petroleum ether) gave **41** (1.43 g, 84%) as a semi solid; $[\alpha]_D = +67.0$ (*c* 0.25, CHCl₃); IR (KBr): 3389, 3296, 2938, 1748, 1703, 1655, 1507, 1374, 1317, 1277, 1178, 1099, 1027, 983, 885 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz); δ 6.61 (d, 1H, J = 8.7 Hz, NH-2), 5.49 (br.s, 1H, NH-1), 4.89 (s, 1H, C₁H-2), 4.86 (s, 1H, C₁H-1), 4.74 (dd, 1H, J = 3.4, 5.9 Hz, C₄H-2), 4.73 (dd, 1H, J = 3.5, 6.2 Hz, C₄H-1), 4.69 (m, 1H, C₆H-2), 4.54 (d, 1H, J = 5.9 Hz, C₂H-2), 4.53 (d, 1H, J= 6.2 Hz, C₂H-1), 4.18 (m, 1H, C_BH-1), 4.14 (dd, 1H, J = 3.3, 6.5 Hz, C₃H-2), 4.12 (br.m, 1H, C₃H-1), 3.69 (s, 3H, COOMe), 3.29 (s, 6H, OMe-1, OMe-2), 2.81 (dd, 1H, J = 7.1, 15.7 Hz, C_{α} H-1), 2.67 (dd, 1H, J = 5.4, 15.7 Hz, $C_{\alpha'}$ H-1), 2.59 (m, 2H, C_{α} H, $C_{\alpha'}$ H-2), 1.58 (s, 3H, Me), 1.51 (s, 3H, Me), 1.45 (s, 9H, Boc), 1.31 (s, 3H, Me), 1.28 (s, 3H, Me); ¹³C NMR (CDCl₃, 100 MHz): δ 171.7, 170.4, 155.6, 112.7, 112.5, 106.6, 106.5, 85.2, 84.9, 79.8, 79.7, 79.4, 77.9, 54.6, 54.4, 51.8, 48.1, 45.8, 38.1, 36.1, 28.4, 26.0, 25.9, 24.9, 24.2; FABMS: m/z calculated for C₂₈H₄₆N₂O₁₃ 619 [15, (M+H)⁺], 519 [100, (M+H-Boc)⁺], 286 (24), 276 (24), 147 (58), 155 (46); HRMS (ESI): m/z calculated for $C_{28}H_{46}N_2O_{13}$ (M⁺+Na) 641.2897, found 641.2882.

Cbz-(*R*)- β -Caa(NHBoc)-(*S*)- β -Caa-(*R*)- β -Caa-OCH₃ (10): A solution of 41 (0.78 g, 1.27 mmol) and TFA (0.8 mL) in CH₂Cl₂ was stirred at 0 °C to room temperature for 2 h. The solvent was evaporated under reduced pressure, resulting 42 was dried under high vaccum and used as such for further reaction.

A mixture of 29 (0.63 g, 1.27 mmol), HOBt (0.20 g, 1.53 mmol), EDCI (0.29 g, 1.53 mmol) in CH₂Cl₂ was stirred at 0 °C for 15 min and treated with 42 and DIPEA (0.4 mL, 2.54 mmol) under nitrogen atmosphere for 8 h. Workup as described for 36 and purification by column chromatography (Silica gel, 80% EtOAc in petroleum ether) gave **10** (0.84 g, 67%) as a white solid; m.p. 119-122 °C; $[\alpha]_D = +50.2$ (c 0.25, CHCl₃); IR (KBr): 3351, 2987, 1717, 1666, 1525, 1449, 1377, 1028, 1100, 970 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.35-7.28 (m, 5H, Ar-H), 7.36 (d, 1H, J = 9.4 Hz, NH-3), 7.02 (d, 1H, J = 9.7 Hz, NH-2), 5.99 (d, 1H, J = 10.0 Hz, NH-1), 5.10 (d, 1H, J = 12.4 Hz, PhCH₂A), 5.07 (d, 1H, J = 12.4 Hz, PhCH₂B), 4.89 (dd, 1H, J = 4.0, 6.0 Hz, C₃H-2), 4.87 (s, 1H, C₁H-2), 4.86 (s, 1H, C₁H-3), 4.86 (br.s, 1H, NHBoc), 4.76 (dd, 1H, J = 3.7, 6.0 Hz, C₃H-1), 4.72 (m, 1H, $C_{\beta}H-3$, 4.70 (dd, 1H, J = 3.6, 6.0 Hz, $C_{3}H-3$), 4.54 (m, 1H, $C_{\beta}H-1$), 4.52 (d, 2H, J = 6.0Hz, C₂H-1, C₂H-3), 4.51 (d, 1H, J = 6.0 Hz, C₂H-2), 4.51 (m, 1H, C₈H-2), 4.10 (dd, 1H, J = 5.3, 9.1 Hz, C₁H-1), 4.07 (dd, 1H, J = 4.0, 10.0 Hz, C₄H-2), 4.00 (dd, 1H, J = 3.6, 8.0 Hz, C_4H-3), 3.95 (dd, 1H, J = 3.7, 6.0 Hz, C_4H-1), 3.67 (s, 3H, COOMe), 3.28 (s, 3H, OMe), 3.28 (m, 1H, CH₂a), 3.27 (s, 3H, OMe), 3.01 (ddd, 1H, J = 4.2, 9.1, 13.9 Hz, CH₂b), 2.83(dd, 1H, J = 4.5, 13.8 Hz, $C_{\alpha}H_{(pro-S)}$ -3), 2.64 (dd, 1H, J = 4.8, 13.6 Hz, $C_{\alpha}H_{(pro-S)}$ -1), 2.58 (dd, 1H, J = 9.2, 13.6 Hz, $C_{\alpha}H_{(pro-R)}$ -1), 2.57 (dd, 1H, J = 9.4, 13.8 Hz, $C_{\alpha}H_{(pro-R)}$ -3), 2.47 (dd, 1H, J = 4.2, 14.0 Hz, $C_{\alpha}H_{(pro-R)}$ -2), 2.37 (dd, 1H, J = 4.7 Hz, 14.0, $C_{\alpha}H_{(pro-S)}$ -2), 1.50 (s, 3H, Me), 1.48 (s, 3H, Me), 1.46 (s, 3H, Me), 1.43 (s, 9H, Boc), 1.28 (s, 6H, Me), 1.23 (s, 3H, Me); ¹³C NMR (CDCl₃ 150 MHz): δ 173.2, 169.9, 169.2, 156.7, 155.9, 136.6, 128.4, 127.8, 127.4, 113.0, 112.7, 112.5, 107.0, 106.7, 85.1, 84.9, 83.0, 82.9, 81.0, 79.6, 79.58, 79.5, 79.4, 79.3, 66.6, 54.6, 54.2, 52.0, 49.4, 46.3, 46.1, 40.1, 39.7, 38.0, 37.3, 28.3, 26.2, 26.1, 26.0, 24.9, 24.6; FABMS: m/z calculated for C₄₇H₇₀N₄O₁₉ 1017 [8, (M+Na)⁺], 995 [32, $(M+H)^+$], 896 [18, $(M+H-Boc)^+$], 519 (40), 470 (41), 377 (48), 276 (100), 212 (47); HRMS (ESI): m/z calculated for C₄₇H₇₀N₄O₁₉ (M⁺+Na) 1017.4531, found 1017.4508.

Cbz-(R)- β -Caa(NHBoc)-(S)- β -Caa-(R)- β -Caa-(S)- β -Caa(NHBoc)-OCH₃ (11): A solution of 7 (0.40 g, 0.40 mmol) as described for 28, gave 43 (0.35 g, 90%) as a white solid, which was used as such for further reaction.

A mixture of 43 (0.25 g, 0.25 mmol), HOBt (0.04 g, 0.30 mmol), EDCI (0.06 g, 0.30 mmol) and DIPEA (0.13 mL, 0.75 mmol) in CH₂Cl₂ was stirred at 0 °C for 15 min and treated with 26 (0.09 g, 0.25 mmol) under nitrogen atmosphere for 8 h. Workup as described for 36 and purification by column chromatography (Silica gel, 1.6% methanol in CHCl₃) gave **11** (0.18 g, 53%) as a white solid; m.p. 123-126 °C; $[\alpha]_D = +58.0$ (c 0.25, CHCl₃); IR (KBr): 3340, 2982, 2938, 1716, 1658, 1522, 1371, 1272, 1209, 1150, 1050 cm⁻ ¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.35-7.27 (m, 5H, Ar-H), 7.62 (d, 1H, J = 9.4 Hz, NH-3), 7.53 (d, 1H, J = 8.9 Hz, NH-2), 7.16 (d, 1H, J = 8.7 Hz, NH-4), 6.15 (d, 1H, J = 9.9 Hz, NH-1), 5.38 (br.s, 1H, NHBoc-1), 5.30 (br.s, 1H, NHBoc-4), 5.10 (d, 1H, J = 12.4 Hz, PhCH₂A), 5.07 (d, 1H, J = 12.4 Hz, PhCH₂B), 4.88 (m, 1H, C₃H-2), 4.87 (s, 1H, C₁H-2), 4.86 (s, 1H, C₁H-3), 4,74 (dd, 1H, J = 3.6, 6.1 Hz, C₃H-1), 4.72 (dd, 1H, J = 3.6, 6.1 Hz, $C_{3}H-3$, 4.64 (m, 1H, $C_{B}H-3$), 4.62 (dd, 1H, J = 3.6, 6.0 Hz, $C_{3}H-3$), 4.54 (d, 1H, J = 6.0Hz, $C_{2}H-4$), 4.53 (d, 1H, J = 6.1 Hz, $C_{2}H-3$), 4.53 (m, 1H, $C_{6}H-2$), 4.52 (d, 2H, J = 6.0 Hz, $C_{2}H-1$, $C_{2}H-2$), 4.51 (m, 1H, $C_{R}H-1$), 4.45 (m, 1H, $C_{R}H-4$), 4.12 (dd, 1H, J = 4.9, 8.9 Hz, C_1H-4 , 4.11 (dd, 1H, J = 4.3, 8.8 Hz, C_1H-1), 4.10 (dd, 1H, J = 3.4, 7.9 Hz, C_4H-2), 4.09 $(dd, 1H, J = 3.6, 8.5 Hz, C_4H-4), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.5 Hz, C_4H-4), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.96 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, J = 3.6, 8.9 Hz, C_4H-3), 3.98 (dd, 1H, 2Hz, C_4H-3), 3.98 (dd, 2Hz, C_4Hz, C_4Hz, C_4H$ 3.6, 7.9 Hz, C₄H-1), 3.67 (s, 3H, COOMe), 3.30 (s, 3H, OMe), 3.30 (m, 1H, CH₂a-1), 3.29 (m, 1H, CH₂c-4), 3.27 (s, 3H, OMe), 2.97 (ddd, 2H, J= 4.3, 8.9, 14.1 Hz, CH₂b-1, CH₂d-4), 2.67 (dd, 1H, J = 5.5, 16.2 Hz, $C_{\alpha}H_{(pro-S)}$ -4), 2.65 (dd, 1H, J = 5.9, 15.7 Hz, $C_{\alpha}H_{(pro-S)}$ -3), 2.62 (dd, 1H, J = 4.4, 13.8 Hz, $C_{\alpha}H_{(pro-S)}$ -1), 2.56 (dd, 1H, J = 9.2, 13.8 Hz, $C_{\alpha}H_{(pro-R)}$ -1), 2.48 (dd, 1H, J = 9.3, 15.7 Hz, $C_{\alpha}H_{(pro-R)}$ -3), 2.47 (m, 1H, $C_{\alpha}H_{(pro-R)}$ -2), 2.44 (m, 1H, $C_{\alpha}H_{(pro-S)}$ -2), 1.49 (s, 3H, Me), 1.48 (s, 3H, Me), 1.45 (s, 6H, Me), 1.43 (s, 9H, Boc), 1.29 (s, 6H, Me), 1.28 (s, 3H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 172.7, 170.7, 170.3, 170.0, 156.8, 156.1, 156.0, 136.7, 128.4, 127.8, 127.4, 113.0, 112.9, 112.6, 112.5, 107.0, 106.9, 85.1, 85.0, 83.5, 83.2, 83.1, 83.0, 81.1, 80.5, 79.7, 79.6, 79.5, 79.4, 79.2, 79.1, 66.5, 54.7, 54.3, 51.8, 49.8, 46.8, 46.4, 46.1, 40.3, 39.7, 39.6, 39.5, 38.4, 34.9, 28.4, 26.2(2), 26.1, 26.0, 25.0, 24.8, 24.7, 24.6; HRMS (ESI): m/z calculated for $C_{63}H_{96}N_6O_{25}$ (M⁺+Na) 1359.6322, found 1359.6298.

Cbz-(S)- β -Caa(NHBoc)-(R)- β -Caa-(S)- β -Caa-(R)- β -Caa(NHBoc)-(S)- β -Caa-(R)- β -Caa-OCH₃ (9): Deprotection of 10 (0.17 g, 0.48 mmol) with 10% Pd-C in methanol (2.0 mL) was performed as described for 26, to afford 44, which was used as such which was used as such for further reaction.

A mixture of **38** (0.20 g, 0.20 mmol), HOBt (0.03 g, 0.24 mmol), EDCI (0.03 g, 0.24 mmol) in CH₂Cl₂ was stirred at 0 °C for 15 min and treated with 44, and DIPEA (0.05 mL, 0.030 mmol) under nitrogen atmosphere for 8 h. Workup as described for 36 and purification by column chromatography (Silica gel, 2.1% methanol in CHCl₃) to give 9 (0.20 g, 54%) as a white solid; m.p. 158-159 °C; $[\alpha]_D = +124.5$ (c 0.25, CHCl₃); IR (KBr): 3292, 3089, 2986, 2940, 1719, 1653, 1529, 1378, 1268, 1167, 1101, 969, 872 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.39-7.27 (m, 5H, Ar-H), 9.07 (d, 1H, J = 9.1 Hz, NH-4), 8.72 (d, 1H, J = 9.7 Hz, NH-3), 8.55 (d, 1H, J = 9.3 Hz, NH-6), 7.70 (d, J = 9.2 Hz, 1H, NH-5), 7.25 (d, 1H, J = 9.7 Hz, NH-2), 7.07 (d, 1H, J = 8.5 Hz, NH-1), 5.21 (t, 1H, J = 6.2 Hz, BocNH-1), 5.17 (d, 1H, J = 12.5 Hz, PhCH₂A), 5.11 (d, 1H, J = 12.5 Hz, PhCH₂B), 5.09 (dd, 1H, J = 3.4, 5.9 Hz, C₃H-5), 4.90 (s, 1H, C₁H-2), 4.89 (s, 1H, C₁H-6), 4.89 (m, 1H, $C_{6}H-2$), 4.88 (s, 1H, $C_{1}H-3$), 4.87 (s, 1H, $C_{1}H-5$, $C_{1}H-6$), 4.85 (dd, 1H, J = 3.4, 5.9 Hz, $C_{3}H-3$, 4.81 (dd, 1H, J = 3.6 Hz, 5.9, $C_{3}H-1$), 4.74 (m, 1H, $C_{3}H-6$), 4.73 (dd, 1H, J = 3.0, 5.9 Hz, C_3H-2), 4.72 (dd, 1H, J = 3.3, 5.9 Hz, C_3H-4), 4.70 (m, 1H, C_8H-6), 4.69 (br.s, 1H, BocNH-2), 4.60 (m, 1H, C₆H-4), 4.56 (d, 1H, J = 5.9 Hz, C₂H-1), 4.55 (d, 1H, J = 5.9 Hz, $C_{2}H-2$, $C_{2}H-6$), 4.54 (d, 1H, J = 5.9 Hz, $C_{2}H-4$), 4.51 (d, 1H, J = 5.9 Hz, $C_{2}H-5$), 4.49 (d, 1H, J = 5.9 Hz, C₂H-3), 4.41 (m, 1H, C₆H-5), 4.38 (m, 1H, C₆H-3), 4.33 (m, 1H, C₆H-1), 4.19 (dd, 1H, J = 5.0, 9.7 Hz, C₁H-1), 4.10 (dd, 1H, J = 3.4, 10.4 Hz, C₄H-5), 4.06 (dd, 1H, J = 3.4, 10.2 Hz, C₄H-3), 4.03 (dd, 1H, J=3.6, 8.8 Hz, C₄H-1), 4.02 (m, 2H, C₄H-2), C_1H-4), 3.92 (dd, 1H, J = 3.4, 9.2 Hz, C_4H-6), 3.78 (dd, 1H, J = 3.4, 8.5 Hz, C_4H-4), 3.68 (s, 3H, COOMe), 3.36 (m, 1H, CH₂a), 3.34 (s, 3H, OMe), 3.33 (s, 3H, OMe), 3.31 (s, 3H, OMe), 3.30 (m, 1H, CH₂c), 3.26 (s, 3H, OMe), 3.00 (ddd, 1H, J = 2.9, 8.5 Hz, CH₂d), 2.96 (dd, 1H, J = 3.0, 12.1 Hz, $C_{\alpha}H_{(pro-S)}$ -6), 2.94 (dd, 1H, J = 3.4, 12.5 Hz, $C_{\alpha}H_{(pro-S)}$ -4), 2.88 (m, 1H, CH₂b), 2.73 (dd, 1H, J = 2.1, 12.2 Hz, $C_{\alpha}H_{(pro-S)}$ -2), 2.60 (m, 2H, $C_{\alpha}H_{(pro-S)}$ -1,

 $C_{\alpha}H_{(pro-R)}$ -1), 2.54 (dd, 1H, J = 2.8, 12.5 Hz, $C_{\alpha}H_{(pro-R)}$ -3), 2.46 (dd, 1H, J = 3.3, 13.2 Hz, $C_{\alpha}H_{(pro-R)}$ -5), 2.38 (t, 1H, J = 12.1 Hz, $C_{\alpha}H_{(pro-R)}$ -6), 2.37 (dd, 1H, J = 5.2, 12.4 Hz, $C_{\alpha}H_{(pro-S)}$ -5), 2.34 (t, 1H, J = 12.2 Hz, $C_{\alpha}H_{(pro-R)}$ -2), 2.32 (dd, 1H, J = 4.9, 13.2 Hz, $C_{\alpha}H_{(pro-S)}$ -5), 2.12 (t, 1H, J = 12.5 Hz, $C_{\alpha}H_{(pro-R)}$ -4), 1.47 (s, 6H, Me), 1.43 (s, 9H, Boc), 1.42 (s, 6H, Me), 1.41 (s, 9H, Boc), 1.40 (s, 6H, Me), 1.28 (s, 6H, Me), 1.27 (s, 12H, Me); ¹³C NMR (CDCl₃,150 MHz): δ 174.0, 171.3, 170.6, 170.1, 169.2, 156.0, 155.8, 155.7, 136.7, 128.4, 127.8, 127.6, 113.1, 112.7, 112.6(2), 112.4, 112.0, 108.2, 106.9, 106.7, 106.1, 85.0, 84.9, 84.8, 84.0, 83.3, 83.0, 82.9, 81.6, 81.5, 80.5, 80.4, 80.0, 79.9, 79.6(2), 79.3, 79.2, 79.1, 78.5, 78.0, 66.3, 55.3, 54.6, 54.1, 53.6, 52.4, 49.3, 48.7, 47.3, 46.6, 46.5, 46.0, 42.1, 40.3, 40.2, 40.0, 39.5, 39.4, 37.7, 37.4, 28.3, 26.7, 26.2, 26.0, 25.9, 25.8, 25.7, 25.1, 24.6(2), 24.5, 23.8; HRMS (ESI): m/z calculated for $C_{85}H_{130}N_8O_{35}$ (M⁺+Na) 1845.8536, found 1845.8606.

Caa]-OCH₃ (12): Deprotection of **7** (0.21 g, 0.48 mmol) with 10% Pd-C in methanol (2.0 mL) was performed as described for **26**, furnished **39**, which was used as such for further reaction.

A mixture of **43** (0.20 g, 0.20 mmol), HOBt (0.03 g, 0.24 mmol), EDCI (0.03 g, 0.24 mmol) in CH₂Cl₂ was stirred at 0 °C for 15 min and treated with **39**, and DIPEA (0.05 mL, 0.30 mmol) under nitrogen atmosphere for 8 h. Workup as described for **36** and purification by column chromatography (Silica gel, 2.6% methanol in CHCl₃) to give **12** (0.2 g, 56%) as a white solid; m.p. 140-143 °C; $[\alpha]_D = +112.4$ (*c* 0.5, CHCl₃); IR (KBr): 3307, 2986, 2940, 1716, 1658, 1525, 1450, 1378, 1266, 1207, 1166, 1100, 971, 870 cm⁻¹¹H NMR (CDCl₃+30 µL DMSO-*d*₆, 500 MHz); δ 8.47 (d, 1H, *J* = 8.0 Hz, NH-2), 8.38 (d, 1H, *J* = 9.5 Hz, NH-3), 8.27 (d, 1H, *J* = 8.6 Hz, NH-4), 8.25 (d, 1H, *J* = 8.8 Hz, NH-3), 7.05 (d, 1H, *J* = 8.8 Hz, NH-6), 6.41 (d, 1H, *J* = 9.8 Hz, NH-1), 5.20 (br.s, 1H, NHBoc-1), 5.30 (br.s, 1H, NHBoc-4), 5.13 (d, 1H, *J* = 12.8 Hz, PhCH₂A), 5.05 (d, 1H, *J* = 12.8 Hz, PhCH₂B), 5.02 (m, 1H, C₃H-4), 4.89 (m, 1H, C₁H-6), 4.87 (m, 1H, C₁H-5), 4.86 (s, 1H, C₁H-2), 4.86 (m, 1H, C₃H-2), 4.82 (s, 1H, C₁H-3), 4.76 (dd, 1H, *J* = 3.5, 5.9 Hz, C₃H-1), 4.75 (dd, 1H, *J* = 3.5, 5.9 Hz, C₃H-5), 4.63 (dd, 1H, *J* = 3.6, 5.9 Hz, C₃H-6), 4.57 (d, *J* = 5.9 Hz, 1H, C₂H-1), 4.56 (m, 1H, C_βH-3), 4.55 (m, 2H, C_βH-1, 5), 4.55 (d, 1H, *J* = 5.9 Hz,

 C_2H-4 , 4.54 (d, 1H, J = 5.9 Hz, C_2H-6), 4.53 (d, 1H, J = 5.9 Hz, C_2H-5), 4.53 (m, 1H, $C_{6}H-2$, 4.51 (m, 1H, $C_{6}H-6$), 4.46 (d, 1H, J = 5.9Hz, $C_{2}H-2$), 4.44 (d, 1H, J = 5.9 Hz, $C_{2}H-3$, 4.39 (m, 1H, $C_{6}H-2$), 4.13 (m, 1H, $C_{4}H-6$), 4.11 (dd, 1H, J = 6.3, 8.6 Hz, $C_{1}H-4$), 4.11 (dd, 1H, J = 6.3, 8.6 Hz, C₁H-1), 4.04 (dd, 1H, J = 3.6, 9.8 Hz, C₄H-2), 4.02 (dd, 1H, J = 3.5, 9.4 Hz, C₄H-4), 3.95 (dd, 1H, J = 3.5, 8.9 Hz, C₄H-5), 3.94 (m, 1H, C₄H-3), 3.93 (m, 1H, C₄H-1), 3.71 (s, 3H, COOMe), 3.30 (s, 3H, OMe), 3.27 (s, 3H, OMe), 3.23-3.06 (m, 1H, CH₂a-1), 3.32-2.93 (m, 1H, CH₂c-4), 2.94 (dd, 1H, J = 5.6, 14.7 Hz, C_aH_(pro-R)-6), 2.88 (dd, 1H, J = 4.1, 12.6 Hz, $C_{\alpha}H_{(pro-S)}$ -2), 2.75 (dd, 1H, J = 4.0, 13..1 Hz, $C_{\alpha}H_{(pro-S)}$ -1), 2.72 (dd, 1H, J = 2.1, 12.5 Hz, $C_{\alpha}H_{(pro-S)}$ -5), 2.62 (dd, 1H, J = 5.4, 14.7 Hz, $C_{\alpha}H_{(pro-S)}$ -6), 2.45 (m, 1H, $C_{\alpha}H_{(pro-R)}$ -1), 2.44 (m, 1H, $C_{\alpha}H_{(pro-R)}$ -2), 2.41 (dd, 1H, J = 3.5, 13.2 Hz, $C_{\alpha}H_{(pro-R)}$ -4), 2.32 (dd, 1H, J = 5.0, 13.2 Hz, $C_{\alpha}H_{(pro-S)}$ -4), 2.27 (s, 1H, $C_{\alpha}H_{(pro-S)}$ -2), 2.26 (t, 1H, J =12.5 Hz, $C_{\alpha}H_{(pro-R)}$ -5), 2.20 (t, 1H, J = 12.6 Hz, $C_{\alpha}H_{(pro-R)}$ -3), 1.50 (s, 3H, Me), 1.46 (s, 3H, Me), 1.45 (s, 6H, Me), 1.43 (s, 9H, Boc), 1.42 (s, 3H, Me), 1.29 (s, 6H, Me), 1.27 (s, 3H, Me), 1.26 (s, 6H, Me), 1.24 (s, 3H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 172.6, 171.0, 170.6, 170.5, 169.7, 169.6, 157.1, 155.9, 155.7, 136.8, 128.4, 127.7, 127.1, 113.1, 112.7, 112.5, 112.4, 112.2, 108.0, 107.4, 107.0, 106.0, 85.0, 84.9, 83.4, 83.3, 83.0, 81.1, 80.7, 80.3, 79.7, 79.6 (2), 79.5 (2), 79.4, 79.3, 79.1, 79.0, 66.6, 55.2, 54.7, 54.6, 53.6, 51.9, 50.3, 47.2, 46.9, 46.0, 45.8, 42.2, 41.5, 40.5, 39.9, 39.6, 38.5, 37.7, 35.3, 28.3, 26.4, 26.3, 26.2, 26.1, 26.0, 25.8, 25.0, 24.9, 24.7, 24.5, 24.4; HRMS (ESI): m/z calculated for C₈₅H₁₃₀N₈O₃₅ (M⁺+Na) 1845.8536, found 1845.8581.

Supporting Fig 1: ¹H NMR Spectrum of 1 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 2: ¹³C NMR Spectrum of 1 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 3: ¹H NMR Spectrum of 2 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 5: ¹H NMR Spectrum of 5 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 6: ¹³C NMR Spectrum of 5 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 7: ¹H NMR Spectrum of 6 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 8: ¹³C NMR Spectrum of 6 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 9: ¹H NMR Spectrum of 7 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 10: ¹³C NMR Spectrum of 7 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 11: ¹H NMR Spectrum of 8 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 13: TOCSY Spectrum of 8 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 14: ROESY Spectrum of 8 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 15: ¹H NMR Spectrum of 9 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 16: ¹³C NMR Spectrum of 9 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 17: TOCSY Spectrum of 9 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 18: ROESY Spectrum of 9 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 20: ¹³C NMR Spectrum of 10 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 21: TOCSY Spectrum of 10 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 22: ROESY Spectrum of 10 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 24: ¹³C NMR Spectrum of 11 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 25: TOCSY Spectrum of 11 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 26: ROESY Spectrum of 11 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 27: ¹H NMR Spectrum of 12 (CDCl₃+30 µL DMSO-*d*₆, 303 K, 500 MHz)

Supporting Fig 28: ¹³C NMR Spectrum of 12 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 29: TOCSY Spectrum of 12 (CDCl₃+30 µL DMSO-d₆, 303 K, 500 MHz)

Supporting Fig 30: ROESY Spectrum of 12 (CDCl₃+30 µL DMSO-d₆, 303 K, 500 MHz)

Supporting Fig 31: ¹H NMR Spectrum of 8b (90% H₂O+10% D₂O, 303 K, 500 MHz)

Supporting Fig 33: ¹H NMR Spectrum of 11a (90% H₂O+10% D₂O, 303 K, 500 MHz)

Supporting Fig 35: ¹H NMR Spectrum of 18 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 36: ¹³C NMR Spectrum of 18 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 37: ¹H NMR Spectrum of 19 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 38: ¹³C NMR Spectrum of 19 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 39: ¹H NMR Spectrum of 20 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 40: ¹³C NMR Spectrum of 20 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 41: ¹H NMR Spectrum of 21 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 42: ¹³C NMR Spectrum of 21 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 43: ¹H NMR Spectrum of 23 (*trans*) (CDCl₃, 303 K, 500 MHz)

Supporting Fig 44: ¹³C NMR Spectrum of 23 (*trans*) (CDCl₃, 303 K, 100 MHz)

Supporting Fig 45: ¹H NMR Spectrum of 23 (*cis*) (CDCl₃, 303 K, 500 MHz)

Supporting Fig 46: ¹³C NMR Spectrum of 23 (*cis*) (CDCl₃, 303 K, 100 MHz)

Supporting Fig 48: ¹³C Spectrum of 24 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 49: ¹H NMR Spectrum of 25 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 51: ¹H NMR Spectrum of 31 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 52: ¹³C Spectrum of 31 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 53: ¹H NMR Spectrum of 32 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 54: ¹³C Spectrum of 32 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 55: ¹H NMR Spectrum of 36 (CDCl₃, 303 K, 400 MHz)

Supporting Fig 56: ¹³C Spectrum of 36 (CDCl₃, 303 K, 100 MHz)

S73

Supporting Fig 58: ¹³C Spectrum of 41 (CDCl₃, 303 K, 100 MHz)

Supporting Fig 59: Solvent titration plots for 8-12

Supporting Fig 60: Superimposed 20 minimum energy structures for 8 (A) side view and (B) top view with sugars

Supporting Table 1: Distance constraints used in MD calculations for 8, derived from ROESY experiment in CDCl₃ (500 MHz, 303K)

Residue	Atom	Residue	Atom	Lower	Upper
				bound	bound
1	NH	1	C ₄ H	2.33	2.85
1	NH	1	$C_{\alpha}H$	2.06	2.52
1	NH	2	NH	2.80	3.43
1	$C_{\alpha}H$	1	C_4H	2.23	2.72
1	$C_{\alpha}H$	2	NH	2.00	2.45
2	NH	2	C_4H	2.51	3.07
2	NH	2	$C_{\alpha}H_{(Pro-R)}$	2.55	3.12

2	$C_{\beta}H$	3	NH	2.35	2.88
2	$C_{\beta}H$	4	NH	2.52	3.08
2	$C_{\beta}H$	4	$C_{\alpha}H_{(Pro-R)}$	2.13	2.65
2	$C_{\alpha}H_{(\textit{Pro-S})}$	2	C_4H	2.00	2.45
2	$C_{\alpha}H_{(Pro-S)}$	3	NH	2.25	2.75
3	NH	1(Boc)	NH	2.74	3.35
3	NH	3	C ₄ H	2.07	2.53
3	NH	3	$C_{\alpha}H_{(Pro-S)}$	2.52	3.08
3	NH	4	NH	3.20	3.91
3	$C_{\alpha}H_{(Pro-R)}$	3	C_4H	2.46	3.01
3	$C_{\alpha}H_{(Pro-R)}$	4	NH	2.50	3.05
4	NH	4	C ₄ H	2.35	2.88
4	NH	4	$C_{\alpha}H_{(Pro-R)}$	2.49	3.04
4	$C_{\alpha}H_{(Pro-R)}$	4	C ₄ H	2.15	2.63

Supporting Fig 61: Superimposed 20 minimum energy structures for 9 (A) side view and (B) top view with sugars

Supporting Table 2: Distance constraints used in MD calculations for 9, derived from ROESY experiment in CDCl₃ (500 MHz, 303K)

Residue	Atom	Residue	Atom	Lower	Upper
				bound	bound
1	NH	1	C_4H	2.54	3.10
1	NH	1	$C_{\alpha}H$	3.51	4.29
1	$C_{\alpha}H$	1	C_4H	2.77	3.38
1	$C_{\alpha}H$	2	NH	2.33	2.85
1	C_4H	Boc-1	NH	2,82	3.44
2	NH	2	C ₄ H	2.88	3.52

2	NH	2	$C_{\alpha}H_{(Pro-R)}$	2.71	3.31
2	$C_{\beta}H$	3	NH	2.57	3.14
2	$C_{\beta}H$	4	NH	2.37	2.90
2	$C_{\beta}H$	4	$C_{\alpha}H_{(Pro-R)}$	2.19	2.68
2	$C_{\alpha}H_{(Pro-S)}$	2	C ₄ H	2.16	2.64
2	$C_{\alpha}H_{(Pro-S)}$	3	NH	2.49	3.04
3	NH	3	C ₄ H	2.37	2.90
3	NH	4	NH	3.47	4.24
3	$C_{\beta}H$	Boc-1	NH	2.59	3.16
3	$C_{\alpha}H_{(Pro-S)}$	3	C ₄ H	2.07	2.53
3	$C_{\alpha}H_{(\textit{Pro-S})}$	4	NH	2.66	3.25
4	NH	4	C ₄ H	2.52	3.08
4	NH	4	$C_{\alpha}H_{(Pro-R)}$	3.77	4.61
4	$C_{\beta}H$	5	NH	2.65	3.24
4	$C_{\beta}H$	6	NH	2.62	3.20
4	$C_{\beta}H$	6	$C_{\alpha}H_{(Pro-R)}$	2.25	2.75
4	$C_{\alpha}H_{(Pro-S)}$	4	C ₄ H	2.26	2.77
4	$C_{\alpha}H_{(Pro-S)}$	5	NH	2.26	2.77
5	NH	5	C ₄ H	2.23	2.73
5	NH	5	$C_{\alpha}H_{(Pro-S)}$	3.48	4.25
5	NH	6	NH	2.95	3.61

5	$C_{\alpha}H_{(\textit{Pro-S})}$	5	C ₄ H	2.58	3.15
5	$C_{\alpha}H_{(\textit{Pro-S})}$	6	NH	2.51	3.07
5	$C_{\alpha}H_{(Pro-R)}$	5	C_4H	2.92	3.57
6	NH	6	C ₄ H	2.51	3.07
6	NH	6	$C_{\alpha}H_{(Pro-R)}$	3.14	3.88
6	$C_{\alpha}H_{(Pro-R)}$	6	C ₄ H	2.29	2.80

Supporting Fig 62: Superimposed 20 minimum energy structures for 10 (A) side view and (B) top view with sugars

Residue	Atom	Residue	Atom	Lower	Upper
				bound	bound
1	NH	1	C ₄ H	2.42	2.96
1	NH	1	$C_{\alpha}H_{(Pro-R)}$	2.80	3.43
1	NH	Boc	NH	2.98	3.64
1	$C_{\beta}H$	2	NH	2.35	2.88
1	$C_{\beta}H$	3	NH	2.65	3.24
1	$C_{\beta}H$	3	$C_{\alpha}H_{(Pro-R)}$	2.11	2.58
1	$C_{\alpha}H_{(\textit{Pro-S})}$	1	C_4H	2.26	2.76
1	$C_{\alpha}H_{(Pro-S)}$	2	NH	2.53	3.09
1	$C_{\alpha}H_{(\textit{Pro-R})}$	1	C ₄ H	2.23	2.72
1	C ₄ H	Boc	NH	2.70	3.30
2	NH	2	C ₄ H	2.22	2.71
2	NH	3	NH	2.70	3.30
2	$C_{\alpha}H_{(Pro-S)}$	2	C ₄ H	2.78	3.40
2	$C_{\alpha}H_{(Pro-S)}$	3	NH	2.49	3.04
2	$C_{\alpha}H_{(Pro-R)}$	2	C ₄ H	2.60	3.18
2	$C_{\alpha}H_{(Pro-R)}$	3	NH	2.80	3.43
3	NH	3	C ₄ H	2.40	2.93
3	NH	3	$C_{\alpha}H_{(Pro-R)}$	2.99	3.66

Supporting Table 3: Distance constraints used in MD calculations for 10, derived from ROESY experiment in CDCl₃ (500 MHz, 288K)

3	$C_{\alpha}H_{(Pro-S)}$	3	C ₄ H	2.44	2.98
3	$C_{\alpha}H_{(Pro-R)}$	3	C ₄ H	2.30	2.81

Supporting Fig 63: Superimposed 20 minimum energy structures for 11 (A) side view and (B) top view with sugars

Residue	Atom	Residue	Atom	Lower	Upper
				bound	bound
1	NH	1	C ₄ H	2.38	2.91
1	NH	1	$C_{\alpha}H_{(Pro-R)}$	2.72	3.33
1	$C_{\beta}H$	2	NH	2.53	3.09
1	$C_{\beta}H$	3	NH	2.56	3.13
1	$C_{\beta}H$	3	$C_{\alpha}H_{(Pro-R)}$	2.20	2.69
1	$C_{\alpha}H_{(Pro-S)}$	1	C ₄ H	2.09	2.56
1	$C_{\alpha}H_{(Pro-S)}$	2	NH	2.70	3.30
2	NH	2	C ₄ H	2.41	2.94
2	NH	2	$C_{\alpha}H_{(Pro-R)}$	3.16	3.86
2	$C_{\alpha}H_{(Pro-R)}$	2	C ₄ H	2.43	2.97
3	NH	3	C ₄ H	2.37	2.90
3	NH	3	$C_{\alpha}H_{(Pro-R)}$	2.35	2.88
3	$C_{\beta}H$	4	NH	2.21	2.70
3	$C_{\alpha}H_{(Pro-S)}$	4	NH	2.44	2.98
3	$C_{\alpha}H_{(Pro-R)}$	3	C_4H	2.31	2.82
4	NH	4	C ₄ H	2.15	2.63
4	NH	4	$C_{\alpha}H_{(Pro-S)}$	2.44	2.98

Supporting Table 4: Distance constraints used in MD calculations for 11, derived from ROESY experiment in CDCl₃ (500 MHz, 288K)

Supporting Fig 64: Superimposed 20 minimum energy structures for 12 (A) side view and (B) top view with sugars

Supporting Table 5: Distance constraints used in MD calculations for 12, derived from ROESY experiment in CDCl₃ (500 MHz, 303K)

Residue	Atom	Residue	Atom	Lower	Upper
				bound	bound
1	NH	1	C ₄ H	2.27	2.77
1	NH	1	$C_{\alpha}H_{(Pro-R)}$	2.56	3.13

1	$C_{\beta}H$	2	NH	2.60	3.20
1	$C_{\beta}H$	3	NH	2.35	2.89
1	$C_{\beta}H$	3	$C_{\alpha}H_{(Pro-R)}$	2.20	2.69
1	$C_{\alpha}H_{(Pro-S)}$	1	C ₄ H	2.32	2.84
1	$C_{\alpha}H_{(Pro-S)}$	2	NH	2.43	2.97
1	C ₄ H	Boc-1	NH	2.82	3.44
2	NH	2	C ₄ H	2.86	3.50
2	NH	2	$C_{\alpha}H_{(Pro-S)}$	2.71	3.31
2	$C_{\alpha}H_{(Pro-R)}$	3	NH	2.63	3.22
3	NH	3	C ₄ H	2.20	2.69
3	NH	3	$C_{\alpha}H_{(Pro-R)}$	2.63	3.22
3	$C_{\beta}H$	4	NH	2.70	3.30
3	$C_{\beta}H$	5	NH	2.40	2.98
3	$C_{\beta}H$	5	$C_{\alpha}H_{(Pro-R)}$	2.10	2.56
3	$C_{\alpha}H_{(Pro-R)}$	3	C_4H	1.99	2.43
3	$C_{\alpha}H_{(Pro-S)}$	3	C ₄ H	2.43	2.97
4	NH	4	C ₄ H	2.40	2.98
4	NH	4	$C_{\alpha}H_{(Pro-S)}$	2.99	3.66
4	$C_{\alpha}H_{(Pro-R)}$	4	C ₄ H	2.10	2.57
4	$C_{\alpha}H_{(Pro-R)}$	5	NH	2.43	2.97
5	NH	5	C ₄ H	2.43	2.97

5	NH	5	$C_{\alpha}H_{(Pro-R)}$	2.71	3.31
5	$C_{\beta}H$	6	NH	2.60	3.20
5	$C_{\alpha}H_{(Pro-R)}$	5	C ₄ H	2.24	2.74
5	$C_{\alpha}H_{(Pro-S)}$	6	NH	2.44	2.98
6	NH	6	C ₄ H	2.42	2.96
6	NH	6	$C_{\alpha}H_{(Pro-S)}$	2.56	3.13
6	$C_{\alpha}H_{(Pro-S)}$	6	C ₄ H	2.40	2.88