Supporting Information II

Conformational analysis of peptides 15 and 16:

¹H NMR spectra of tetra peptide **15** showed a well dispersed spectrum in both amide and alpha regions. Down field resonance for NH-2 and NH-3 which is >7 indicated that they have participated in intramolecular hydrogen bonding. Solvent titration studies confirmed their participation in H-bonding as they showed <3.5 ppm change in chemical shift values. The ³*J*_{NH-CβH} > 8.5 Hz for all the four residues, suggest that NH and C_βH protons are in *ap* arrangement, corresponding to CO-N-C_β-C_α(ϕ) ~ ±120°. ³*J*_{CαH-CβH} > 10 Hz and < 5 Hz very clearly demonstrated the presence of predominantly a single conformation around Cα-Cβ (θ). The characteristic nOes for 12/10 helix which are C_βH(1)/NH(3), C_βH(1)/CαH_(pro-R)(3) and NH(2)/NH(3) observed from ROESY spectrum qualifies the proposed 12/10 helical structure.

¹H NMR spectra of hexa peptide **16**, the extended structure of **15**, highly dispersed in the amide and C_αH region, with chemical shift (*δ*) dispersion of 2.59 and 0.71 ppm respectively, indicate the presence of a well defined structure. Down field resonance for NH-2, NH-3, NH-4 and NH-5 which is >7 indicated that they have participated in intramolecular hydrogen bonding. Solvent titration studies confirmed their participation in H-bonding as they showed <3.6 ppm change in chemical shift values. The observation of *J*_{NH-CβH} > 8.5 Hz and *J*_{CαH-CβH} > 10 Hz and < 5 Hz and distinct NOe correlations indicate, $\phi \sim 120^{\circ}$ and $\theta \sim 60^{\circ}$ respectively. Apart from the hydrogen bonded NHs resulted from titration studies and derived dihedral angles from ¹H NMR coupling constants and the observation of nOes C_βH(1)/NH(3), C_βH(1)/CαH_(pro-R)(3), C_βH(3)/NH(5), C_βH(3)/CαH_(pro-R)(5), NH(2)/NH(3) and NH(4)/NH(5) from ROESY experiment provide compelling evidence for the presence of extended 12/10-helix for the peptide **16**.

Experimental Section:

(1*R*)-1-[(3aS,4*R*,6*R*,6aS)-6-(2,4-Difluorophenyl)-6-hydroxy-2,2-dimethylperhydrofuro[3,4-*d*][1,3]dioxol-4-yl]ethane-1,2-diol (47): A mixture of 46 (12.26 g, 32.9 mmol) and 60% aq. AcOH (85 mL) was stirred at room temperature for 6 h. The reaction mixture was neutralized with solid NaHCO₃ and sat. aq. NaHCO₃ solution (pH = 7) and extracted with EtOAc (3 x 300 mL). Organic layers were dried (Na₂SO₄), evaporated and residue purified the by column chromatography (Silica gel, 50% EtOAc in petroleum ether) to give 47 (8.16 g, 75%) as a colorless syrup; IR (neat): 3390, 2986, 2939, 1618, 1466, 1378, 1212, 1035, 893 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz); δ 7.49 (m, 1H, Ar-H), 6.91-6.79 (m, 2H, Ar-H), 4.96 (m, 2H, C₂H, C₃H), 4.30 (m, 1H, C₆H), 3.90-3.87 (m, 3H, C₆H, C₄H, C₅H), 1.29 (s, 3H, Me), 1.24 (s, 3H, Me); ¹³C NMR (CDCl₃, 75 MHz): δ 162.2, 161.3, 133.3 (4C), 113.1, 86.8, 79.6, 79.5, 78.8, 69.5, 63.9, 25.8, 25.0; HRMS (ESI): *m*/*z* calculated for C₁₅H₁₈O₆F₂ (M⁺+Na) 355.0969, found 355.0976.

Methyl (3*S*)-3-[(3a*S*,4*R*,6*S*,6a*R*)-6-(2,4-difluorophenyl)-2,2-dimethylperhydrofuro [3, 4-*d*][1,3]dioxol-4-yl]-3-(benzylamino)propanoate (51) and methyl (3*R*)-3-[(3a*S*,4*R*, 6*S*,6a*R*)-6-(2,4-difluorophenyl)-2,2-dimethylperhydrofuro [3,4-*d*][1,3]dioxol-4-yl]-3-(benzylamino)propanoate (52): A mixture of 50 (6 g, 17.6 mmol) and benzylamine (4.81 mL, 44.1 mmol), as described for 24/25, was stirred at room temperature for 12 h and purified the reaction mixture by column chromatography. First eluted (Silica gel, 15% EtOAc in petroleum ether) was 52 (1.57 g, 20%) as a pale yellow syrup; $[\alpha]_D$ = +149.02 (*c* 0.75, CHCl₃); IR (Neat): 3356, 2988, 2938, 2838, 2833, 1736, 1438, 1375, 1194, 1097, 744 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.44 (m, 1H, ArH), 7.38-7.19 (m, 5H, ArH), 6.88-6.75 (m, 2H, ArH), 4.91 (m, 1H, C₁H), 4.88 (m, 1H C₃H), 4.79 (m, 1H C₂H), 3.94-3.65 (m, 4H, C_βH, BnCH₂), 3.66 (s, 3H, OMe), 2.86 (m, 1H, C_αH), 2.67 (m, 1H, C_αH), 1.44 (s, 3H, Me), 1.27 (s, 3H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 172.9, 162.0, 160.4, 128.2 (10C), 112.7-111.4 (3C), 82.9, 81.5, 80.7, 76.6 (2C), 51.4, 25.1, 24.3; HRMS (ESI): *m/z* calculated for C₂₄H₂₈NO₅F₂ (M⁺+H) 448.1935, found 448.1929.

Second eluted (Silica gel, 20% EtOAc in petroleum ether) was **51** (3.22 g, 41%) as a pale yellow syrup; $[\alpha]_D = 171.4$ (*c* 0.33, CHCl₃); IR (Neat): 3370, 2991, 2937, 2899, 1739, 1444, 1160, 1087, 1020, 738 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.45 (m, 1H,

Difluorophenyl), 7.39-7.20 (m, 5H, Ar-H), 6.89-6.77 (m, 2H, Difluorophenyl), 4.93 (d, 1H, J = 3.9 Hz, C₁H), 4.85 (dd, 1H, J = 3.4, 6.1 Hz, C₃H), 4.80 (dd, 1H, J = 3.7, 6.1 Hz, C₂H), 3.97 (d, 1H, J = 13.2 Hz, BnCH₂), 3.91 (d, 1H, J = 13.2 Hz, BnCH₂), 3.80 (dd, 1H, J = 3.4, 8.2 Hz, C₄H), 3.70 (s, 3H, COOMe), 3.60 (m, 1H, C_βH), 2.83 (dd, 1H, J = 4.9, 15.2 Hz, C_αH), 2.62 (dd, 1H, J = 5.8, 15.2 Hz, C_αH), 1.43 (s, 3H, Me), 1.23 (s, 3H, Me); ¹³C NMR (CDCl₃, 75 MHz): δ 172.7, 162.0, 159.7, 128.3-128.1(10C), 112.9-111.4 (3C), 83.6, 81.7, 80.7, 76.9 (2C), 51.5, 25.2, 24.4; HRMS (ESI): *m/z* calculated for C₂₄H₂₈NO₅F₂ (M⁺+H) 448.1935, found 448.1924.

Boc-(*S*)- β -**Caa**(**diFP**)-**OCH**₃ (3): A mixture of **51** (3.5 g, 7.82 mmol) in methanol (10 mL) was treated with 10% Pd-C (0.35 g) as described for **26** gave *methyl* (3*S*)-3- [(3*aS*,4*R*,6*S*,6*aR*)-6-(2,4-difluorophenyl)-2,2-dimethylperhydrofuro [3,4-d][1,3]dioxol-4-yl]-3-aminopropanoate (**53**) as a yellow liquid, which was used as such for the next reaction.

A solution of **53** (2.80 g, 7.84 mmol) and Et₃N (2.7 mL, 19.6 mmol) in CH₂Cl₂ (20 mL) was treated with Boc₂O (1.8 mL, 7.84 mmol) as described for **5** gave **3** (3.2 g, 89%) as a white solid; m.p. 112-115 °C, $[\alpha]_D = +21.9$ (*c* 1.3, CHCl₃); IR (Neat): 3443, 2979, 1712, 1626, 1500, 1371, 1206, 1108, 993 cm⁻¹; ¹H NMR (CDCl₃, 303K, 500 MHz): δ 7.24 (m, 1H, Ar-H), 6.88-6.86 (m, 2H, Ar-H), 5.30 (d, 1H, *J* = 8.1 Hz, NH), 4.98 (d, 1H, *J* = 3.7 Hz, C₁H), 4.81 (dd, 1H, *J* = 3.5, 6.2, Hz, C₃H), 4.80 (d, 1H, *J* = 3.7 Hz, C₂H), 4.50 (dddd, 1H, *J* = 4.8, 6.4, 6.7, 8.1 Hz, C_βH), 3.87 (dd, 1H, *J* = 3.5, 4.8 Hz, C₄H), 3.68 (s, 3H, COOMe), 2.86 (dd, 1H, *J* = 6.7, 16.1 Hz, C_αH), 2.80 (dd, 1H, *J* = 6.4, 16.1 Hz, C_αH), 1.47 (s, 3H, Me), 1.45 (s, 9H, Boc), 1.25 (s, 3H, Me); ¹³C NMR (CDCl₃, 75 MHz): δ 171.2, 163.0, 159.6, 155.4, 129.8, 129.6 (2C), 129.5, 113.0, 111.8, 111.4, 81.6, 81.1,80.3, 79.2,76.6, 46.9, 28.4 (3C), 25.1, 24.1; HRMS (ESI): *m/z* calculated for C₂₂H₂₉NO₇F₂ (M⁺+Na) 480.1809, found 480.1830.

Boc-(*R*)- β -**Caa**(**diFP**)-**OCH**₃ (**4**): A solution of **52** (1 g, 2.23 mmol) in methanol (5 mL) was treated with 10% Pd-C (0.10 g) as described for **26** to give *methyl* (3*R*)-3-[(3*a*S,4*R*,6S,6*aR*)-6-(2,4-difluorophenyl)-2,2-dimethylperhydrofuro [3,4-d][1,3]dioxol-4yl]-3-aminopropanoate (**54**) as a syrup, which was used as such for the next reaction.

As described for the synthesis of 5, a solution of 54 (0.79 g, 2.22 mmol) in CH_2Cl_2 (20 mL) was treated with Boc₂O (0.50 mL, 2.22 mmol) and Et₃N (0.77 mL, 5.5

mmol) in CH₂Cl₂ (30 mL) to give **4** (0.95 g, 94%) as a yellow syrup; $[\alpha]_D = +139.8$ (*c* 0.6, CHCl₃); IR (Neat): 3437, 2922, 1736, 1627, 1468, 1372, 1270, 1167, 995 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.24 (m, 1H, Ar-H), 6.87-6.82 (m, 2H, Ar-H), 5.56 (d, 1H, *J* = 8.7 Hz, NH), 4.95 (d, 1H, *J* = 4.0 Hz, C₁H), 4.85 (dd, 1H, *J* = 6.1, 3.5 Hz, C₃H), 4.79 (dd, 1H, *J* = 6.1, 4.0 Hz, C₂H), 4.53 (m, 1H, C_βH), 3.84 (m, 1H, C₄H), 3.69 (s, 3H, COOMe), 2.84 (m, 2H, C_αH, C_αH), 1.46 (s, 3H, Me), 1.45 (s, 9H, Boc), 1.27 (s, 3H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 172.2, 162.1, 160.4, 155.6, 129.6 (2C), 128.7, 127.8, 112.9, 111.6, 111.4, 81.4, 80.9 (2C), 79.2, 76.6, 47.1, 28.3 (3C), 25.0, 24.0; HRMS (ESI): *m/z* calculated for C₂₂H₂₉NO₇F₂ (M⁺+Na) 480.1809, found. 480.1822.

Boc-(*S*)-β-Caa(diFP)-OH (55): As described for 28, a solution of 3 (0.65 g, 1.42 mmol) gave 55 (0.57 g, 90%) as a white solid, m.p.55-59 °C; $[\alpha]_D = +46.1$ (*c* 0.33, CHCl₃); IR (Neat): 3442, 2982, 1715, 1627, 1507, 1471, 1272, 1166, 994 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.24 (m, 1H, Ar-H), 6.90-6.85 (m, 2H, Ar-H), 5.42 (d, 1H, *J* = 8.7 Hz, NH), 4.99 (d, 1H, *J* = 4.0 Hz, C₁H), 4.82 (m, 2H, C₂H, C₃H), 4.48 (m, 1H, C_βH), 3.90 (m, 1H, C₄H), 2.86 (m, 2H, C_αH, C_αH), 1.48 (s, 3H, Me), 1.46 (s, 9H, Boc), 1.27 (s, 3H, Me); ¹³C NMR (CDCl₃, 75 MHz): δ 176.0, 163.0, 159.6, 155.8, 129.8, 129.6 (2C), 129.5, 113.0, 111.8, 111.4, 81.6, 81.0, 80.3, 79.6, 46.7, 28.3 (3C), 25.1, 24.1; HRMS (ESI): *m/z* calculated for C₂₁H₂₇NO₇F₂ (M⁺+Na) 466.1653, found 466.1644.

Boc-(R)-β-Caa(diFP)-OH (56): As described for the synthesis of **28**, a solution of **4** (0.350 g, 0.765 mmol) gave **56** (0.33 g) in 97% yield as a white solid, m.p. 141-145 °C; $[\alpha]_D = +187.1$ (*c* 0.35, CHCl₃); IR (KBr): 3349, 2982, 1745, 1691, 1592, 1419, 1172, 994 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.23 (m, 1H, Ar-H), 6.88-6.83 (m, 2H, Ar-H), 5.58 (d, 1H, *J* = 8.2 Hz, NH), 4.97 (d, 1H, *J* = 4.0 Hz, C₁H), 4.87 (dd, 1H, *J* = 6.1, 3.4 Hz, C₃H), 4.81 (dd, 1H, *J* = 6.1, 4.0 Hz, C₂H), 4.54 (m, 1H, C_βH), 3.88 (m, 1H, C₄H), 2.89 (m, 2H, C_αH, C_αH), 1.50 (s, 3H, Me), 1.46 (s, 9H, Boc), 1.27 (s, 3H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 175.6, 162.2, 160.5, 155.8, 129.6 (4C), 113.0, 111.6, 111.5, 81.4, 80.8, 80.7, 79.6, 46.9, 28.3 (3C), 25.0, 24.1; HRMS (ESI): *m*/*z* calculated for C₂₁H₂₇NO₇F₂ (M⁺+Na) 466.1653, found 466.1655.

Boc-(*S*)- β -**Caa**(**diFP**)-(*R*)- β -**Caa**(**diFP**)-**OH** (60): As described for 28, a solution of 59 (0.3 g, 0.38 mmol) gave 60 (0.276 g, 94%) as a white solid, which was used as such for further reaction.

Boc-[(*S*)- β -**Caa**(**diFP**)-(*R*)- β -**Caa**(**diFP**)]₂-**OH** (62): As described for 28, a solution of 13 (0.13 g, 0.09 mmol) gave 62 (0.116 g, 91%) as a white solid, which was used as such for further reaction.

Boc-(R)-β-Caa(diFP)-(S)-β-Caa(diFP)-OMe (63): A mixture of 56 (0.3 g, 0.677 mmol), HOBt (0.109 g, 0.812 mmol) and EDCI (0.155 g, 0.81 mmol) in CH₂Cl₂ (10 mL) was stirred at 0 °C for 15 min and treated with 57 (0.31 g, 0.677 mmol; obtained from 3 on exposure to TFA) and DIPEA (0.23 mL, 1.35 mmol) under nitrogen atmosphere for 8 h. Workup as described for 36 and purification by column chromatography (Silica gel, 60% EtOAc in petroleum ether) gave 63 (0.34 g, 64%) as a white solid. m.p. 105-106 °C; $[\alpha]_{\rm D} = +150.8$ (c 0.35, CHCl₃); IR(KBr): 3435, 2982, 1732, 1628, 1507, 1376, 1207, 1108, 994 cm⁻¹; ¹H NMR (CDCl₃, 303K, 500 MHz): δ 7.27-7.17 (m, 2H, Ar-H), 6.89-6.81 (m, 4H, Ar-H), 6.52 (d, 1H, J = 7.8 Hz, NH-2), 5.71 (d, 1H, J = 9.3 Hz, NH-1), 4.94 (d, 1H, J = 3.4 Hz, C₁H-2), 4.88 (m, 1H, C₃H-1), 4.82 (d, 1H, J = 4.1 Hz, C₁H-1), 4.77 $(m, 2H, C_3H, C_2H-2), 4.75$ $(m, 1H, C_8H-2), 4.62$ $(m, 1H, C_2H-1), 4.49$ $(m, 1H, C_8H-1),$ 3.90 (dd, 1H, J = 3.0, 5.8 Hz, C₄H-2), 3.85 (m, 1H, C₄H-1), 3.67 (s, 3H, COOMe), 2.83 (m, 2H, $C_{\alpha}H$, $C_{\alpha'}H$ -2), 2.72 (dd, 1H, J = 6.3, 14.7 Hz, $C_{\alpha}H$ -1), 2.62 (dd, 1H, J = 7.1, 14.7 Hz, C_α'H-1), 1.48 (s, 3H, Me), 1.44 (s, 9H, Boc), 1.43 (s, 3H, Me), 1.25 (s, 3H, Me), 1.21 (s, 3H, Me); ¹³C NMR (CDCl₃, 75 MHz): δ 172.0, 170.3, 163.0 (2C), 159.7 (2C), 155.8, 129.8-129.2 (8C), 113.0, 112.7, 111.8, 111.6, 111.5, 111.3, 81.6, 81.5, 80.8 (2C),, 80.5, 80.2, 79.0, 76.6, 47.5, 45.8, 28.4 (3C), 25.2, 25.1, 24.2, 24.0; HRMS (ESI): m/z calculated for $C_{38}H_{46}N_2O_{11}F_4$ (M⁺+Na) 805.2935, found 805.2941.

Boc-[(*R*)- β -**Caa**(**diFP**)-(*S*)- β -**Caa**(**diFP**)]₂-**OMe** (15): A mixture of **64** (0.1 g, 0.13 mmol), HOBt (0.020 g, 0.15 mmol) and EDCI (0.028 g, 0.15 mmol) in CH₂Cl₂ (6 mL) was stirred at 0 °C for 15 min and treated with **65** (0.10 g, 0.13 mmol; obtained from **63** on exposure to TFA) and DIPEA (0.045 mL, 0.26 mmol) under nitrogen atmosphere for 8 h. Workup as described for **36** and purification by column chromatography (Silica gel 1.6% MeOH in CHCl₃) afforded **15** (0.09 g, 48%) as a white solid; m.p. 82-85 °C; $[\alpha]_D =$

+29.50 (c 0.95, CHCl₃); IR(KBr): 3433, 2928, 1733, 1664, 1516, 1470, 1207, 1107, 996 cm⁻¹; ¹H NMR (CDCl₃, 303K, 500 MHz): δ 7.25-7.18 (m, 2H, Ar-H), 6.88-6.80 (m, 4H, Ar-H), 6.92 (d, 1H, NH-2), 5.83 (d, 1H, *J* = 9.2 Hz, NH-1), 4.96 (d, 1H, C₁H-2), 4.95 (d, 1H, *J* = 3.8 Hz, C₁H-1), 4.81 (m, 1H, C₂H-1), 4.81 (m, 2H, C₂H, C₃H-2), 4.72 (m, 1H, C_βH-2), 4.54 (m, 1H, C_βH-1), 4.66 (dd, 1H, *J* = 4.0, 6.1 Hz, C₂H-1), 3.96 (dd, 1H, C₄H-2), 3.84 (m, 1H, C₄H-1), 2.84 (m, 2H, C_αH, C_αH-2), 2.76 (m, 1H, C_αH-1), 2.65 (dd, 1H, *J* = 7.5, 13.5 Hz, C_αH-1), 1.48 (s, 6H, Me), 1.45 (s, 6H, Me), 1.44 (s, 9H, Boc), 1.26 (s, 12H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 172.2, 170.7, 170.2, 170.0, 162.1 (4C), 160.4 (4C), 156.6, 129.7-129.2 (16C), 112.9-112.6 (4C), 111.9-111.3 (8C), 81.8, 81.5, 81.4 (2C), 81.1, 80.9, 80.8, 80.6, 80.4, 79.9, 78.8, 76.6, 76.5, 48.8, 46.4, 46.2, 45.5, 28.4 (3C), 25.3 (2C), 25.0, 24.9, 24.5, 24.3, 24.0, 23.6; HRMS (ESI): *m/z* calculated for C₇₀H₈₀N₄O₁₉F₈(M⁺+Na) 1455.5186, found 1455.5137.

Boc-(*R*)- β -**Caa**(**diFP**)-(*S*)- β -**Caa**(**diFP**)-**OH** (64): As described for 28, a solution of 63 (0.13 g, 0.166 mmol) gave 64 (0.12 g, 95%) as a white solid, which was used as such for further reaction.

Boc-[(*R*)- β -**Caa**(**diFP**)-(*S*)- β -**Caa**(**diFP**)]₃-**OCH**₃ (16): As described for 28, a solution of 15 (0.07, 0.048 mmol) gave *Boc-*[(*R*)- β -*Caa*(*diFP*)-(*S*)- β -*Caa*(*diFP*)]₂-*OH* (66; 0.06 g, 87%) as a white solid, which was used as such for further reaction.

A mixture of **66** (0.05 g, 0.035 mmol), HOBt (0.005 g, 0.04 mmol) and EDCI (0.008 g, 0.04 mmol) in CH₂Cl₂ (6 mL) was stirred at 0 °C for 15 min and treated with **65** (0.027 g, 0.035 mmol) and DIPEA (0.01 mL, 0.07 mmol) under nitrogen atmosphere for 8 h. Workup as described for **36** and purification by column chromatography (Silica gel, 1.8% MeOH in CHCl₃) afforded **16** (0.03 g, 41%) as a white solid; m.p. 151-153 °C; $[\alpha]_D = +346.0$ (c 0.20, CHCl₃); IR(KBr): 3434, 2931, 2857, 1737, 1653, 1471, 1271, 1109,998, 787; ¹H NMR (CDCl₃, 303K, 500 MHz): δ 8.55 (d, 1H, *J* = 9.0 Hz, NH-5), 8.47 (d, 1H, *J* = 8.5 Hz, NH-3), 8.36 (d, 1H, *J* = 9.1 Hz, NH-2), 8.35 (d, 1H, *J* = 9.9 Hz, NH-4), 7.25-7.05 (m, 6H, Ar-H), 6.88-6.71 (m, 12H, Ar-H), 6.72 (m, 1H, NH-6), δ 5.96 (d, 1H, *J* = 10.1 Hz, NH-1), 5.24 (dd, 1H, *J* = 3.5, 6.0 Hz, C₃H-4), 5.15 (dd, 1H, *J* = 3.5, 6.0 Hz, C₃H-2), 4.96 (d, 1H, *J* = 4.2 Hz, C₁H-6), 4.93 (m, 5H, C₁H-1, C₁H-2, C₁H-3, C₁H-5, C₃H-5), 4.87 (m, 1H, C₁H-4), 4.85 (m, 1H, C₃H-1), 4.84 (m, 2H, C_βH-3, C₃H-3),

4.83 (m, 2H, $C_{\beta}H$ -5, $C_{3}H$ -5), 4.82 (m, 4H, $C_{\beta}H$ -2, $C_{3}H$ -2, $C_{2}H$ -6, $C_{3}H$ -6), 4.74 (m, 1H, C₂H-1), 4.73 (m, 1H, C₂H-5), 4.71 (m, 1H, C_BH-6), 4.70 (m, 1H, C_BH-1), 4.66 (dd, 1H, J = 4.4, 6.0 Hz, C₂H-3), 4.63 (m, 1H, C_BH-4), 3.97 (dd, 1H, J = 3.6, 8.0 Hz, C₄H-6), 3.95 (dd, 1H, J = 3.5, 9.2 Hz, C₄H-2), 3.87 (dd, 1H, J = 3.5, 9.5 Hz, C₄H-4), 3.75 (m, 2H, C₄H-1, C₄H-3), 3.72 (s, 3H, COOMe), 3.71 (m, 1H, C₄H-5), 3.01 (m, 2H, C_aH_(pro-R)-6, $C_{\alpha}H_{(pro-S)}$ -6), 2.95 (dd, 1H, J = 3.8, 12.0, Hz, $C_{\alpha}H_{(pro-S)}$ -3), 2.84 (m, 2H, $C_{\alpha}H_{(pro-S)}$ -1, $C_{\alpha}H_{(pro-S)}$ -5), 2.77 (dd, 1H, J = 3.7, 13.2 Hz, $C_{\alpha}H_{(pro-S)}$ -2), 2.69 (dd, 1H, J = 3.4, 12.6 Hz, $C_{\alpha}H_{(pro-S)}-4$), 2.54 (dd, 1H, J = 5.0, 13.2 Hz, $C_{\alpha}H_{(pro-R)}-2$), 2.50 (m, 1H, $C_{\alpha}H_{(pro-R)}-1$), 2.49 (dd, 1H, J = 5.0, 12.6 Hz, $C_{\alpha}H_{(pro-R)}$ -4), 2.46 (dd, 1H, J = 10.8, 12.7 Hz, $C_{\alpha}H_{(pro-R)}$ -5), 2.30 (m, 1H, $C_{\alpha}H_{(pro-R)}$ -3), 1.51 (s, 3H, Me), 1.50 (s, 3H, Me), 1.47 (s, 9H, Boc), 1.47 (s, 3H, Me), 1.44 (s, 6H, Me), 1.37 (s, 3H, Me), 1.31 (s, 3H, Me), 1.27 (s, 3H, Me), 1.26 (s, 3H, Me), 1.23 (s, 3H, Me), 1.21 (s, 3H, Me), 1.20 (s, 3H, Me); ¹³C NMR (CDCl₃, 150 MHz): δ 172.4, 171.0, 170.9, 170.4, 170.1, 169.6, 162.1 (6C), 160.4 (6C), 156.9, 129.7-129.0 (24C), 113.1-111.2 (18C), 82.3-76.4 (20C), 49.6, 47.3, 47.1, 46.7, 46.6, 45.3, 28.3 (3C), 25.4, 25.3, 25.2, 25.0, 24.9, 24.8, 24.5, 24.4, 24.3, 23.9, 23.8, 23.7; HRMS (ESI): m/z calculated for C₁₀₂H₁₁₄N₆O₂₇F₁₂ (M⁺+Na) 2105.7432, found 2105.7457.

Supporting Fig 65: ¹H NMR Spectrum of 46 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 66: ¹³C NMR Spectrum of 46 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 67: ¹H NMR Spectrum of 47 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 68: ¹³C NMR Spectrum of 47 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 69: ¹H NMR Spectrum of 49 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 70: ¹³C NMR Spectrum of 49 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 71: ¹H NMR Spectrum of 50 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 72: ¹³C NMR Spectrum of 50 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 73: ¹H NMR Spectrum of 51 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 75: ¹H NMR Spectrum of 52 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 76: ¹³C NMR Spectrum of 52 (CDCl₃, 298 K, 150 MHz)

Supporting Fig 77: ¹H NMR Spectrum of 3 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 78: ¹³C NMR Spectrum of 3 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 80: ¹³C NMR Spectrum of 4 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 81: ¹H NMR Spectrum of 55 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 83: ¹H NMR Spectrum of 56 (CDCl₃, 294 K, 300 MHz)

Supporting Fig 84: ¹³C NMR Spectrum of 56 (CDCl₃, 294 K, 75 MHz)

Supporting Fig 85: ¹H NMR Spectrum of 59 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 86: ¹³C NMR Spectrum of 59 (CDCl₃, 298 K, 150 MHz)

Supporting Fig 89: ¹H NMR Spectrum of 13 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 90: ¹³C NMR Spectrum of 13 (CDCl₃, 298 K, 150 MHz)

Supporting Fig 91: TOCSY Spectrum of 13 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 92: ROESY Spectrum of 13 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 93: ¹H NMR Spectrum of 14 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 94: ¹³C NMR Spectrum of 14 (CDCl₃, 303 K, 150 MHz)

Supporting Fig 95: TOCSY Spectrum of 14 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 96: ROESY Spectrum of 14 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 97: ¹H NMR Spectrum of 15 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 98: ¹³C NMR Spectrum of 15 (CDCl₃, 298 K, 150 MHz)

Supporting Fig 99: TOCSY Spectrum of 15 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 100: ROESY Spectrum of 15 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 101: ¹H NMR Spectrum of 16 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 102: ¹³C NMR Spectrum of 16 (CDCl₃, 298 K, 150 MHz)

Supporting Fig 103: TOCSY Spectrum of 16 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 104: ROESY Spectrum of 16 (CDCl₃, 303 K, 500 MHz)

Supporting Fig 105: Solvent titration plots of 13-16

Molecular Dynamics:

Supporting Fig 106: Superimposed 20 minimum energy structures for 13 (A) side view and (B) top view :

Supporting Table 6: Distance constraints used in MD calculations for 13, derived from ROESY experiment in CDCl₃ (500 MHz, 303 K)

Residue	Atom	Residue	Atom	Lower bound	upper bound
1	NH	1	C _a H (pro-S)	2.80	3.64
1	NH	1	C _a H (pro-R)	2.77	3.64
1	NH	2	NH	2.83	3.46
1	$C_{\beta}H$	2	NH	2.79	3.32
1	$C_{\alpha}H_{(pro-S)}$	1	C ₄ H	2.83	3.46

1	C _a H (pro-S)	1	C ₃ H	2.41	2.94
1	C _a H (pro-S)	2	NH	2.89	3.07
1	$C_{\alpha}H_{(pro-R)}$	1	C ₄ H	2.45	3.00
1	$C_{\alpha}H_{(pro-R)}$	1	C ₃ H	2.70	3.30
1	$C_{\alpha}H_{(pro-R)}$	2	NH	2.19	2.67
1	C ₄ H	2	NH	2.85	3.49
2	NH	2	C ₄ H	2.49	3.04
2	NH	2	C ₃ H	2.72	3.32
2	NH	2	$C_{\alpha}H_{(pro-R)}$	2.51	3.07
2	C _β H	3	NH	2.35	2.88
2	C _β H	3	$C_{\alpha}H_{(pro-R)}$	2.33	2.84
2	$C_{\beta}H$	4	NH	2.72	3.33
2	C _a H (pro-S)	2	C ₃ H	2.34	2.87
2	C _a H (pro-S)	3	NH	2.21	2.71
2	C _a H (pro-R)	2	С ₃ Н	2.30	2.82
			I		

3	NH	3	C ₄ H	2.25	2.75
3	NH	4	NH	3.13	3.83
3	C _a H (pro-S)	3	C ₄ H	2.52	3.08
3	$C_{\alpha}H_{(pro-R)}$	3	C ₄ H	2.88	3.52
3	$C_{\alpha}H_{(pro-R)}$	4	NH	2.42	2.96
4	NH	4	C ₄ H	2.38	2.91
4	C _a H (pro-S)	4	C ₄ H	2.46	3.00
4	$C_{\alpha}H_{(pro-R)}$	4	C ₄ H	2.20	2.69

Supporting Fig 107: Superimposed 20 minimum energy structures for 14

(A) side view and (B) top view:

Supporting Table 7: Distance constraints used in MD calculations for 13, derived from ROESY experiment in CDCl₃ (500 MHz, 303 K)

Residue	Atom	Residue	Atom	Lower bound	upper bound
1	$C_{\alpha}H_{(pro-R)}$	1	NH	3.28	4.01
1	C _a H (pro-S)	1	NH	3.09	3.78
1	C ₄ H	1	NH	2.72	3.33
1	C ₃ H	1	NH	3.02	3.69
1	C ₁ H	1	C ₄ H	2.03	2.48
1	C ₄ H	1	$C_{\alpha}H_{(pro-S)}$	3.04	3.72

1	C ₄ H	1	C _a H (pro-R)	2.59	3.17
1	C ₄ H	3	$C_{\alpha}H_{(pro-R)}$	2.46	3.01
1	$C_{\alpha}H_{(pro-R)}$	2	NH	2.45	2.99
1	C _a H (pro-S)	2	NH	2.80	3.42
2	C _β H	4	C _a H (pro-R)	2.37	2.90
2	C ₁ H	2	C ₄ H	1.89	2.13
2	C ₄ H	2	C _a H (pro-S)	2.07	2.53
2	C ₄ H	2	C _a H (pro-R)	2.83	3.46
2	C _a H (pro-R)	2	NH	2.86	3.50
2	C ₃ H	2	C _a H (pro-S)	2.62	3.19
2	C ₃ H	2	C _a H (pro-R)	2.43	2.97
2	C ₄ H	4	$C_{\alpha}H_{(pro-R)}$	2.77	3.38
2	$C_{\beta}H$	3	NH	2.65	3.24
2	$C_{\beta}H$	4	NH	2.81	3.44
2	C _a H (pro-S)	3	NH	2.56	3.13
3	C ₁ H	3	C ₄ H	2.03	2.48

3 C_4H 3 C_aH (pro.S) 2.74 3.35 3 C_3H 3 C_1H 2.14 2.61 3 C_3H 3 $C_{\rho}H$ 2.60 3.18 3 C_3H 3 $C_{\rho}H$ 2.60 3.18 3 C_4H 3 NH 2.43 2.96 3 C_4H 3 NH 2.43 2.96 3 C_4H 3 NH 2.43 2.96 3 NH 4 NH 3.55 4.34 3 C_aH (pro.R) 4 NH 3.55 4.34 4 C_3H 4 NH 3.24 3.96 4 C_4H 4 NH 2.83 3.46 4 C_4H 4 C_aH (pro.5) 2.88 3.52 4 C_4H 4 C_aH (pro.6) 2.27 2.77 4 $C_{0}H$ 6 $C_{a}H$ (pro.7) 2.23 2.72 4 $C_{0}H$ 5 NH </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
3 C_{4H} 3 $C_{\alpha}H_{(pro-5)}$ 2.74 3.33 3 C_{3H} 3 C_{1H} 2.14 2.61 3 C_{3H} 3 $C_{\beta}H$ 2.60 3.18 3 C_{4H} 3 NH 2.43 2.96 3 NH 4 NH 3.55 4.34 3 $C_{\alpha}H_{(pro-R)}$ 4 NH 2.81 3.44 4 C_{3H} 4 NH 2.83 3.46 4 C_{4H} 4 NH 2.83 3.46 4 C_{4H} 4 $C_{\alpha}H_{(pro-S)}$ 2.88 3.52 4 C_{4H} 4 $C_{\alpha}H_{(pro-R)}$ 2.27 2.77 4 C_{1H} 4 $C_{\alpha}H_{(pro-R)}$ 2.23 2.72 4 $C_{\beta}H$ 5 NH 2.73 3.33 4 $C_{\alpha}H_{(pro-S)}$ 5 NH 2.74 3.35 5 C_{3H} 5 C_{1H} 2.56 3.12	2	C II	2		2.74	2.25
3 C_3H 3 C_1H 2.142.613 C_3H 3 $C_{\beta}H$ 2.603.183 C_4H 3NH2.432.963NH4NH3.554.343 $C_{\alpha}H_{(pro-R)}$ 4NH2.813.444 C_3H 4NH2.833.964 C_4H 4NH2.833.464 C_4H 4NH2.833.464 C_4H 4 $C_{\alpha}H_{(pro-S)}$ 2.883.524 C_4H 4 $C_{\alpha}H_{(pro-R)}$ 2.272.774 C_1H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.743.355 C_3H 5 C_1H 2.563.12	3	C ₄ H	3	$C_{\alpha}H_{(pro-S)}$	2.74	3.35
3 C_3H 3 C_1H 2.14 2.61 3 C_3H 3 $C_{\beta}H$ 2.60 3.18 3 C_4H 3 NH 2.43 2.96 3 NH 4 NH 3.55 4.34 3 $C_{\alpha}H$ (pro.R) 4 NH 3.55 4.34 3 $C_{\alpha}H$ (pro.R) 4 NH 2.81 3.44 4 C_3H 4 NH 3.24 3.96 4 C_3H 4 NH 3.24 3.96 4 C_4H 4 NH 3.24 3.96 4 C_4H 4 NH 2.83 3.46 4 C_4H 4 $C_{\alpha}H$ (pro.5) 2.88 3.52 4 C_4H 4 $C_{\alpha}H$ (pro.7) 2.27 2.77 4 $C_{\mu}H$ 6 $C_{\alpha}H$ (pro.7) 2.23 2.72 4 $C_{\beta}H$ 5 NH 2.26 2.77 4 $C_{\alpha}H$ (pro.5) 5 NH						
3 C_3H 3 $C_{\rho H}$ 2.60 3.18 3 C_4H 3 NH 2.43 2.96 3 NH 4 NH 3.55 4.34 3 $C_{\alpha}H$ (gross) 4 NH 2.81 3.44 4 C_3H 4 NH 3.24 3.96 4 C_4H 4 NH 2.83 3.46 4 C_4H 4 NH 2.83 3.46 4 C_4H 4 $C_{\alpha}H$ (gross) 2.88 3.52 4 C_4H 4 $C_{\alpha}H$ (gross) 2.27 2.77 4 $C_{1}H$ 4 $C_{\alpha}H$ (gross) 2.23 2.72 4 $C_{\beta}H$ 6 $C_{\alpha}H$ (gross) 2.23 2.72 4 $C_{\rho}H$ 5 NH 2.26 2.77 4 $C_{\alpha}H$ (gross) 5 NH 2.26 2.77 4 $C_{\rho}H$ 6 NH 2.74 3.35 4 $C_{\alpha}H$ (gross) 5 NH 2.26 2.77	3	C ₃ H	3	C ₁ H	2.14	2.61
3 C_3H 3 $C_{\rho}H$ 2.60 3.18 3 C_4H 3 NH 2.43 2.96 3 NH 4 NH 3.55 4.34 3 $C_{\alpha}H_{(\rhoro,R)}$ 4 NH 3.55 4.34 3 $C_{\alpha}H_{(\rhoro,R)}$ 4 NH 2.81 3.44 4 C_3H 4 NH 3.24 3.96 4 C_4H 4 NH 3.24 3.96 4 C_4H 4 NH 3.28 3.46 4 C_4H 4 NH 2.83 3.46 4 C_4H 4 $C_{\alpha}H_{(pro,S)}$ 2.88 3.52 4 C_4H 4 $C_{\alpha}H_{(pro,R)}$ 2.27 2.77 4 C_1H 4 $C_{\alpha}H_{(pro,R)}$ 2.23 2.72 4 $C_{\rho}H$ 5 NH 2.26 2.77 4 $C_{\mu}H_{(pro,S)}$ 5 NH 2.26 2.77 4 $C_{\mu}H_{(pro,S)}$ 5						
3 C_3H 3 $C_{\beta}H$ 2.00 3.18 3 C_4H 3 NH 2.43 2.96 3 NH 4 NH 3.55 4.34 3 $C_{\alpha}H (pro.R)$ 4 NH 3.55 4.34 3 $C_{\alpha}H (pro.R)$ 4 NH 2.81 3.44 4 C_3H 4 NH 3.24 3.96 4 C_4H 4 NH 2.83 3.46 4 C_4H 4 $C_{\alpha}H (pro.S)$ 2.88 3.52 4 C_4H 4 $C_{\alpha}H (pro.R)$ 2.27 2.77 4 $C_{\beta}H$ 6 $C_{\alpha}H (pro.R)$ 2.23 2.72 4 $C_{\beta}H$ 5 NH 2.73 3.33 4 $C_{\alpha}H (pro.S)$ 5 NH	2	C II	2	C II	2 (0	2.10
3 C_4H 3NH2.432.963NH4NH3.554.343 $C_{\alpha}H (\rhoro.R)$ 4NH2.813.444 C_3H 4NH3.243.964 C_4H 4NH3.243.964 C_4H 4NH2.833.464 C_4H 4 $C_{\alpha}H (\rhoro.S)$ 2.883.524 C_4H 4 $C_{\alpha}H (\rhoro.R)$ 2.272.774 C_4H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H (\rhoro.R)$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H (pro.S)$ 5NH2.262.774 $C_{\mu}H$ 6NH2.743.355 C_3H 5 C_1H 2.563.12	3	C ₃ H	3	$C_{\beta}H$	2.60	3.18
3 C_4H 3NH2.432.963NH4NH3.554.343 $C_{\alpha}H$ (pro-R)4NH2.813.444 C_3H 4NH2.813.444 C_3H 4NH3.243.964 C_4H 4NH2.833.464 C_4H 4NH2.833.464 C_4H 4 $C_{\alpha}H$ (pro-S)2.883.524 C_4H 4 $C_{\alpha}H$ (pro-R)2.272.774 C_1H 4 $C_{\alpha}H$ (pro-R)2.232.724 $C_{\beta}H$ 6 $C_{\alpha}H$ (pro-R)2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H$ (pro-S)5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 C_3H 5 C_1H 2.563.12						
3 NH4NH 3.55 4.34 3 $C_{\alpha}H_{(pro-R)}$ 4NH 3.55 4.34 4 $C_{\alpha}H_{(pro-R)}$ 4NH 2.81 3.44 4 $C_{3}H$ 4NH 3.24 3.96 4 $C_{4}H$ 4NH 2.83 3.46 4 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.88 3.52 4 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.88 3.52 4 $C_{4}H$ 4 $C_{\alpha}H_{(pro-R)}$ 2.27 2.77 4 $C_{1}H$ 4 $C_{\alpha}H_{(pro-R)}$ 2.23 2.72 4 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.23 2.72 4 $C_{\beta}H$ 5NH 2.73 3.33 4 $C_{\alpha}H_{(pro-S)}$ 5 NH 2.26 2.77 4 $C_{\beta}H$ 6NH 2.74 3.35 5 $C_{3}H$ 5 $C_{1}H$ 2.56 3.12	3	C ₄ H	3	NH	2.43	2.96
3NH4NH 3.55 4.34 3 $C_{\alpha}H_{(pro-R)}$ 4NH 2.81 3.44 4 $C_{3}H$ 4NH 3.24 3.96 4 $C_{4}H$ 4NH 3.24 3.96 4 $C_{4}H$ 4NH 2.83 3.46 4 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.88 3.52 4 $C_{4}H$ 4 $C_{\alpha}H_{(pro-R)}$ 2.27 2.77 4 $C_{1}H$ 4 $C_{\alpha}H_{(pro-R)}$ 2.23 2.72 4 $C_{\beta}H$ 5NH 2.73 3.33 4 $C_{\alpha}H_{(pro-S)}$ 5NH 2.26 2.77 5 $C_{3}H$ 5 $C_{1}H$ 2.56 3.12						
3NH4NH3.334.343 $C_{\alpha}H_{(pro-R)}$ 4NH2.813.444 $C_{3}H$ 4NH3.243.964 $C_{4}H$ 4NH2.833.464 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.883.524 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.883.524 $C_{4}H$ 4 $C_{\alpha}H_{(pro-R)}$ 2.272.774 $C_{1}H$ 4 $C_{4}H$ 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12	2	NILL	4	NILL	2.55	4.2.4
3 $C_{\alpha}H_{(pro-R)}$ 4NH2.813.444 $C_{3}H$ 4NH3.243.964 $C_{4}H$ 4NH2.833.464 $C_{4}H$ 4NH2.833.464 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.883.524 $C_{4}H$ 4 $C_{\alpha}H_{(pro-S)}$ 2.883.524 $C_{4}H$ 4 $C_{\alpha}H_{(pro-R)}$ 2.272.774 $C_{1}H$ 4 $C_{4}H$ 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.263.125 $C_{3}H$ 5 $C_{1}H$ 2.563.12	5	NH	4	NH	3.33	4.34
3 $C_{\alpha}H_{(pro.R)}$ 4NH2.813.444 $C_{3}H$ 4NH3.243.964 $C_{4}H$ 4NH2.833.464 $C_{4}H$ 4NH2.833.464 $C_{4}H$ 4 $C_{\alpha}H_{(pro.S)}$ 2.883.524 $C_{4}H$ 4 $C_{\alpha}H_{(pro.R)}$ 2.272.774 $C_{1}H$ 4 $C_{\alpha}H_{(pro.R)}$ 2.232.724 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro.R)}$ 2.232.724 $C_{\alpha}H_{(pro.S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro.S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12						
4 C_3H 4NH3.243.964 C_4H 4NH2.833.464 C_4H 4 $C_{\alpha}H_{(pro-S)}$ 2.883.524 C_4H 4 $C_{\alpha}H_{(pro-R)}$ 2.272.774 C_1H 4 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.775 C_3H 5 C_1H 2.563.12	3	$C_{\alpha}H_{(pro-R)}$	4	NH	2.81	3.44
4 C_3H 4NH 3.24 3.96 4 C_4H 4NH 2.83 3.46 4 C_4H 4 $C_{\alpha}H_{(pro.5)}$ 2.88 3.52 4 C_4H 4 $C_{\alpha}H_{(pro.R)}$ 2.27 2.77 4 C_1H 4 $C_{\alpha}H_{(pro.R)}$ 2.23 2.72 4 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro.R)}$ 2.23 2.72 4 $C_{\beta}H$ 5NH 2.73 3.33 4 $C_{\alpha}H_{(pro.5)}$ 5NH 2.26 2.77 4 $C_{\beta}H$ 6NH 2.73 3.33 5 $C_{\alpha}H_{(pro.5)}$ 5NH 2.26 2.77		(r)				
4 C_{3H} 4NH 3.24 3.96 4 C_{4H} 4NH 2.83 3.46 4 C_{4H} 4 $C_{\alpha}H_{(pro.S)}$ 2.88 3.52 4 C_{4H} 4 $C_{\alpha}H_{(pro.R)}$ 2.27 2.77 4 C_{1H} 4 C_{4H} 1.85 2.26 4 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro.R)}$ 2.23 2.72 4 $C_{\beta}H$ 5NH 2.73 3.33 4 $C_{\alpha}H_{(pro.S)}$ 5NH 2.26 2.77 4 $C_{\alpha}H_{(pro.S)}$ 5NH 2.74 3.35 5 $C_{3}H$ 5 $C_{1}H$ 2.56 3.12	4	CII	4	NILL	2.24	2.00
4C_4H4NH2.833.464C_4H4C_{\alpha}H (pro-S)2.883.524C_4H4C_{\alpha}H (pro-R)2.272.774C_1H4C_4H1.852.264C_{\beta}H6C_{\alpha}H (pro-R)2.232.724C_{\beta}H5NH2.262.774C_{\beta}H5NH2.333.334C_{\beta}H5NH2.262.775C_{\beta}H5NH2.263.355C_{\beta}H5NH2.263.12	4	C ₃ H	4	NH	3.24	3.96
4 C_4H 4NH2.833.464 C_4H 4 $C_{\alpha}H_{(pro.S)}$ 2.883.524 C_4H 4 $C_{\alpha}H_{(pro.R)}$ 2.272.774 C_1H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro.R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro.S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro.S)}$ 5NH2.262.775 C_3H 5 C_1H 2.563.12						
4C ₄ H4C _{α} H (pro-S)2.883.524C ₄ H4C _{α} H (pro-R)2.272.774C ₁ H4C ₄ H1.852.264C _{β} H6C _{α} H (pro-R)2.232.724C _{β} H5NH2.733.334C _{α} H (pro-S)5NH2.262.774C _{β} H5NH2.733.335NH2.263.123.35	4	C ₄ H	4	NH	2.83	3.46
4C ₄ H4C _{α} H (pro-S)2.883.524C ₄ H4C _{α} H (pro-R)2.272.774C ₁ H4C ₄ H1.852.264C _{β} H6C _{α} H (pro-R)2.232.724C _{β} H5NH2.733.334C _{α} H (pro-S)5NH2.262.774C _{β} H6NH2.733.335C _{α} H (pro-S)5NH2.262.775C _{3} H5C ₁ H2.563.12						
4C4H4CaH (pro-S)2.883.324C4H4CaH (pro-R)2.272.774C1H4C4H1.852.264CBH6CaH (pro-R)2.232.724CBH5NH2.733.334CaH (pro-S)5NH2.262.774CBH6NH2.733.335CAH (pro-S)5NH2.262.775C3H5C1H2.563.12	4	CII	4	C H	2.00	2.52
4C_4H4C_ α H (pro-R)2.272.774C_1H4C_4H1.852.264C_{\beta}H6C_ α H (pro-R)2.232.724C_{\beta}H5NH2.733.334C_ α H (pro-S)5NH2.262.774C_ β H5NH2.333.335C_ α H (pro-S)5NH2.262.77	4	C ₄ H	4	$C_{\alpha}H_{(pro-S)}$	2.88	3.52
4 C_4H 4 $C_{\alpha}H_{(pro-R)}$ 2.272.774 C_1H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.263.355 C_3H 6NH2.263.12						
4 C_1H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.775 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12	4	C ₄ H	4	$C_{\alpha}H_{(pro-R)}$	2.27	2.77
4 C_1H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.775 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12				()		
4 C_1H 4 C_4H 1.852.264 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.775 $C_{3}H$ 6NH2.743.35	4	CII	4	СИ	1.05	2.26
4 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\alpha}H_{(pro-S)}$ 5NH2.743.355 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12	4	C_1H	4	C ₄ H	1.85	2.26
4 $C_{\beta}H$ 6 $C_{\alpha}H_{(pro-R)}$ 2.232.724 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12						
4 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12	4	С _в Н	6	$C_{\alpha}H_{(pro-R)}$	2.23	2.72
4 $C_{\beta}H$ 5NH2.733.334 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12		r-		()		
4 $C_{\beta}H$ 5NH2.735.354 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12	4	C II	5	NILL	2.72	2.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$C_{\beta}H$	5	NH	2.73	5.55
4 $C_{\alpha}H_{(pro-S)}$ 5NH2.262.774 $C_{\beta}H$ 6NH2.743.355 $C_{3}H$ 5 $C_{1}H$ 2.563.12						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$C_{\alpha}H_{(pro-S)}$	5	NH	2.26	2.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · ·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A		E	NILL	2.74	2.25
5 C ₃ H 5 C ₁ H 2.56 3.12	4	C _β H	o	INIT	2.74	3.33
5 C ₃ H 5 C ₁ H 2.56 3.12						
	5	C ₃ H	5	C ₁ H	2.56	3.12

5	C ₃ H	5	$C_{\beta}H$	2.77	3.39
5	C ₃ H	5	C _a H (pro-S)	2.21	2.70
5	C ₃ H	5	$C_{\alpha}H_{(pro-S)}$	2.22	2.71
5	C ₁ H	5	C ₄ H	1.70	2.08
5	C ₄ H	5	C _a H (pro-S)	2.68	3.28
5	C ₄ H	5	NH	2.24	2.74
5	NH	6	NH	3.15	3.85
5	C _a H (pro-R)	6	NH	2.72	3.33
6	C ₄ H	6	NH	2.56	3.12
6	C ₁ H	6	C ₄ H	1.70	2.08
6	C ₄ H	6	C _a H (pro-S)	2.46	3.01
6	C ₄ H	6	$C_{\alpha}H_{(pro-R)}$	3.25	3.97

Supporting Fig 108: Superimposed 20 minimum energy structures for 15

(A) side view and (B) top view:

Supporting Table 8: Distance constraints used in MD calculations for 15, derived from ROESY experiment in CDCl₃ (500 MHz, 303 K)

Residue	Atom	Residue	Atom	Lower bound	upper bound
1	NH	1	$C_{\alpha}H_{(pro-R)}$	2.43	2.97
1	NH	1	C ₄ H	2.32	2.84
1	NH	2	C ₃ H	2.52	3.08
1	$C_{\beta}H$	2	NH	2.22	2.72
1	$C_{\beta}H$	3	NH	2.22	2.72
1	C ₄ H	1	C _a H (pro-S)	1.95	2.34

1	C ₄ H	1	C _a H (pro-R)	2.11	2.57
1	C _a H (pro-S)	2	NH	2.40	2.93
2	NH	2	C ₄ H	2.17	2.93
2	C ₃ H	2	C _a H (pro-S)	2.06	2.51
2	$C_{\alpha}H_{(pro-R)}$	3	NH	2.22	2.71
2	C ₃ H	4	C _a H (pro-R)	2.43	2.97
3	C ₄ H	3	NH	2.56	3.16
3	C ₄ H	3	C _a H (pro-S)	2.38	2.91
3	C ₄ H	3	C _a H (pro-R)	2.25	2.75
3	C ₄ H	3	C ₁ H	2.06	2.51
3	C _a H (pro-S)	4	NH	2.11	2.58
4	C ₄ H	4	NH	2.16	2.64
4	C ₃ H	4	C _a H (pro-S)	2.48	3.03
4	C ₄ H	4	C _{\alpha} H (pro-S)	2.31	2.82

Supporting Fig 109: Superimposed 20 minimum energy structures for 16

A B

(A) side view and (B) top view:

Supporting Table 9: Distance constraints used in MD calculations for 16, derived from ROESY experiment in CDCl₃ (500 MHz, 303 K)

Residue	Atom	Residue	Atom	Lower bound	upper bound
1	NH	1	$C_{\alpha}H_{(pro-R)}$	2.44	2.98
1	NH	1	C ₄ H	2.49	3.04
1	NH	2	C ₃ H	2.69	3.01
1	$C_{\beta}H$	2	NH	2.75	3.36
1	C _β H	3	NH	2.66	3.25
1	$C_{\beta}H$	3	$C_{\alpha}H_{(pro-R)}$	2.30	2.81

1	C ₄ H	1	$C_{\alpha}H_{(pro-S)}$	2.07	2.53
1	C ₄ H	1	$C_{\alpha}H_{(pro-R)}$	2.37	2.90
2	NH	2	C ₄ H	2.54	3.10
2	C ₄ H	2	C _a H (pro-S)	2.49	3.04
2	C ₃ H	2	C _a H (pro-S)	2.11	2.57
2	$C_{\alpha}H_{(pro-R)}$	3	NH	2.69	3.29
2	$C_{\beta}H$	3	NH	2.58	3.26
2	C ₃ H	4	$C_{\alpha}H_{(pro-R)}$	2.49	3.04
3	C ₄ H	3	NH	2.56	3.16
3	C ₄ H	3	C _a H (pro-S)	2.34	2.87
3	C ₄ H	3	$C_{\alpha}H_{(pro-R)}$	2.06	2.51
3	$C_{\beta}H$	5	NH	2.35	2.86
3	$C_{\beta}H$	5	$C_{\alpha}H_{(pro-R)}$	1.96	2.39
3	$C_{\alpha}H_{(pro-S)}$	4	NH	2.42	2.96
4	C ₄ H	4	NH	2.28	2.79
4	C _a H (pro-R)	4	NH	3.13	3.83

4	C ₃ H	4	C ₁ H	2.62	3.2
4	C ₃ H	4	$C_{\alpha}H_{(pro-S)}$	2.01	2.46
4	C ₄ H	4	C _a H (pro-S)	2.51	3.06
4	C ₁ H	4	C ₄ H	2.11	2.57
4	C ₃ H	6	$C_{\alpha}H_{(pro-R)}$	2.69	3.28
4	C _a H (pro-R)	5	NH	2.42	2.96
5	C ₄ H	5	NH	2.31	2.82
5	C ₃ H	5	NH	2.67	3.27
5	C _β H	6	NH	2.11	2.58
5	C _a H (pro-S)	6	NH	2.00	2.44
5	C _a H (pro-R)	6	NH	2.82	3.45
5	C ₄ H	6	$C_{\alpha}H_{(pro-R)}$	2.04	2.50
5	C ₄ H	6	$C_{\alpha}H_{(pro-S)}$	2.32	2.83
6	C ₄ H	6	NH	2.35	2.87
6	$C_{\alpha}H_{(pro-R)}$	6	NH	2.49	3.05
6	C ₄ H	6	C _a H (pro-S)	2.16	2.64

	MIC (ug/ml)					
Compounds	S. aureus		E.faecalis		E.faecium	E.coli
	DRCC035	DRCC019	DRCC034	DRCC153	DRCC154	DRCC018
13	>32	>32	>32	>32	>32	>32
14	>32	>32	>32	>32	>32	>32
15	>32	>32	>32	>32	>32	>32
16	>32	>32	>32	>32	>32	>32

Supporting Table 10: Antibacterial activities of peptides 13-16