Total synthesis of siphonazole and its \boldsymbol{O}-methyl derivative, structurally unusual bisoxazole natural products

Jörg Linder, Alexander J. Blake and Christopher J. Moody

ELECTRONIC SUPPLEMENTARY INFORMATION

Experimental details for compounds $\mathbf{4 , 5 , 9 - 1 4 , 2 0 , 2 1 , 2 , 4 - p e n t a d i e n y l a m i n e}$ ESI 2
X-ray crystal structure of compound $\mathbf{8 b}$ ESI 18
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ESI 19
HPLC data for natural and synthetic siphonazole ESI 74

Methyl 2-diazo-3-oxobutanoate

Prepared by the literature method. ${ }^{1}$

(E)-3-(3-tert-Butyldimethylsiloxy-4-methoxyphenyl)acrylamide 4a

3-Hydroxy-4-methoxycinnamic acid 3a ($5.0 \mathrm{~g}, 25.7 \mathrm{mmol}$) was dissolved in DMF (30 mL), tert-butyldimethylchlorosilane ($8.92 \mathrm{~g}, 59.2 \mathrm{mmol}$) and imidazole ($7.30 \mathrm{~g}, 111 \mathrm{mmol}$) were added and the mixture stirred at room temperature for 20 h . The mixture was poured into water $(50 \mathrm{~mL})$, extracted with ether $(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. The residue was dissolved in dichloromethane (80 mL), cooled to 0 ${ }^{\circ} \mathrm{C}$ and treated with oxalyl chloride ($2.6 \mathrm{~mL}, 30.8 \mathrm{mmol}$) and DMF (2 drops). The mixture was stirred for 1 h at this temperature before ammonia (gas) was bubbled through for 45 min . Saturated aqueous sodium hydrogen carbonate (40 mL) was added, the layers separated and the aqueous layer extracted with dichloromethane $(2 \times 50 \mathrm{~mL})$, the combined organic layers dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Purification by chromatography (light petroleum: ethyl acetate $1: 1+0.5 \%$ triethylamine) gave the title compound $\mathbf{4 a}$ as a colourless solid ($6.5 \mathrm{~g}, 82 \%$); $R_{\mathrm{f}}=0.22$ (light petroleum: ethyl acetate $1: 1$); mp $161-163{ }^{\circ} \mathrm{C}$; (Found: C, 62.4; $\mathrm{H}, 8.1 ; \mathrm{N}, 4.5 . \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3}$ Si requires C, 62.5; H, 8.2; $\mathrm{N}, 4.6 \%$); (Found: MH^{+}, 308.1683. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{3}$ Si requires 308.1676); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3528,3412$ 2931, 1676, $1628,1587,1376,1275,1139,983 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.51(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArCH}=\mathrm{CH})$, 7.06 (1H, dd, $J 8.3,2.1, \mathrm{ArH}-6), 7.02$ (1H, d, $J 2.1$, ArH-2), 6.80 (1H, d, $J 8.3$, ArH-5), 6.29
$(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArCH}=\mathrm{CH}), 6.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 0.99$
($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), 0.14 ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.5$ (C), 152.7 (C), 145.1 (C), $142.1(\mathrm{CH}), 127.5(\mathrm{C}), 122.8(\mathrm{CH}), 119.6(\mathrm{CH}), 117.3(\mathrm{CH}), 111.7(\mathrm{CH}), 55.4(\mathrm{Me}), 25.6$ (Me), $18.4(\mathrm{C}),-4.7(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 308\left(\mathrm{MH}^{+}, 100 \%\right)$.

(E)-3-Methyl 2-((3-tert-butyldimethylsiloxy 4-methoxyphenyl)acrylamido)-3-

oxobutanoate 5a

A solution of (E)-3-(3-tert-butyldimethylsiloxy-4-methoxyphenyl)acrylamide $\mathbf{4 a}(2.0 \mathrm{~g}, 6.40$ mmol) and dirhodium tetraacetate ($71.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.50 \mathrm{~mol} \%$) in dry dichloromethane $(25 \mathrm{~mL})$ was heated to reflux. A solution of methyl 2-diazo-3-oxobutanoate $(1.50 \mathrm{~g}, 10.3$ $\mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was then added via syringe pump over a 16 h period. After the addition was complete the reaction mixture was heated under reflux for a further 4 h . After removal of the solvent under reduced pressure, and purification by chromatography (eluting ethyl acetate/light petroleum 2/3), the title compound $\mathbf{5 a}$ was obtained as a colourless oil ($2.40 \mathrm{~g}, 90 \%$); $R_{\mathrm{f}}=0.68$ (light petroleum: ethyl acetate 2:3); (Found: $\mathrm{MH}^{+}, 422.1993$. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{Si}$ requires 422.1998); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3416,2939,1756,1729,1668,1626$, $1491,1361,1275,1137,1031 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.53(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArCH}=\mathrm{CH}), 7.08$ (1H, dd, $J 8.3,2.1, ~ A r H-6), ~ 7.04$ (1H, d, $J 2.1, ~ A r H-2), 6.82(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}-5), 6.72(1 \mathrm{H}$, $\mathrm{d}, J 6.4, \mathrm{NH}), 6.33(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArCH}=\mathrm{CH}), 5.40(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 198.7$ (C), 166.7 (C), 165.7 (C), 152.9 (C), 145.1 (CH), 142.4 (C), 127.4 (C), 123.0
$(\mathrm{CH}), 119.6(\mathrm{CH}), 116.6(\mathrm{CH}), 111.7(\mathrm{CH}), 63.1(\mathrm{C}), 55.4(\mathrm{Me}), 53.4(\mathrm{Me}), 28.1(\mathrm{Me}), 25.7$
(Me), $18.4(\mathrm{C}),-4.6(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 444\left(\mathrm{MNa}^{+}, 100 \%\right), 422\left(\mathrm{MH}^{+}, 31 \%\right), 291$ (100\%).

(E)-3-(3,4-Dimethoxyphenyl)acrylamide 4b

To a solution of 3,4-dimethoxycinnamic acid 3b (10.0 g, 48.0 mmol) in THF (150 mL) was added triethylamine $(14.7 \mathrm{~mL}, 111 \mathrm{mmol})$ and the solution cooled to $0^{\circ} \mathrm{C}$. A solution of ethyl chloroformate ($10.6 \mathrm{~mL}, 111 \mathrm{mmol}$) in THF (25 mL) was added and the mixture stirred for 15 min . Aqueous ammonium hydroxide (30% in water; 40 mL) in THF (25 mL) was then added dropwise over 5 min . After 15 min , the reaction mixture was warmed to room temperature and stirred for a further 18 h . The solvent was evaporated to give a pale yellow solid. The crude product was dissolved in dichloromethane and washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure to give the title compound as a colourless solid ($3.60 \mathrm{~g}, 36 \%$); mp $162-164^{\circ} \mathrm{C}$ (lit., ${ }^{2} \mathrm{mp} 166.5^{\circ} \mathrm{C}$); (Found: C, 63.5; H, 6.3; N, 6.8. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires C, 63.8; H, 6.3; N, 6.8\%); (Found: MH^{+}, 208.0978. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}$ requires 208.0968); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3528,3412,2953,1678,1620$, $1464,1378,1268,1139,1025 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\right.$ DMSO- $\left.d_{6}\right) 7.45(1 \mathrm{H}, \mathrm{br}$ s), $7.37(1 \mathrm{H}, \mathrm{d}, J 15.8)$, 7.16 (1H, d, $J 1.9$), 7.10 (1H, dd, $J 8.3,1.9$), $7.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, J 8.3), 6.51(1 \mathrm{H}, \mathrm{d}$, J 15.8), $3.79(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 167.0(\mathrm{C}), 150.0(\mathrm{C}), 148.8(\mathrm{C})$, 139.3 (CH), 127.6 (C), $121.4(\mathrm{CH}), 119.9(\mathrm{CH}), 111.6(\mathrm{CH}), 109.9(\mathrm{CH}), 55.4(\mathrm{Me}), 55.4$ (Me); $m / z\left(\mathrm{ESI}^{+}\right) 208\left(\mathrm{MH}^{+}, 100 \%\right)$.

(E)-Methyl 2-(-3-(3,4-dimethoxyphenyl)acrylamido)-3-oxobutanoate 5b

A solution of (E)-3-(3,4-dimethoxyphenyl)acrylamide $\mathbf{4 b}$ ($6.30 \mathrm{~g}, 30.4 \mathrm{mmol}$) and dirhodium tetraacetate ($336 \mathrm{mg}, 0.76 \mathrm{mmol}, 2.50 \mathrm{~mol} \%$) in dry dichloromethane $(60 \mathrm{~mL})$ was heated to reflux. A solution of methyl 2-diazo-3-oxobutanoate ($6.90 \mathrm{~g}, 48.6 \mathrm{mmol}$) in dichloromethane $(15 \mathrm{~mL})$ was then added via syringe pump over a 16 h period. After the addition was complete the reaction mixture was heated under reflux for a further 4 h . After removal of the solvent under reduced pressure, and purification by chromatography (eluting with ethyl acetate/light petroleum 3/2), the title compound $\mathbf{5 b}$ was obtained as a light yellow solid (9.30 $\mathrm{g}, 95 \%$); $R_{\mathrm{f}}=0.28$ (light petroleum: ethyl acetate 2:3); $\mathrm{mp} 46-48^{\circ} \mathrm{C}$; (Found: MH^{+}, 322.1270. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{6}$ requires 322.1285); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3418,2957$, 1757, 1728, 1688, $1626,1464,1359,1140,1025 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.58(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArC} \underline{\mathrm{H}}=\mathrm{CH}), 7.08$ (1H, dd, $J 8.3,1.8, ~ \mathrm{ArH}-6), 7.03$ ($1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{ArH}-2$), 6.85 ($1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}-5$), 6.78 (1 H , d, $J 6.4, \mathrm{NH}), 6.39(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArCH}=\mathrm{CH}), 5.40(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 198.7(\mathrm{C})$, 166.7 (C), 165.6 (C), 150.8 (C), 149.0 (C), 142.3 (CH), 127.3 (C), 122.3 (CH), $116.9(\mathrm{CH})$, $110.9(\mathrm{CH}), 109.5(\mathrm{CH}), 63.1(\mathrm{CH}), 55.9(\mathrm{Me}), 55.8(\mathrm{Me}), 53.3(\mathrm{Me}), 28.0(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right)$ 344 ($\left.\mathrm{MNa}^{+}, 83 \%\right), 322\left(\mathrm{MH}^{+}, 25 \%\right), 191$ (100\%).

1,8-Diazabicyclo[5.4.0]undec-7-ene ($3.70 \mathrm{~mL}, 24.5 \mathrm{mmol}$) and amide $\mathbf{4 a}$ were dissolved in dichloromethane (25 mL) and stirred for 10 min at room temperature. Ethyl dichlorophosphate $(1.70 \mathrm{~mL}, 14.6 \mathrm{mmol})$ was added and the mixture heated to reflux for 1 h . A solution of saturated aqueous ammonium chloride (10 mL) was added and the mixture stirred for further 10 min . The layers were separated, and the aqueous layer extracted with dichloromethane (20 mL). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Chromatography (light petroleum/ethyl acetate $4 / 1$) gave the title compound $\mathbf{9 a}(1.10 \mathrm{~g}, 75 \%)$ as a colourless solid, $R_{\mathrm{f}}=0.72$ (light petroleum: ethyl acetate $1: 1$); mp $64-66^{\circ} \mathrm{C}$; (Found: $\mathrm{MH}^{+}, 290.1577$. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Si}$ requires 290.1571); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3011,2934,2218,1598,1512,1431$, $1274,1139,853 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.27(1 \mathrm{H}, \mathrm{d}, J 16.6, \mathrm{ArCH}=\mathrm{CH}), 7.02(1 \mathrm{H}, \mathrm{dd}, J 8.3$, 1.9, ArH-6), 6.95 (1H, d, $J 1.9$, ArH-2), 6.84 (1H, d, $J 8.3$, ArH-5), 5.30 (1H, d, $J 16.6$, $\mathrm{ArCH}=\mathrm{CH}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 153.7(\mathrm{C}), 150.1(\mathrm{CH}), 145.4(\mathrm{C}), 126.6(\mathrm{C}), 122.5(\mathrm{CH}), 118.8(\mathrm{CH}), 118.6(\mathrm{C})$, $111.7(\mathrm{CH}), 93.4(\mathrm{CH}), 55.4(\mathrm{Me}), 25.6(\mathrm{Me}), 18.6(\mathrm{C}),-5.0(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 312\left(\mathrm{MNa}^{+}\right.$, $100 \%), 290\left(\mathrm{MH}^{+}, 48 \%\right)$.

Methyl 2-(3-tert-butyldimethylsiloxy-4-methoxystyryl)-5-methyloxazole-4-carboxylate 6 a

To a solution of nitrile $9 \mathbf{a}(250 \mathrm{mg}, 0.86 \mathrm{mmol})$ and dirhodium tetraacetate $(9.50 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 2.50 \mathrm{~mol} \%$) in dichloromethane (4 mL) heated to reflux was added dropwise a solution of methyl 2-diazo-3-oxobutanoate ($246 \mathrm{mg}, 1.73 \mathrm{mmol}$) in dichloromethane (1 mL)
over a period of 16 h . After removal of the solvent under reduced pressure, purification by chromatography (eluting with ethyl acetate/light petroleum 1/5) gave the title compound $\mathbf{6 a}$ as a light yellow solid ($143 \mathrm{mg}, 41 \%$); data identical to previous sample.

(E)-3-(3,4-Dimethoxyphenyl)acrylonitrile 9b

1,8-Diazabicyclo[5.4.0]undec-7-ene ($3.60 \mathrm{~mL}, 24.2 \mathrm{mmol}$) and amide $\mathbf{4 b}(1.0 \mathrm{~g}, 4.83 \mathrm{mmol})$ were dissolved in dichloromethane $(20 \mathrm{~mL})$ and stirred for 10 min at room temperature. Ethyl dichlorophosphate ($1.72 \mathrm{~mL}, 14.5 \mathrm{mmol}$) was added and the mixture heated to reflux for 1 h . A solution of saturated aqueous ammonium chloride (10 mL) was added and the mixture stirred for further 10 min . The layers were separated, the aqueous extracted with dichloromethane (20 mL). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Chromatography (light petroleum/ethyl acetate 3/1) gave the title compound $\mathbf{9 b}$ as a colourless solid ($500 \mathrm{mg}, 55 \%$), $R_{\mathrm{f}}=0.57$ (light petroleum: ethyl acetate 1:1); mp $97-99^{\circ} \mathrm{C}$; (Found: C, 69.7; H, 5.8; N, 7.3. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C, 69.8; $\mathrm{H}, 5.9$; $\mathrm{N}, 7.4 \%$); (Found: MH^{+}, 190.0862. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires 190.0863); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3011,2218,1619,1514,1465,1272,1142,1024 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30(1 \mathrm{H}, \mathrm{d}, J 16.6, \operatorname{ArCH}=\mathrm{CH}), 7.02(1 \mathrm{H}, \mathrm{dd}, J 8.3,2.0, \mathrm{ArH}-6), 6.93(1 \mathrm{H}, \mathrm{d}$, J 2.0, ArH-5), 6.86 (1H, d, J 8.3, ArH-5), 5.71 (1H, d, $J 16.6, ~ \mathrm{ArCH}=\mathrm{CH}), 3.90(6 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.8(\mathrm{C}), 150.2(\mathrm{CH}), 149.3(\mathrm{C}), 126.5(\mathrm{C}), 122.0(\mathrm{CH}), 118.5$ $(\mathrm{CH}), 111.0(\mathrm{CH}), 108.8(\mathrm{CH}), 93.5(\mathrm{CH}), 56.0(\mathrm{Me}), 55.9(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 212\left(\mathrm{MNa}^{+}\right.$, $100 \%), 190\left(\mathrm{MH}^{+}, 43 \%\right)$.

(E)-Methyl 2-(3,4-dimethoxystyryl)-5-methyloxazole-4-carboxylate 6b

To a solution of nitrile $9 \mathbf{~ b}(100 \mathrm{mg}, 0.53 \mathrm{mmol})$ and dirhodium tetraacetate $(5.80 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 2.50 \mathrm{~mol} \%$) in dichloromethane (2 mL) heated to reflux was added dropwise a solution of methyl 2-diazo-3-oxobutanoate $(151 \mathrm{mg}, 1.06 \mathrm{mmol})$ in dichloromethane $(0.8$ mL) over a period of 16 h . After removal of the solvent under reduced pressure, purification by chromatography (eluting with ethyl acetate/light petroleum 1/2) gave the title compound $\mathbf{6 b}$ as a light yellow solid ($37 \mathrm{mg}, 23 \%$); data identical to previous sample.

Methyl 2-(iodomethyl)-5-methyloxazole-4-carboxylate 10

To a solution of iodoacetonitrile $(9.40 \mathrm{~g}, 56.2 \mathrm{mmol})$ and dirhodium tetraacetate $(310 \mathrm{mg}$, $0.70 \mathrm{mmol}, 2.50 \mathrm{~mol} \%)$ in dichloromethane $(30 \mathrm{~mL})$ heated to reflux was added dropwise a solution of methyl 2-diazo-3-oxobutanoate ($4.0 \mathrm{~g}, 28.1 \mathrm{mmol}$) in dichloromethane (10 mL) over a period of 16 h . After the addition was complete the reaction mixture was heated to reflux for a further 2 h . After removal of the solvent under reduced pressure, purification by chromatography (eluting with ethyl acetate/light petroleum 1/4) gave the title compound $\mathbf{1 0}$ as a yellow solid ($6.0 \mathrm{~g}, 76 \%$); $R_{\mathrm{f}}=0.56$ (light petroleum: ethyl acetate $1: 1$); $\mathrm{mp} 81-83^{\circ} \mathrm{C}$; (Found: $\mathrm{MH}^{+}, 281.9616 . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{INO}_{3}$ requires 281.9627); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2954,1727,1618$, $1424,1353,1103 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.59(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 162.2$ (C), 158.4 (C), 157.2 (C), 128.2 (C), $52.0(\mathrm{Me}), 12.0(\mathrm{Me})$, $-11.9\left(\mathrm{CH}_{2}\right) ; m / z\left(\mathrm{ESI}^{+}\right) 304\left(\mathrm{MNa}^{+}, 100 \%\right), 282\left(\mathrm{MH}^{+}, 23 \%\right)$.

Methyl 2,5-dimethyloxazole-4-carboxylate 11

To a solution of dirhodium tetraacetate ($310 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.50 \mathrm{~mol} \%$) in acetonitrile (12 mL) heated to reflux was added dropwise a solution of methyl 2-diazo-3-oxobutanoate (4.0 g , $28.2 \mathrm{mmol})$ in acetonitrile (3 mL) over a period of 16 h . After the addition was complete the reaction mixture was heated to reflux for a further 4 h . After removal of the solvent under reduced pressure, purification by chromatography (eluting with ethyl acetate/ light petroleum $1 / 3$ to 1:1) gave the title compound $\mathbf{1 1}$ as a colourless solid ($3.2 \mathrm{~g}, 73 \%$); $R_{\mathrm{f}}=0.27$ (light petroleum: ethyl acetate $1: 1$); $\mathrm{mp} 42-44^{\circ} \mathrm{C}$ (lit., ${ }^{3} \mathrm{mp}$ not given); (Found: $\mathrm{M}^{+}, 156.0655$. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{3}$ requires 156.0655); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3005,1715,1627,1442,1353,1193,1102 ;$ $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 162.7$ (C), 159.4 (C), 156.1 (C), 127.0 (C), 51.7 (Me), 13.5 (Me), 11.7 (Me); m / z $\left(\mathrm{ESI}^{+}\right) 178\left(\mathrm{MNa}^{+}, 100 \%\right), 156\left(\mathrm{M}^{+}, 38 \%\right)$.

2,5-Dimethyloxazole-4-carboxylic acid 12

Ester $11(0.80 \mathrm{~g}, 5.2 \mathrm{mmol})$ was dissolved in THF (20 mL). A solution of lithium hydroxide $(0.62 \mathrm{~g}, 26 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ was added and the reaction mixture was stirred for 18 h at room temperature. The reaction mixture was diluted with aqueous citric acid ($10 \% ; 20 \mathrm{~mL}$) and stirred for 10 min . The THF was removed in vacuo, ethyl acetate $(90 \mathrm{~mL})$ added, and the organic layer was separated, washed with water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$
and the solvent evaporated under reduced pressure to give the title compound $\mathbf{1 2}$ as a colourless solid ($0.53 \mathrm{~g}, 72 \%$); mp 191-194 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{4} \mathrm{mp} 182.5-184.5$); (Found: M${ }^{-}, 140.0355$ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{3}$ requires 140.0353); $v_{\text {max }}$ (solid) $/ \mathrm{cm}^{-1} 1703,1634,1328,1223,1099,958 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.50(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 163.3(\mathrm{C}), 158.8$ (C), 155.3 (C), 127.4 (C), $13.3(\mathrm{Me}), 11.7(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{-}\right) 140\left(\mathrm{M}^{-}, 29 \%\right)$.

N-Ethyl-2,5-dimethyloxazole-4-carboxamide 13

Carboxylic acid 12 ($300 \mathrm{mg}, 2.13 \mathrm{mmol}$) was dissolved in DMF (8 mL), diisopropylethylamine ($1.77 \mathrm{~mL}, 10.7 \mathrm{mmol}$) and PyBOP ($1.33 \mathrm{~g}, 2.55 \mathrm{mmol}$) were added and the mixture stirred at room temperature for 15 min . Ethylamine hydrochloride (208 mg , 2.55 mmol) was added and stirring continued at room temperature for 12 h . The mixture was diluted with diethyl ether $(40 \mathrm{~mL})$ and subsequently washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and removal of the solvent under reduced pressure, purification by chromatography (eluent: ethyl acetate/light petroleum 1/1) gave the title compound 13 as colourless solid ($310 \mathrm{mg}, 87 \%$); $R_{\mathrm{f}}=0.44$ (light petroleum: ethyl acetate 1:3); mp 32-33 ${ }^{\circ} \mathrm{C}$; (Found: MH^{+}, 169.0960. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 169.0972); $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3419,3009,1656,1526,1442,1332,1138 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.87(1 \mathrm{H}, \mathrm{br}$, $\mathrm{NH}), 3.42-3.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.18(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 161.7(\mathrm{C}), 158.3(\mathrm{C}), 152.5(\mathrm{C}), 128.8(\mathrm{C}), 33.6\left(\mathrm{CH}_{2}\right), 14.8$ (Me), $13.6(\mathrm{Me}), 11.4(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 191\left(\mathrm{MNa}^{+}, 100 \%\right), 169\left(\mathrm{MH}^{+}, 38 \%\right)$.

tert-Butyl 2,5-dimethyloxazole-4-carboxylate 14

Di-tert-butyl dicarbonate $(5.70 \mathrm{~g}, 25.5 \mathrm{mmol})$ and 4-dimethylaminopyridine $(0.60 \mathrm{~g}, 5.10$ $\mathrm{mmol})$ were sequentially added to a solution of carboxylic acid $12(2.40 \mathrm{~g}, 17.0 \mathrm{mmol})$ in tert-butanol $(60 \mathrm{~mL})$ at $35^{\circ} \mathrm{C}$ and stirred for 48 h . The solvent was removed under reduced pressure, followed by chromatography (light petroleum/ethyl acetate 1/1) to give the title compound $14(3.0 \mathrm{~g}, 90 \%)$ as a yellow solid ($3.0 \mathrm{~g}, 90 \%$); $R_{\mathrm{f}}=0.75$ (light petroleum: ethyl acetate 1:3); mp 30-31 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{4} \mathrm{mp} 33-35^{\circ} \mathrm{C}$); (Found: MNa^{+}, 220.0964. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires 220.0944); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2984,1716,1623,1392,1358,1166,1100 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.53\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 161.5$ (C), 159.0 (C), 155.0 (C), 128.3 (C), 81.4 (C), 28.1 (Me), 13.6 (Me), 11.8 (Me); $m / z\left(\mathrm{ESI}^{+}\right)$ $220\left(\mathrm{MNa}^{+}, 100 \%\right)$.

N-Methoxy- N-methyl-2-(3,4-dimethoxystyryl)-5-methyloxazole-4-carboxamide

A solution of dimethylaluminum chloride ($1 \mathrm{M} ; 8.25 \mathrm{~mL}, 8.25 \mathrm{mmol}$) in hexane was added over a 5 min period to a stirred suspension of N, O-dimethylhydroxylamine hydrochloride $(805 \mathrm{mg}, 8.25 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred for 1 h at room temperature. A solution of ester $\mathbf{6 b}(500 \mathrm{mg}, 1.65 \mathrm{mmol})$ in dichloromethane (4 mL) was added dropwise over a period of 2 min and stirring continued. After completion of the
reaction, it was quenched with saturated aqueous sodium hydrogen carbonate (25 mL), diluted with dichloromethane (25 mL) and filtered through a short pad of Celite. The aqueous layer was extracted with dichloromethane $(15 \mathrm{~mL})$, the combined organic layers washed with brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Purification by chromatography using ethyl acetate/ light petroleum (2/1) gave the title compound as a light yellow solid ($350 \mathrm{mg}, 64 \%$); $R_{\mathrm{f}}=0.25$ (light petroleum: ethyl acetate $1: 1$); $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C}$; (Found: $\mathrm{C}, 61.4 ; \mathrm{H}, 6.0 ; \mathrm{N}, 8.3 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 61.4 ; \mathrm{H}, 6.1 ; \mathrm{N}, 8.4 \%$); (Found: $\mathrm{MH}^{+}, 333.1458 \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 333.1445); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3011,1730,1640,1512$, $1465,1266,1140,1025 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40(1 \mathrm{H}, \mathrm{d}, J 16.4, \mathrm{ArCH}=\mathrm{CH}), 7.08(1 \mathrm{H}$, dd, $J 8.3,1.9$, ArH-6), 7.05 (1H, d, $J 1.9$, ArH-2), 6.87 (1H, d, $J 8.3$, ArH-5), 6.76 (1H, d, J 16.4, $\mathrm{ArCH}=\mathrm{CH}$), 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.44 ($3 \mathrm{H}, \mathrm{s}$, NMe), 2.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz;} \mathrm{CDCl}_{3}\right) 163.3(\mathrm{C}), 158.5(\mathrm{C}), 154.1(\mathrm{C}), 150.2(\mathrm{C})$, 149.2 (C), $136.0(\mathrm{CH}), 130.1(\mathrm{C}), 128.4(\mathrm{C}), 121.2(\mathrm{CH}), 111.5(\mathrm{CH}), 111.2(\mathrm{CH}), 108.9$ $(\mathrm{CH}), 67.9(\mathrm{Me}), 61.6(\mathrm{Me}), 55.9(\mathrm{Me}), 55.8(\mathrm{Me}), 12.0(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 355\left(\mathrm{MNa}^{+}, 100 \%\right)$, $333\left(\mathrm{MH}^{+}, 50 \%\right)$.

Methyl (E)-penta-2,4-dienoate

Acrolein ($17.5 \mathrm{~g}, 310 \mathrm{mmol}$) and 4-dimethylaminopyridine ($2.80 \mathrm{~g}, 23.0 \mathrm{mmol}$) were rapidly added to a solution of monomethyl malonate ($37.0 \mathrm{~g}, 310 \mathrm{mmol}$) in pyridine (50 mL). The solution was warmed to $50^{\circ} \mathrm{C}$ and stirred for 3 days at this temperature. The mixture was poured into water $(250 \mathrm{~mL})$ and extracted with ether $(3 \times 100 \mathrm{~mL})$. The ether extract was washed with hydrochloric acid $(2 \mathrm{M} ; 3 \times 40 \mathrm{~mL})$ and brine $(80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to yield a light yellow oil (17.5 g, 50\%). Further
purification was done by distillation to obtain a colourless liquid ($8.50 \mathrm{~g}, 25 \%$); bp $45^{\circ} \mathrm{C}$ at $15 \mathrm{mmHg} ;\left(\right.$ lit., ${ }^{5}$ bp $54^{\circ} \mathrm{C}$ at 27 mmHg$) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2953,1711,1646,1601,1363$, $1312,1149,905 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.13\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,15.4, \mathrm{CH}_{2}=\mathrm{CH}=\mathrm{CH}\right), 6.32(1 \mathrm{H}$, dt, $\left.J 17.0,10.5, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.77\left(1 \mathrm{H}, \mathrm{d}, J 15.4, \mathrm{CHCO}_{2} \mathrm{Me}\right), 5.46(1 \mathrm{H}, \mathrm{d}, J 17.0, \mathrm{CHH} E), 5.34$ $(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CH} \underline{H} Z), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.7(\mathrm{C}), 144.4(\mathrm{CH})$, $134.4(\mathrm{CH}), 125.2\left(\mathrm{CH}_{2}\right), 121.5(\mathrm{CH}), 51.1(\mathrm{Me})$.

(()-2,4-Pentadienol

Lithium aluminum hydride ($2.88 \mathrm{~g}, 76.0 \mathrm{mmol}$) was suspended in ether $(50 \mathrm{~mL})$ and cooled down to $0{ }^{\circ} \mathrm{C}$. The above ester ($8.50 \mathrm{~g}, 76.0 \mathrm{mmol}$) was dissolved in ether $(10 \mathrm{~mL})$ and added dropwise over a period of 1 h (via syringe pump) to the reaction mixture. The reaction was quenched by adding water (2.88 mL), aqueous sodium hydroxide ($2 \mathrm{M} ; 2.88 \mathrm{~mL}$), water (8.6 mL) and stirring continued for further 30 min . The mixture was poured through a short pad of Celite and diluted with ether $(50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give the title compound as a colourless liquid $(5.20 \mathrm{~g}, 81 \%)$ used without any further purification for the next step; the spectroscopic data corresponded to literature values, ${ }^{6} v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3616,3444,2873,2254,1824,1731$, 1606, 1455, 1377, 1083, 994, 902; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}=\mathrm{CH}\right), 5.74$ (1H, dt, $\left.J 14.7,5.7, \mathrm{C} \underline{H}=\mathrm{CH}_{2} \mathrm{OH}\right), 5.13(1 \mathrm{H}, \mathrm{d}, J 16.4, \mathrm{C} \underline{H} \mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{CH} \underline{H} Z)$, $4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 136.2(\mathrm{CH}), 132.5(\mathrm{CH}), 131.2(\mathrm{CH}), 116.9$ $\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right)$.

(E)-5-Bromo-1,3-pentadiene

The above alcohol ($7.10 \mathrm{~g}, 84.0 \mathrm{mmol}$) was dissolved in ether (60 mL) and cooled to $0^{\circ} \mathrm{C}$. Phosphorus tribromide ($27.3 \mathrm{~g}, 101 \mathrm{mmol}$) was added dropwise over 30 min (via syringe pump) and stirring continued at this temperature for further 30 min . The mixture was poured into ice-water (100 mL) and the aqueous layer extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water $(80 \mathrm{~mL})$, saturated aqueous sodium hydrogen carbonate $(80 \mathrm{~mL})$, brine $(80 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and further purification by distillation gave a colourless liquid ($7.20 \mathrm{~g}, 58 \%$); bp $35{ }^{\circ} \mathrm{C}$ at 5.2 mmHg , (lit., ${ }^{6}$ bp $54-55^{\circ} \mathrm{C}$ at 34 mmHg); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2971,1831,1600,1292$, $1114,1002,949,913 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}=\mathrm{CH}\right), 5.90(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2} \mathrm{Br}\right), 5.25(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{C} \underline{H} H E), 5.14(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CH} \underline{H} Z), 4.00(2 \mathrm{H}, \mathrm{d}, J 7.9$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.3(\mathrm{CH}), 135.0(\mathrm{CH}), 129.0(\mathrm{CH}), 119.2\left(\mathrm{CH}_{2}\right), 32.7$ $\left(\mathrm{CH}_{2}\right)$.

(E)-2,4-Pentadienylamine

The above bromide ($6.80 \mathrm{~g}, 46.0 \mathrm{mmol}$) was dissolved in DMSO $(80 \mathrm{~mL})$ and sodium azide $(4.50 \mathrm{~g}, 69.0 \mathrm{mmol})$ added in one portion at room temperature and the mixture stirred for 1.5 h. The reaction was diluted with water $(100 \mathrm{~mL})$ and extracted with ether $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water $(80 \mathrm{~mL})$ and brine $(80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. The azide ($4.80 \mathrm{~g}, 96 \%$) was obtained as a yellow liquid and used without further purification.

Lithium aluminum hydride ($1.20 \mathrm{~g}, 32.0 \mathrm{mmol}$) was suspended in ether $(70 \mathrm{~mL})$ and cooled down to $0^{\circ} \mathrm{C}$. The azide $(4.60 \mathrm{~g}, 42.0 \mathrm{mmol})$ was dissolved in ether $(10 \mathrm{~mL})$ and added dropwise over a period of 30 min (via syringe pump) to the reaction mixture. Stirring was continued for further 30 min at $0^{\circ} \mathrm{C}$. The reaction was then quenched by adding water (1.20 mL), aqueous sodium hydroxide (2 M ; 1.20 mL), water (3.60 mL) and stirred for 20 min . The mixture was poured through a short pad of Celite and diluted with ether (30 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give a yellow liquid ($2.80 \mathrm{~g}, 80 \%$). After distillation (E)-2,4-pentadienylamine was obtained as colourless oil ($1.50 \mathrm{~g}, 43 \%$); bp $30-33{ }^{\circ} \mathrm{C}$ at 8 mmHg ; (lit., ${ }^{7}$ bp $43-45^{\circ} \mathrm{C}$ at $40 \mathrm{mmHg}) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3616,3444,2873,2253,1824,1731,1606,1455,1377,1083$, 994, 902; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.30\left(1 \mathrm{H}, \mathrm{dt}, J 16.9,10.3, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.09(1 \mathrm{H}, \mathrm{dd}, J 15.2$, $\left.10.5, \mathrm{CH}_{2}=\mathrm{CHCH}\right), 5.77\left(1 \mathrm{H}, \mathrm{dt}, J 15.2,5.6, \mathrm{CH}=\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{d}, J 16.9, \mathrm{CHH} E)$, $4.95(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CH} \underline{\mathrm{H}} \mathrm{Z}), 3.15\left(2 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.0\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 137.0(\mathrm{CH}), 136.9(\mathrm{CH}), 129.0(\mathrm{CH}), 115.4\left(\mathrm{CH}_{2}\right), 43.1\left(\mathrm{CH}_{2}\right)$.

Methyl 2-(2-(2-(3-hydroxy-4-methoxystyryl)-5-methyloxazol-4-yl)-2-oxoethyl)-5-methyloxazole-4-carboxylate 20

Ester 15 ($300 \mathrm{mg}, 0.57 \mathrm{mmol}$) was dissolved in THF (5 mL), cooled to $0^{\circ} \mathrm{C}$ and triethylamine trihydrofluoride ($276 \mu \mathrm{~L}, 1.71 \mathrm{mmol}$) was added dropwise over a period of 5 \min. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h before an aqueous solution of saturated ammonium chloride (5 mL) was added and the mixture warmed to room temperature. The

THF was removed under reduced pressure and the aqueous extracted with ethyl acetate ($2 \times$ $10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the title compound $\mathbf{2 0}$ as a light yellow solid ($157 \mathrm{mg}, 65 \%$) used without further purification; mp 71-73 ${ }^{\circ} \mathrm{C}$; (Found: MH^{+}, 413.1346. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires 413.1343); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3544,3011,1719,1588,1511,1442,1353,1281,1106 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.38(1 \mathrm{H}, \mathrm{d}, J 16.3, \mathrm{ArCH}=\mathrm{CH}), 7.12(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{ArH}-2), 7.00(1 \mathrm{H}, \mathrm{dd}, J 8.3,2.0$, ArH-6), 6.84 (1H, d, J 8.3, ArH-5), 6.69 ($1 \mathrm{H}, \mathrm{d}, J 16.3, \operatorname{ArCH}=\mathrm{CH}), 5.9(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.47$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.63(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}$ (100 MHz; CDCl_{3}) 189.3 (C), 162.7 (C), 159.1 (C), 157.2 (C), 156.5 (C), 155.4 (C), 148.0 (C), 145.9 (C), 137.1 (CH), 134.3 (C), 128.7 (C), 127.6 (C), $120.6(\mathrm{CH}), 112.4(\mathrm{CH}), 111.0$ $(\mathrm{CH}), 110.6(\mathrm{CH}), 56.0(\mathrm{Me}), 51.8(\mathrm{Me}), 39.5\left(\mathrm{CH}_{2}\right), 12.3(\mathrm{Me}), 11.9(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 435$ $\left(\mathrm{MNa}^{+}, 100 \%\right), 413\left(\mathrm{MH}^{+}, 42 \%\right)$.

Methyl 2-(2-(2-(3-hydroxy-4-methoxystyryl)-5-methyloxazol-4-yl)-2-oxo-1-methylethyl)-

5-methyloxazole-4-carboxylate 21

Phenol $20(15.0 \mathrm{mg}, 35.0 \mu \mathrm{~mol})$ was dissolved in DMF (0.5 mL) and cooled to $0^{\circ} \mathrm{C}$.
Subsequently potassium carbonate ($15.0 \mathrm{mg}, 110 \mu \mathrm{~mol}$) and iodomethane ($6.60 \mu \mathrm{~L}, 180$ $\mu \mathrm{mol})$ were added and the mixture stirred at this temperature for 30 min . Saturated aqueous ammonium chloride (5 mL) and ethyl acetate $(20 \mathrm{~mL})$ were added and the layers separated. The aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL})$ and the combined organic layers
washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Purification by chromatography (eluent light petroleum/ethyl acetate $1 / 1+0.5 \%$ triethylamine) gave the title compound $\mathbf{2 1}$ as a colourless solid ($6.5 \mathrm{mg}, 42 \%$); $R_{\mathrm{f}}=0.22$ (light petroleum: ethyl acetate 1:1); mp 57-58 ${ }^{\circ} \mathrm{C}$; (Found: MH^{+}, 427.1501. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires 427.1500; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3543,3012,1724,1601,1511,1442,1267,1103 ; \delta_{\mathrm{H}}$ (400 MHz; CDCl_{3}) $7.38(1 \mathrm{H}, \mathrm{d}, J 16.3, \mathrm{ArCH}=\mathrm{CH}), 7.14(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{ArH}-2), 7.03(1 \mathrm{H}, \mathrm{dd}$, $J 8.3,2.0$, ArH-6), 6.86 (1H, d, $J 8.3, \operatorname{ArH}-5), 6.71(1 \mathrm{H}, \mathrm{d}, J 16.3, \mathrm{ArCH}=\mathrm{CH}), 5.0(1 \mathrm{H}, \mathrm{q}, J$ 7.3, CHMe), 3.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.69$ (3H, d, J 7.3, CHMe); OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 193.1(\mathrm{C}), 162.8(\mathrm{C}), 160.8$ (C), 158.9 (C), 156.9 (C), 156.1 (C), 147.9 (C), 145.9 (C), 137.0 (CH), 134.0 (C), 128.8 (C), $127.4(\mathrm{C}), 120.6(\mathrm{CH}), 112.4(\mathrm{CH}), 111.3(\mathrm{CH}), 110.7(\mathrm{CH}), 56.0(\mathrm{Me}), 51.8(\mathrm{Me}), 43.1$ (CH), 14.7 (Me), $12.8(\mathrm{Me}), 12.0(\mathrm{Me}) ; m / z\left(\mathrm{ESI}^{+}\right) 449\left(\mathrm{MNa}^{+}, 87 \%\right), 427\left(\mathrm{MH}^{+}, 65 \%\right)$.

X-Ray crystal structure of 2-(3,4-dimethoxystyryl)-5-methyloxazole-4-carbaldehyde 8b

Methyl 2-(3-tert-butyldimethylsiloxy-4-methoxystyryl)-5-methyloxazole-4-carboxylate 6a

N-Ethyl-2,5-dimethyloxazole-4-carboxamide 13

TBDMS-protected siphonazole 19

Synthetic siphonazole 1

Methyl 2-(2-(2-(3-hydroxy-4-methoxystyryl)-5-methyloxazol-4-yl)-2-oxoethyl)-5-methyloxazole-4-carboxylate 20

Methyl 2-(2-(2-(3,4-dimethoxystyryl)-5-methyloxazol-4-yl)-2-hydroxyethyl)-5-methyloxazole-4-carboxylate 17b

O-Methyl siphonazole 2

Comparison of HPLC-retention times of natural, synthetic and a mixture of natural and synthetic siphonazole

Column: Varian Polaris $\mathrm{C}_{18}, 5 \mathrm{~mm}, 250 \times 4.6 \mathrm{~mm}$, eluent: acetonitrile/water 75:25; flow rate: 1 mLmin^{-1}

synthetic siphonazole

Index	Time	Quantity	Height	Area	Area \%
	$[\mathrm{Min}]$	[\% Area]	$[\mathrm{mAU}]$	[mAU.Min]	$[\%]$
1	2.27	0.21	3.5	0.5	0.205
2	4.88	99.14	478.4	217.6	99.144
3	6.2	0.34	4.2	0.8	0.344
4	7.49	0.24	1.8	0.5	0.237
5	9.97	0.07	0.7	0.2	0.069
Total	-	100	488.6	219.5	100

References

1. M. C. Bagley, R. T. Buck, S. L. Hind and C. J. Moody, J. Chem. Soc., Perkin Trans. 1, 1998, 591.
2. E. Lorz, L. P. Albro and R. Baltzly, J. Am. Chem. Soc., 1951, 73, 483.
3. C. Batsila, G. Kostakis and L. P. Hadjiarapoglou, Tetrahedron Lett., 2002, 43, 5997.
4. C. Shin, Y. Sato, H. Sugiyama, K. Nanjo and J. Yoshimura, Bull. Chem. Soc. Jpn., 1977, 50, 1788.
5. J. Rodriguez and B. Waegell, Synthesis, 1988, 534.
6. K. Mori, Tetrahedron, 1974, 30, 3807.
7. P. A. Grieco, P. Galatsis and R. F. Spohn, Tetrahedron, 1986, 42, 2847.
