Electronic Supplementary Information

New synthetic routes to optically active α -quaternary α -aryl amino acid derivatives via the diastereoselective Stevens and Sommelet–Hauser rearrangements

Eiji Tayama,* Kiwako Orihara, and Hiroshi Kimura

Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

Fax: +81-25-262-7741; E-mail: tayama@gs.niigata-u.ac.jp

Determination of the absolute configuration of 8b

The absolute configuration of **8b** at α -position was determined as the *R* by a single crystal X-ray diffraction. Recrystallization of **8b** from *n*-heptane gave a single crystal which was suitable for crystallographic analysis.

Crystal data of 8b: $C_{36}H_{51}NO_4$, MW = 561.80; *orthorhombic*; space group $P2_12_12_1$ (#19); a = 9.2925(1) Å, b = 12.9908(2) Å, c = 28.1110(4) Å; V = 3393.49(9) Å³; Z = 4; $D_{calcd} = 1.100$ g/cm³; $\mu = 0.70$ cm⁻¹; $2\theta_{max} = 51.4^{\circ}$; T = 296 K; R_1 ($I > 2\sigma(I)$) = 0.057; wR_2 (all data) = 0.123; GOF = 1.23 for 6437 reflections and 371 parameters. The absolute structure was determined based on Flack parameter, 0.07(10), refined using 2792 Friedel pairs.

Figure 1. Molecular structure of 8b (hydrogen atoms are omitted for cleanly)

Determination of the absolute configuration of 8a

Hydrogenation of **8a** afforded the corresponding reduced compound **17** as a single stereoisomer. Thus, **8a** was found to be a 1:1 mixture of *E*- and *Z*-isomer. The absolute configuration of **8a** at α -position was determined as the *R* because the absolute configuration of **8b** was determined as the *R* by a single crystal X-ray diffraction.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

A mixture of **8a** (75 mg, 0.13 mmol) and palladium on activated carbon (loading: 10 wt. %, 3 mg) in ethyl acetate (1.3 mL) was stirred for 3 h at room temperature under a hydrogen atmosphere. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexane/ethyl acetate = 15:1 to 10:1 as eluent) to afford **17** (72.3 mg, 99% yield) as a white solid.

(2R)-2-(5'-tert-Butoxycarbonyl-2'-methylphenyl)-2-dimethylaminohexanoic acid (-)-8-phenylmenthol ester

(17): white solid; mp = 53–56 °C; $[\alpha]^{21}_{589}$ = 11.7 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 8.26 (1H, s, Ar-H), 7.72 (1H, dd, *J* = 7.8, 1.1 Hz, Ar-H), 7.38-7.22 (4H, m, Ar-H), 7.21-7.09 (2H, m, Ar-H), 4.99 (1H, td, *J* = 10.5, 3.8 Hz, COOCH), 2.34 (6H, s, (CH₃)₂N), 2.30 (3H, s, Ar-CH₃), 2.24-1.96 (4H, m, 3-H and 8-Ph-Men-H), 1.69-0.67 (5H, m, 8-Ph-Men-H), 1.59 (9H, s, *t*-Bu), 1.44 (3H, s, 8-Ph-Men-CH₃), 1.27 (3H, s,

8-Ph-Men-CH₃), 0.87 (3H, d, J = 5.9 Hz, 8-Ph-Men-CH₃), 0.74 (3H, t, J = 7.2 Hz, 6-H), 0.59-0.38 (1H, m, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 167.8, 166.4, 151.1, 141.0, 139.2, 131.7, 130.6, 128.5, 128.1, 127.3, 125.5 (3C), 80.4, 77.1, 71.8, 50.1, 44.3, 40.3, 39.7, 34.5, 32.1, 31.5, 29.8, 28.2, 27.6, 25.0, 24.2, 22.8, 22.3, 21.9, 13.9; IR (film) 2952, 2868, 2792, 1710, 1606, 1570, 1454, 1390, 1368, 1296, 1256, 1210, 1162, 1142, 1092, 1048, 1030, 990, 956, 904, 848, 756, 700 cm⁻¹; Anal. Calcd for C₃₆H₅₃NO₄: C, 76.69; H, 9.47; N, 2.48. Found: C, 76.51; H, 9.68; N, 2.43.

Determination of the absolute configurations of rearrangement products (7a-7d, 8e, 13a-f)

The absolute configurations at α -position of **7a–7d**, **8e**, and **13a** were determined by analogy to the ¹H NMR chemical shifts with that of such known compounds as (2*R*)-**8a**, (2*R*)-**8b**, (2*R*)-**17**, (2*R*)-**2**, and (2*S*)-**2**.¹ The data were summarized in Table 1. The chemical shifts of H₆-proton were observed as > 8.00 ppm for the (2*R*)-isomer and < 8.00 ppm for the (2*S*)-isomer. The absolute configurations of **13b–f** were determined by the analogy to **13a**.

⁽¹⁾ E. Tayama, H. Kimura, Angew. Chem. Int. Ed., 2007, 46, 8869.

Table 1. Summarized data of ¹H NMR chemical shifts and coupling constants of the rearrangement products

R CO ₂ R* H ₆ ' CO ₂ Bu ^t		[R* = (–)-8-phenylmenthyl] Bu ^t
(2R)-isomer	(2S)-isomer	
R	chemical shift and coupling constant of H ₆ .	
	(2R)-isomer	(2S)-isomer
$(E)-\mathrm{CH}_{2}\mathrm{CH}=\mathrm{CH}\mathrm{CH}_{3}\left(\mathbf{8a}\right)^{a}$	8.18 (d, <i>J</i> = 1.4 Hz)	-
$(Z)-CH_2CH=CHCH_3 (\mathbf{8b})^a$	8.24 (d, <i>J</i> = 1.9 Hz)	-
$n-C_{4}H_{9}(17)^{a}$	8.26 (s)	-
$\mathrm{H}\left(2\right)^{a,b}$	8.12 (d, J = 1.4 Hz)	7.77-7.72 (multiplet with other peak)
$CH(CH_3)CH=CH_2(7a)$	8.14 (s)	_
$CH(CH_3)CH=CH_2(7b)$	8.16 (s)	-
$CH_2CH=CH_2$ (7c)	8.21 (d, <i>J</i> = 1.9 Hz)	7.90 (d, J = 1.6 Hz)
$CH_2C(CH_3)=CH_2(7d)$	8.17 (d, <i>J</i> = 1.9 Hz)	_
(E)-CH ₂ CH=CHPh (8e)	8.25 (d, <i>J</i> = 1.6 Hz)	_
CH ₃ (13a)	-	7.94 (d, $J = 1.6$ Hz)

 \overline{a} The absolute configurations were determined experimentally.

^b The spectroscopic data were summarized in ref. 1.

Preparation of quaternary ammonium salts 6a-6e and 9

A mixture of (2S)-2¹ (1.0 equiv) and allylic bromide² or 4-cyanobenzyl bromide (3 equiv) in acetonitrile (0.2 M) was stirred for 2–8 days at room temperature. The resulting mixture was concentrated and the residue was purified by chromatography on silica gel (dichloromethane/methanol as eluent) to obtain quaternary ammonium salt **6a–6e**, **9** as a white solid.

^{(2) (}*E*)-Crotyl bromide was purchased from Aldrich (E/Z = 85:15). (*Z*)-Crotyl bromide (E/Z = 15:85) was prepared from 2-butyn-1-ol via hydrogenation and bromination, see: (a) N. A. LeBel, N. Balasubramanian, *J. Am. Chem. Soc.*, 1989, **111**, 3363; (b) P. Fristrup, T. Jensen, J. Hoppe, P.-O. Norrby, *Chem. Eur. J.*, 2006, **12**, 5352.

N-[(*E*)-But-2-en-1-yl]-*N*-{(*S*)-(5'-*tert*-butoxycarbonyl-2'-methylphenyl)[(–)-8-phenylmenthyloxycarbonyl]

methyl}-*N*,*N*-**dimethylammonium bromide (6a):** E/Z = 85:15 mixture of diastereomers; white solid; mp = 85–88 °C; $[\alpha]^{24}_{589} = 13.3$ (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.98 (1H, dd, J = 8.1, 1.6 Hz, Ar-H), 7.82 (1H, d, J = 1.6 Hz, Ar-H), 7.43 (1H, d, J = 8.1 Hz, Ar-H), 7.40-7.25 (5H, m, Ar-H), 6.48 (1H, dq, J = 15.0, 6.5 Hz, CH₂CH=C<u>H</u>CH₃), 5.76-5.60 (1H, m, CH₂C<u>H</u>=CHCH₃), 5.06 (1H, s,

NCHCOO), 4.85 (1H, td, J = 10.7, 4.1 Hz, COOCH), 4.62-4.45 (2H, m, CH₂CH=CHCH₃), 3.44 (3H, s, CH₃N), 3.28 (3H, s, CH₃N), 2.52 (3H, s, Ar-CH₃), 1.95-1.77 (2H, m, 8-Ph-Men-H), 1.89 (3H, d, J = 6.5 Hz, CH₂CH=CHCH₃), 1.70-1.20 (3H, m, 8-Ph-Men-H), 1.56 (9H, s, *t*-Bu), 1.34 (3H, s, 8-Ph-Men-CH₃), 1.26 (3H, s, 8-Ph-Men-CH₃), 1.16-0.97 (1H, m, 8-Ph-Men-H), 0.78-0.60 (1H, m, 8-Ph-Men-H), 0.72 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃), 0.30 (1H, td, J = 12.0, 10.7 Hz, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 165.4, 164.0, 150.6, 145.4, 144.1, 132.7, 131.8, 130.9, 130.5, 128.2, 125.8, 125.7, 125.5, 116.6, 82.0, 78.4, 69.8, 65.3, 49.6, 48.4, 47.6, 39.7, 39.6, 33.9, 30.9, 28.0, 27.7, 26.5, 26.2, 21.4 (2C), 18.5; IR (film) 3416, 2956, 1732, 1714, 1612, 1476, 1454, 1392, 1370, 1304, 1278, 1264, 1216, 1166, 1138, 974, 948, 846, 732, 700 cm⁻¹; Anal. Calcd for C₃₆H₅₂BrNO₄: C, 67.28; H, 8.16; N, 2.18. Found: C, 67.25; H, 8.33; N, 2.17.

N-[(*Z*)-But-2-en-1-yl]-*N*-{(*S*)-(5'-*tert*-butoxycarbonyl-2'-methylphenyl)[(–)-8-phenylmenthyloxycarbonyl]

methyl}-*N***,***N***-dimethylammonium bromide (6b):** E/Z = 15:85 mixture of diastereomers; white solid; mp = 73–76 °C; $[\alpha]^{26}_{589} = 3.0$ (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.98 (1H, dd, J = 8.1, 1.6 Hz, Ar-H), 7.81 (1H, d, J = 1.6 Hz, Ar-H), 7.43 (1H, d, J = 8.1 Hz, Ar-H), 7.40-7.24 (5H, m, Ar-H), 6.33 (1H, dq, J = 10.7, 7.0 Hz, CH₂CH=C<u>H</u>CH₃), 5.77-5.62 (1H, m, CH₂C<u>H</u>=CHCH₃), 5.13

(1H, s, NCHCOO), 4.86 (1H, td, J = 10.6, 4.3 Hz, COOCH), 4.68 (1H, dd, J = 12.7, 7.6 Hz, CH₂CH=CHCH₃), 4.55 (1H, dd, J = 12.7, 8.6 Hz, CH₂CH=CHCH₃), 3.45 (3H, s, CH₃N), 3.29 (3H, s, CH₃N), 2.51 (3H, s, Ar-CH₃), 1.99-1.77 (2H, m, 8-Ph-Men-H), 1.92 (3H, dd, J = 7.0, 1.5 Hz, CH₂CH=CHCH₃), 1.75-1.20 (3H, m, 8-Ph-Men-H), 1.56 (9H, s, *t*-Bu), 1.34 (3H, s, 8-Ph-Men-CH₃), 1.24 (3H, s, 8-Ph-Men-CH₃), 1.19-1.10 (1H, m, 8-Ph-Men-H), 0.80-0.61 (1H, m, 8-Ph-Men-H), 0.73 (3H, d, J = 6.2 Hz, 8-Ph-Men-CH₃), 0.31 (1H, td, J = 11.7, 10.6 Hz, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 165.5, 163.9, 150.8, 145.4, 140.5, 132.7, 131.8, 131.0, 130.4, 128.2, 125.7, 125.6, 125.5, 115.7, 81.9, 78.5, 70.0, 59.4, 49.4, 48.7, 47.5, 39.6, 39.5, 33.9, 30.9, 28.2, 28.0, 26.4, 25.8, 21.41, 21.38, 14.4; IR (film) 2956, 2924, 1732, 1612, 1478, 1454, 1392, 1368, 1304, 1276, 1264, 1218, 1166, 1138, 1092, 1030, 994, 974, 928, 846, 730, 700 cm⁻¹; Anal. Calcd for C₃₆H₅₂BrNO₄: C, 67.28; H, 8.16; N, 2.18. Found: C, 67.06; H, 8.37; N, 2.11.

N-Allyl-*N*-{(*S*)-(5'-*tert*-butoxycarbonyl-2'-methylphenyl)[(–)-8-phenylmenthyloxycarbonyl]methyl}-*N*,*N*-

dimethylammonium bromide, monohydrate (6c): white solid; mp = 86–89 °C; $[\alpha]^{24}_{589} = 13.3 (c \ 1.00, \text{CHCl}_3);$ ¹H NMR (CDCl₃, 270 MHz) δ 7.99 (1H, dd, J = 7.9, 1.4 Hz, Ar-H), 7.81 (1H, d, J = 1.4 Hz, Ar-H), 7.43 (1H, d, J = 7.9 Hz, Ar-H), 7.40-7.25 (5H, m, Ar-H), 6.22-5.93 (2H, m, CH₂C<u>H</u>=C<u>H</u>₂), 5.83 (1H, dd, J = 9.3, 2.0 Hz, CH₂CH=C<u>H</u>₂), 5.05 (1H, s, NCHCOO), 4.85 (1H, td, J = 10.6, 4.3 Hz, COOCH), 4.61 (2H, d, J = 6.5 Hz, C<u>H</u>₂CH=CH₂), 3.49 (3H, s, CH₃N), 3.32 (3H, s, CH₃N), 2.52 (3H, s, Ar-CH₃), 1.91-1.77 (2H, m, 8-Ph-Men-H), 1.73-1.19 (3H, m, 8-Ph-Men-H), 1.56 (9H, s, *t*-Bu), 1.33 (3H, s, 8-Ph-Men-CH₃), 1.24 (3H, s, 8-Ph-Men-CH₃), 1.19-0.98 (1H, m, 8-Ph-Men-H), 0.80-0.60 (1H, m, 8-Ph-Men-H), 0.72 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃), 0.31 (1H, td, J = 11.6, 10.6 Hz, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 165.4, 163.9, 150.7, 145.4, 132.8, 131.9, 131.3, 130.9, 130.5, 128.2, 125.8, 125.5 (3C), 123.9, 82.0, 78.6, 70.1, 65.5, 49.5, 48.8, 47.9, 39.7, 39.6, 33.9, 30.9, 28.0 (4C), 26.4, 26.0, 21.4 (2C); IR (film) 3416, 2956, 2924, 1734, 1712, 1612, 1478, 1456, 1392, 1370, 1304, 1278, 1264, 1218, 1168, 1138, 1092, 946, 848, 732, 700 cm⁻¹; Anal. Calcd for C₃₅H₅₂BrNO₅: C, 65.00; H, 8.10; N, 2.17. Found: C, 65.05; H, 8.00; N, 2.07.

N-{(*S*)-(5'-*tert*-Butoxycarbonyl-2'-methylphenyl)[(-)-8-phenylmenthyloxycarbonyl]methyl}-*N*,*N*-dimethyl-*N*-

(2-methylprop-2-en-1-yl)ammonium bromide, monohydrate (6d): white solid; mp = 61–64 °C; $[\alpha]^{24}_{589}$ = 9.2 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.99 (1H, dd, *J* = 8.1, 1.4 Hz, Ar-H), 7.82 (1H, d, *J* = 1.4 Hz, Ar-H), 7.46 (1H, d, *J* = 8.1 Hz, Ar-H), 7.40-7.25 (5H, m, Ar-H), 5.64 (2H, s, CH₂(CH₃)C=C<u>H</u>₂), 5.50 (1H, s, NCHCOO), 4.84 (1H, td, *J* = 10.7, 4.1 Hz, COOCH), 4.68 (1H, d, *J* = 12.2 Hz,

C<u>H</u>₂(CH₃)C=CH₂), 4.50 (1H, d, J = 12.2 Hz, C<u>H</u>₂(CH₃)C=CH₂), 3.46 (3H, s, CH₃N), 3.34 (3H, s, CH₃N), 2.68 (3H, s, Ar-CH₃), 2.10 (3H, s, CH₂(C<u>H</u>₃)C=CH₂), 1.90-1.72 (2H, m, 8-Ph-Men-H), 1.65-1.21 (3H, m, 8-Ph-Men-H), 1.57 (9H, s, *t*-Bu), 1.35 (3H, s, 8-Ph-Men-CH₃), 1.29 (3H, s, 8-Ph-Men-CH₃), 1.14-0.95 (1H, m, 8-Ph-Men-H), 0.80-0.58 (1H, m, 8-Ph-Men-H), 0.72 (3H, d, J = 6.8 Hz, 8-Ph-Men-CH₃), 0.33 (1H, td, J = 11.9, 10.7 Hz, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 165.8, 164.0, 150.1, 146.1, 132.9, 132.5, 131.8, 131.0, 130.3, 129.8, 128.2, 125.9, 125.8, 125.7, 82.0, 78.7, 71.1, 68.3, 49.7, 49.5, 47.8, 39.9, 39.6, 33.9, 30.9, 28.0, 27.5, 27.2, 26.6, 24.4, 21.9, 21.4; IR (film) 3408, 2960, 1730, 1612, 1476, 1454, 1392, 1368, 1306, 1278, 1214, 1166, 1138, 1092, 1010, 974, 942, 846, 730, 700 cm⁻¹; Anal. Calcd for C₃₆H₅₄BrNO₅: C, 65.44; H, 8.24; N, 2.12. Found: C, 65.67; H, 8.36; N, 1.99.

N-{(*S*)-(5'-*tert*-Butoxycarbonyl-2'-methylphenyl)[(-)-8-phenylmenthyloxycarbonyl]methyl}-*N*,*N*-dimethyl-*N*-

[(*E*)-3-phenylprop-2-en-1-yl]ammonium bromide (6e): white solid; mp = 86–88 °C; $[\alpha]^{26}_{589} = 22.8$ (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.99 (1H, dd, *J* = 8.1, 1.6 Hz, Ar-H), 7.84 (1H, d, *J* = 1.6 Hz, Ar-H), 7.58-7.50 (2H, m, Ar-H), 7.43 (1H, d, *J* = 8.1 Hz, Ar-H), 7.40-7.17 (9H, m, Ar-H and CH₂CH=C<u>H</u>Ph), 6.42 (1H, dt, *J* = 15.7, 7.7 Hz, CH₂CH=CHPh), 5.20 (1H, s, NCHCOO), 4.86 (1H, td, *J* =

10.7, 4.3 Hz, COOCH), 4.80 (2H, d, J = 7.7 Hz, CH₂CH=CHPh), 3.52 (3H, s, CH₃N), 3.37 (3H, s, CH₃N), 2.56 (3H, s, Ar-CH₃), 1.94-1.74 (2H, m, 8-Ph-Men-H), 1.70-1.15 (3H, m, 8-Ph-Men-H), 1.57 (9H, s, *t*-Bu), 1.29 (3H, s, 8-Ph-Men-CH₃), 1.23 (3H, s, 8-Ph-Men-CH₃), 1.15-0.94 (1H, m, 8-Ph-Men-H), 0.81-0.60 (1H, m, 8-Ph-Men-H), 0.73 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃), 0.32 (1H, td, J = 12.0, 10.7 Hz, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 165.5, 164.0, 150.5, 145.5, 145.0, 134.6, 132.8, 131.8, 130.9, 130.4, 129.6, 128.8, 128.2, 127.5, 125.82, 125.81, 125.5, 113.5, 82.0, 78.6, 70.0, 65.8, 49.7, 48.7, 47.7, 39.7, 39.6, 33.9, 30.9, 28.0, 27.6, 26.5, 26.4, 21.6, 21.4; IR (film) 2956, 2928, 1732, 1612, 1476, 1452, 1392, 1370, 1304, 1278, 1264, 1218, 1166, 1138, 1092, 1030, 976, 948,

908, 846, 736, 700 cm⁻¹; Anal. Calcd for C₄₁H₅₄BrNO₄: C, 69.87; H, 7.72; N, 1.99. Found: C, 69.76; H, 7.83; N, 2.01.

N-{(S)-(5'-tert-Butoxycarbonyl-2'-methylphenyl)[(-)-8-phenylmenthyloxycarbonyl]methyl}-N-(4"-cyano-

-benzyl)-*N*,*N*-dimethylammonium bromide, monohydrate (9): white solid; mp = 81-83 °C; $[\alpha]^{22}_{589} = 15.0 (c 1.00, CHCl_3)$; ¹H NMR (CDCl_3, 270 MHz) δ 8.12 (2H, d, *J* = 8.2 Hz, Ar-H), 8.02 (1H, dd, *J* = 7.9, 1.5 Hz, Ar-H), 7.90 (1H, d, *J* = 1.5 Hz, Ar-H), 7.80 (2H, d, *J* = 8.2 Hz, Ar-H), 7.50 (1H, d, *J* = 7.9 Hz, Ar-H), 7.38-7.23 (5H, m, Ar-H), 6.06 (1H, s, NCHCOO), 5.58 (1H, br, CH₂Ar), 5.37 (1H, d, *J* = 11.9 Hz, CH₂Ar), 4.86 (1H, td, *J* = 10.8, 4.2 Hz, COOCH), 3.38 (3H, s, CH₃N), 3.21 (3H, s, CH₃N), 2.84 (3H,

s, Ar-CH₃), 1.85-1.70 (2H, m, 8-Ph-Men-H), 1.66-1.22 (3H, m, 8-Ph-Men-H), 1.58 (9H, s, *t*-Bu), 1.38 (3H, s, 8-Ph-Men-CH₃), 1.36 (3H, s, 8-Ph-Men-CH₃), 1.08-0.94 (1H, m, 8-Ph-Men-H), 0.77-0.57 (1H, m, 8-Ph-Men-H), 0.72 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃), 0.37 (1H, td, J = 11.9, 10.8 Hz, 8-Ph-Men-H); ¹³C NMR (CDCl₃, 68 MHz) δ 166.0, 164.1, 149.4, 146.8, 134.9, 133.1, 132.8, 132.0, 131.7, 131.0, 130.4, 128.2, 126.0, 125.9, 125.7, 117.6, 115.1, 82.1, 79.1, 71.5, 64.6, 50.0, 47.8, 46.2, 40.0, 39.7, 33.9, 30.9, 29.0, 28.0, 26.8, 26.6, 22.2, 21.4; IR (film) 3416, 2952, 2924, 2228, 1710, 1612, 1476, 1454, 1368, 1306, 1278, 1214, 1166, 1138, 1014, 974, 944, 846, 736, 700 cm⁻¹; Anal. Calcd for C₄₀H₅₃BrN₂O₅: C, 66.56; H, 7.40; N, 3.88. Found: C, 66.53; H, 7.30; N, 4.07.

Preparation of L- or D-alanine-derived quaternary ammonium salts 12a-g

The following procedures are described for L-alanine derivative L-12a. Other derivatives (D-12a, L-12b–g) were prepared by the same procedures.

(Step 1) To a mixture of Cbz-L-alanine (0.70 g, 3.1 mmol), (–)-8-phenylmenthol³ (0.61 g, 2.6 mmol), and 4-(*N*,*N*-dimethylamino)pyridine (DMAP) (64 mg, 0.52 mmol) in dichloromethane (7 mL) was added a solution of *N*,*N*-dicyclohexylcarbodiimide (DCC) (0.59 g, 2.9 mmol) in dichloromethane (7 mL) at 0 °C. The mixture was stirred for 1 h at 0 °C and for 16 h at room temperature. The resulting mixture was filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexane/ethyl acetate = 8:1 to 5:1 as eluent) to afford *N*-Cbz-L-alanine (–)-8-phenylmenthol ester (L-**18**) (1.03 g, 90% yield) as a colorless oil.

(Step 2) A mixture of L-18 (1.03 g, 2.35 mmol) and palladium on activated carbon (loading: 10 wt. %, 50 mg) in ethyl acetate (8 mL) was stirred for 15 h at room temperature under a hydrogen atmosphere. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated. The residue was dissolved in ethanol (12 mL) and 37 wt. % aqueous formaldehyde solution (1.9 mL). To the solution was added palladium on activated carbon (loading: 10 wt. %, 0.13 g) and the mixture was stirred for 48 h at room temperature under a hydrogen atmosphere. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated to remove ethanol. The residue was diluted with water and extracted with ether. The combined extracts were washed with brine, dried over sodium sulfate, and concentrated. The residue was purified by chromatography on silica gel (hexane/ethyl acetate = 4:1 to 2:1 as eluent) to give L-19 (0.67 g, 86% yield) as a colorless oil.

(Step 3) A mixture of L-19 (0.12 mg, 0.36 mmol) and (4-*tert*-butoxycarbonyl)benzyl bromide¹ (0.12 g, 0.44 mmol) in acetonitrile (1.8 mL) was stirred for 48 h at room temperature. The resulting mixture was concentrated and the residue was purified by chromatography on silica gel (dichloromethane/methanol = 20:1 to 5:1 as eluent) to obtain quaternary ammonium salt L-12 (0.22 g, quant.) as a white solid.

N-(4'*-tert*-Butoxycarbonylbenzyl)-*N*,*N*-dimethyl-*N*-{(1*S*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}

ammonium bromide, 0.5 hydrate (L-12a): white solid; mp = 97–100 °C; $[\alpha]^{25}_{589}$ = 5.4 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 8.07 (2H, d, *J* = 8.4 Hz, Ar-H), 7.72 (2H, d, *J* = 8.4 Hz, Ar-H), 7.16 (2H, d, *J* = 7.6 Hz, Ar-H), 6.98 (2H, t, *J* = 7.6 Hz, Ar-H), 6.76 (1H, t, *J* = 7.6 Hz, Ar-H), 5.39 (1H, d, *J* = 12.7 Hz, CH₂Ar), 5.17 (1H, d, *J* = 12.7 Hz, CH₂Ar), 4.85 (1H, td, *J* = 10.7, 4.3 Hz, COOCH), 3.46 (3H, s, CH₃N), 3.26 (3H, s, CH₃N), 3.18 (1H, q, *J* = 7.3 Hz, NCHCOO), 2.13 (1H, td, *J* = 11.3, 3.5 Hz, 8-Ph-Men-H), 1.96-1.09 (5H, m, 8-Ph-Men-H), 1.62 (9H, s, *t*-Bu), 1.61 (3H, d, *J* = 7.3

Hz, NCH(C<u>H</u>₃)COO), 1.24 (3H, s, 8-Ph-Men-CH₃), 1.14 (3H, s, 8-Ph-Men-CH₃), 1.04-0.83 (2H, m, 8-Ph-Men-H), 0.91 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.9, 164.6, 151.4, 134.3, 133.2, 130.8, 130.1, 127.7, 125.2, 125.0, 81.9, 77.8, 66.2, 65.3, 49.3, 48.7, 48.1, 40.9, 39.3, 34.1, 31.2, 29.9, 28.1, 26.2, 23.0, 21.6, 13.9; IR (film) 3432, 2964, 1718, 1614, 1476, 1454, 1416, 1392, 1368, 1294, 1240, 1206, 1164, 1118, 1020, 974, 954, 908, 842, 770, 730, 702 cm⁻¹; Anal. Calcd for C₃₃H₄₉BrNO_{4.5}: C, 64.80; H, 8.07; N, 2.29. Found: C, 64.60; H, 8.28; N, 2.36.

⁽³⁾ O. Ort, Org. Syn., 1987, 65, 203.

N-(4'*-tert*-Butoxycarbonylbenzyl)-*N*,*N*-dimethyl-*N*-{(1*R*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}

ammonium bromide, 0.5 hydrate (D-12a): white solid; mp = 90–94 °C; $[\alpha]^{25}_{589}$ = 74.0 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 8.03 (2H, d, *J* = 8.2 Hz, Ar-H), 7.65 (2H, d, *J* = 8.2 Hz, Ar-H), 7.24-7.09 (5H, m, Ar-H), 5.29 (1H, d, *J* = 12.8 Hz, CH₂Ar), 5.11 (1H, d, *J* = 12.8 Hz, CH₂Ar), 4.87 (1H, td, *J* = 10.8, 4.3 Hz, COOCH), 3.40 (3H, s, CH₃N), 3.18 (3H, s, CH₃N), 3.14 (1H, q, *J* = 6.9 Hz, NCHCOO), 2.16 (1H, td, *J* = 11.3, 3.0 Hz, 8-Ph-Men-H), 1.96-1.07 (5H, m, 8-Ph-Men-H), 1.64 (9H, s, *t*-Bu), 1.49 (3H, d, *J* = 6.9 Hz, NCH(CH₃)COO), 1.24 (3H, s, 8-Ph-Men-CH₃), 1.13 (3H, s, S)

8-Ph-Men-CH₃), 1.04-0.81 (2H, m, 8-Ph-Men-H), 0.88 (3H, d, J = 6.2 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.4, 164.6, 151.5, 134.2, 133.1, 130.6, 130.1, 128.0, 125.4, 125.0, 81.9, 78.4, 66.4, 65.2, 49.1, 49.0, 47.6, 41.0, 39.3, 34.0, 31.2, 29.9, 28.1, 26.1, 22.9, 21.6, 12.6; IR (film) 3416, 2960, 2924, 2868, 1714, 1476, 1458, 1418, 1370, 1296, 1266, 1206, 1166, 1120, 1022, 976, 952, 908, 842, 768, 732, 700 cm⁻¹; Anal. Calcd for C₃₃H₄₉BrNO_{4.5}: C, 64.80; H, 8.07; N, 2.29. Found: C, 64.69; H, 8.25; N, 2.36.

N-(4'-Cyanobenzyl)-*N*,*N*-dimethyl-*N*-{(1*S*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}ammonium bromide,

0.5 hydrate (12b): white solid; mp = 88–91 °C; $[\alpha]^{25}_{589}$ = 11.8 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.91 (2H, d, *J* = 8.2 Hz, Ar-H), 7.77 (2H, d, *J* = 8.2 Hz, Ar-H), 7.18 (2H, d, *J* = 7.6 Hz, Ar-H), 7.03 (2H, t, *J* = 7.6 Hz, Ar-H), 6.78 (1H, t, *J* = 7.6 Hz, Ar-H), 5.44 (1H, d, *J* = 12.7 Hz, CH₂Ar), 5.30 (1H, d, *J* = 12.7 Hz, CH₂Ar), 4.86 (1H, td, *J* = 10.6, 4.3 Hz, COOCH), 3.43 (3H, s, CH₃N), 3.25 (3H, s, CH₃N), 3.17 (1H, q, *J* = 7.3 Hz, NCHCOO), 2.21-2.03 (2H, m, 8-Ph-Men-H), 1.96-1.37 (3H, m,

8-Ph-Men-H), 1.65 (3H, d, J = 7.3 Hz, NCH(C<u>H</u>₃)COO), 1.34-0.82 (3H, m, 8-Ph-Men-H), 1.24 (3H, s, 8-Ph-Men-CH₃), 1.15 (3H, s, 8-Ph-Men-CH₃), 0.91 (3H, d, J = 6.8 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.7, 151.4, 134.2, 132.7, 131.8, 127.7, 125.1, 117.5, 114.7, 100.4, 77.9, 66.7, 64.3, 49.2, 48.9, 48.0, 40.8, 39.3, 34.0, 31.1, 29.8, 26.1, 23.1, 21.5, 13.8; IR (film) 3016, 2952, 2920, 2228, 1730, 1600, 1456, 1414, 1388, 1370, 1302, 1266, 1238, 1206, 1162, 1090, 1030, 972, 952, 908, 848, 818, 730, 700 cm⁻¹; Anal. Calcd for C₂₉H₄₀BrN₂O_{2.5}: C, 64.92; H, 7.51; N, 5.22. Found: C, 65.17; H, 7.54; N, 5.13.

N-(2'-Cyanobenzyl)-*N*,*N*-dimethyl-*N*-{(1*S*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}ammonium bromide,

monohydrate (12c): white solid; mp = 76–79 °C; $[\alpha]^{26}_{589}$ = 5.0 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 8.60 (1H, d, *J* = 7.6 Hz, Ar-H), 7.89-7.78 (2H, m, Ar-H), 7.70 (1H, t, *J* = 7.6 Hz, Ar-H), 7.39-7.23 (4H, m, Ar-H), 7.15-7.04 (1H, m, Ar-H), 5.44 (1H, d, *J* = 12.7 Hz, CH₂Ar), 4.94 (1H, d, *J* = 12.7 Hz, CH₂Ar), 4.90 (1H, td, *J* = 10.8, 4.3 Hz, COOCH), 3.60 (1H, q, *J* = 7.3 Hz, NCHCOO), 3.36 (3H,

s, CH₃N), 3.26 (3H, s, CH₃N), 2.21 (1H, td, J = 11.3, 3.4 Hz, 8-Ph-Men-H), 1.97-1.83 (1H, m, 8-Ph-Men-H), 1.81-1.67 (1H, m, 8-Ph-Men-H), 1.76 (3H, d, J = 7.3 Hz, NCH(CH₃)COO), 1.60-1.40 (1H, m, 8-Ph-Men-H), 1.38-0.80 (4H, m, 8-Ph-Men-H), 1.31 (3H, s, 8-Ph-Men-CH₃), 1.21 (3H, s, 8-Ph-Men-CH₃), 0.92 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.5, 151.7, 136.8, 134.1, 133.8, 131.6, 129.7, 128.1 (2C), 125.3

(3C), 117.4, 115.8, 78.0, 69.7, 61.9, 49.3, 48.8, 47.7, 40.6, 39.4, 34.0, 31.1, 29.7, 26.1, 23.3, 21.5, 14.3; IR (film) 3016, 2956, 2924, 2224, 1728, 1598, 1476, 1444, 1414, 1390, 1370, 1266, 1236, 1208, 1166, 1090, 1020, 972, 950, 908, 862, 730, 700 cm⁻¹; Anal. Calcd for $C_{29}H_{41}BrN_2O_3$: C, 63.85; H, 7.58; N, 5.13. Found: C, 63.69; H, 7.29; N, 5.02.

N-(3'-Cyanobenzyl)-*N*,*N*-dimethyl-*N*-{(1*S*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}ammonium bromide,

0.5 hydrate (12d): white solid; mp = 95–99 °C; $[\alpha]^{26}_{589}$ = 4.2 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 8.19 (1H, d, *J* = 7.8 Hz, Ar-H), 7.91 (1H, s, Ar-H), 7.84 (1H, d, *J* = 7.8 Hz, Ar-H), 7.67 (1H, t, *J* = 7.8 Hz, Ar-H), 7.19 (2H, d, *J* = 7.6 Hz, Ar-H), 7.03 (2H, t, *J* = 7.6 Hz, Ar-H), 6.76 (1H, t, *J* = 7.6 Hz, Ar-H), 5.46 (1H, d, *J* = 13.0 Hz, CH₂Ar), 5.33 (1H, d, *J* = 13.0 Hz, CH₂Ar), 4.87 (1H, td, *J* = 10.8, 4.3 Hz, COOCH), 3.47 (3H, s, CH₃N), 3.27 (3H, s, CH₃N), 3.17 (1H, q, *J* = 7.0 Hz, NCHCOO), 2.21-2.07 (1H, m,

8-Ph-Men-H), 1.96-1.09 (5H, m, 8-Ph-Men-H), 1.65 (3H, d, J = 7.0 Hz, NCH(C<u>H</u>₃)COO), 1.26 (3H, s, 8-Ph-Men-CH₃), 1.15 (3H, s, 8-Ph-Men-CH₃), 1.07-0.82 (2H, m, 8-Ph-Men-H), 0.92 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.6, 151.5, 138.2, 136.1, 134.1, 130.4, 128.7, 127.7, 125.1, 125.0, 117.5, 113.4, 77.8, 66.5, 64.1, 49.2, 48.8, 47.9, 40.8, 39.2, 34.0, 31.1, 29.8, 26.0, 23.0, 21.5, 13.8; IR (film) 3016, 2952, 2920, 2228, 1728, 1598, 1476, 1442, 1412, 1388, 1368, 1304, 1266, 1238, 1206, 1162, 1090, 1030, 972, 950, 908, 846, 806, 730, 700 cm⁻¹; Anal. Calcd for C₂₉H₄₀BrN₂O_{2.5}: C, 64.92; H, 7.51; N, 5.22. Found: C, 64.69; H, 7.56; N, 5.02.

N,*N*-Dimethyl-*N*-(4'-methoxycarbonylbenzyl)-*N*-{(1*S*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}ammonium

bromide, monohydrate (12e): white solid; mp = 88–91 °C; $[\alpha]^{25}_{589}$ = 7.6 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 8.06 (2H, d, *J* = 8.2 Hz, Ar-H), 7.71 (2H, d, *J* = 8.2 Hz, Ar-H), 7.14 (2H, d, *J* = 7.6 Hz, Ar-H), 6.94 (2H, t, *J* = 7.6 Hz, Ar-H), 6.66 (1H, t, *J* = 7.6 Hz, Ar-H), 5.41 (1H, d, *J* = 12.8 Hz, CH₂Ar), 5.27 (1H, d, *J* = 12.8 Hz, CH₂Ar), 4.84 (1H, td, *J* = 10.8, 4.3 Hz, COOCH), 3.98 (3H, s, COOCH₃), 3.49 (3H, s, CH₃N), 3.25 (3H, s, CH₃N), 3.11 (1H, q, *J* = 7.0 Hz, NCHCOO), 2.18-1.98 (1H, m, 8-Ph-Men-H), 1.95-1.06 (5H, m, 8-Ph-Men-H), 1.64 (3H, d, *J* = 7.0 Hz, NCHCO

NCH(C<u>H</u>₃)COO), 1.22 (3H, s, 8-Ph-Men-CH₃), 1.13 (3H, s, 8-Ph-Men-CH₃), 1.04-0.79 (2H, m, 8-Ph-Men-H), 0.91 (3H, d, J = 6.5 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.8, 165.9, 151.3, 133.3, 132.2, 131.4, 130.1, 127.6, 125.1, 125.0, 77.7, 66.0, 65.1, 52.5, 49.2, 48.7, 47.9, 40.8, 39.2, 34.1, 31.2, 29.8, 26.1, 22.9, 21.5, 13.9; IR (film) 3020, 2952, 1724, 1612, 1438, 1416, 1388, 1368, 1280, 1236, 1204, 1162, 1110, 1020, 952, 906, 870, 850, 832, 766, 730, 700 cm⁻¹; Anal. Calcd for C₃₀H₄₄BrNO₅: C, 62.28; H, 7.67; N, 2.42. Found: C, 62.14; H, 7.45; N, 2.39.

N,*N*-Dimethyl-*N*-{(1*S*)-1-[(–)-8-phenylmenthyloxycarbonylethyl]}-*N*-(4'-trifluoromethylbenzyl)ammonium

bromide, monohydrate (12f): white solid; mp = 71–76 °C; $[\alpha]^{25}_{589}$ = 4.7 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.82 (2H, d, *J* = 8.1 Hz, Ar-H), 7.69 (2H, d, *J* = 8.1 Hz, Ar-H), 7.14 (2H, d, *J* = 7.6 Hz, Ar-H), 6.94 (2H, t, *J* = 7.6 Hz, Ar-H), 6.66 (1H, t, *J* = 7.6 Hz, Ar-H), 5.46 (1H, d, *J* = 12.8 Hz, CH₂Ar), 5.32 (1H, d, *J* = 12.8 Hz, CH₂Ar), 4.85 (1H, td, *J* = 10.7, 4.3 Hz, COOCH), 3.49 (3H, s, CH₃N), 3.23 (3H, s, CH₃N), 3.05 (1H, q, *J* = 7.3 Hz, NCHCOO), 2.12 (1H, td, *J* = 11.3, 3.2 Hz, 8-Ph-Men-H), 2.02-1.39

(4H, m, 8-Ph-Men-H), 1.66 (3H, d, J = 7.3 Hz, NCH(CH₃)COO), 1.37-0.81 (3H, m, 8-Ph-Men-H), 1.23 (3H, s, 8-Ph-Men-CH₃), 1.13 (3H, s, 8-Ph-Men-CH₃), 0.91 (3H, d, J = 6.2 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.8, 151.4, 133.8, 132.8 (q, J = 33 Hz), 130.8 (q, J = 3 Hz), 127.6, 126.0 (q, J = 4 Hz), 125.05, 124.99, 123.4 (d, J = 271 Hz), 77.8, 66.0, 64.7, 49.1, 48.8, 47.8, 40.9, 39.2, 34.1, 31.2, 30.1, 26.1, 22.6, 21.6, 14.0; IR (film) 3016, 2956, 2920, 1730, 1620, 1598, 1444, 1420, 1388, 1368, 1322, 1264, 1236, 1204, 1166, 1126, 1090, 1066, 1018, 972, 952, 908, 850, 820, 734, 700 cm⁻¹; Anal. Calcd for C₂₉H₄₁BrF₃NO₃: C, 59.18; H, 7.02; N, 2.38. Found: C, 59.15; H, 6.87; N, 2.33.

N-Benzyl-*N*,*N*-dimethyl-*N*-{(1*S*)-1-[(-)-8-phenylmenthyloxycarbonylethyl]}ammonium bromide,

monohydrate (12g): white solid; mp = 61–66 °C; $[\alpha]^{25}_{589} = -0.7$ (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.66-7.42 (5H, m, Ar-H), 7.17 (2H, d, *J* = 7.6 Hz, Ar-H), 7.00 (2H, t, *J* = 7.6 Hz, Ar-H), 6.77 (1H, t, *J* = 7.6 Hz, Ar-H), 5.25 (1H, d, *J* = 12.8 Hz, CH₂Ph), 5.03 (1H, d, *J* = 12.8 Hz, CH₂Ph), 4.84 (1H, td, *J* = 10.8, 4.3 Hz, COOCH), 3.43 (3H, s, CH₃N), 3.27 (3H, s, CH₃N), 3.19 (1H, q, *J* = 7.3 Hz, NCHCOO), 2.12 (1H,

td, J = 11.5, 3.5 Hz, 8-Ph-Men-H), 1.95-1.07 (5H, m, 8-Ph-Men-H), 1.58 (3H, d, J = 7.3 Hz, NCH(CH₃)COO), 1.25 (3H, s, 8-Ph-Men-CH₃), 1.15 (3H, s, 8-Ph-Men-CH₃), 1.04-0.82 (2H, m, 8-Ph-Men-H), 0.91 (3H, d, J = 6.2 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.9, 151.4, 133.3, 130.9, 129.4, 127.7, 126.8, 125.3, 125.1, 77.7, 66.2, 66.0, 49.4, 48.4, 48.1, 40.9, 39.3, 34.1, 31.2, 29.7, 26.1, 23.0, 21.6, 13.8; IR (film) 3032, 2956, 1728, 1600, 1450, 1414, 1388, 1368, 1304, 1264, 1234, 1204, 1162, 1088, 1028, 952, 908, 846, 730, 702 cm⁻¹; Anal. Calcd for C₂₈H₄₂BrNO₃: C, 64.61; H, 8.13; N, 2.69. Found: C, 64.33; H, 7.90; N, 2.83.

Preparation of α-allyl quaternary ammonium salt 15

(Step 1) A mixture of bromoacetic acid (–)-8-phenylmenthol ester¹ (358 mg, 1.01 mmol) and *N*,*N*-dimethylallylamine (114 μ L, 0.96 mmol) in acetonitrile (5 mL) was stirred for 15 h at room temperature. The resulting mixture was concentrated and the residue was purified by chromatography on silica gel (dichloromethane/methanol = 15:1 to 6:1 as eluent) to obtain **14** (410 mg, 89% yield) as a white solid.

(Step 2) A suspension of **14** (0.21 g, 0.46 mmol) in THF (5 mL) was treated with a 1.0 M THF solution of potassium *tert*-butoxide (0.58 mL, 0.58 mmol) at -78 °C and stirred for 4 h at the same temperature. The resulting mixture was added to stirred ice-cold saturated aqueous ammonium chloride and the mixture was extracted with ether. The combined extracts were washed with saturated aqueous sodium hydrogen carbonate and brine, dried over sodium sulfate, and concentrated. Purification of the residue by chromatography on silica gel (hexane/ethyl acetate = 5:1 to 3:1 as eluent) gave **20** (0.17 g, quant., 3:2 mixture of stereoisomers) as a colorless oil.

(Step 3) A mixture of **20** (0.17 g, 0.48 mmol) and (4-*tert*-butoxycarbonyl)benzyl bromide (0.38 g, 1.4 mmol) in acetonitrile (2.4 mL) was stirred for 2 days at room temperature. The resulting mixture was concentrated and the residue was purified by chromatography on silica gel (dichloromethane/methanol = 15:1 to 8:1 as eluent) to obtain quaternary ammonium salt **15** (0.32 g, quant., 3:2 mixture of stereoisomers) as a white solid.

N-Allyl-*N*,*N*-dimethyl-*N*-[(–)-8-phenylmenthyloxycarbonylmethyl]ammonium bromide, monohydrate (14):

white solid; mp = 148–151 °C; $[\alpha]^{24}{}_{589}$ = 12.5 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 7.37-7.14 (5H, m, Ph), 5.95-5.71 (3H, m, CH₂C<u>H</u>=C<u>H₂</u>), 4.87 (1H, td, *J* = 10.8, 4.6 Hz, COOCH), 4.55 (1H, dd, *J* = 13.2, 5.9 Hz, C<u>H</u>₂CH=CH₂), 4.47 (1H, dd, *J* = 13.2, 5.9 Hz, C<u>H</u>₂CH=CH₂), 4.47 (1H, dd, *J* = 13.2, 5.9 Hz, C<u>H</u>₂CH=CH₂), 2.45 (3H, s, CH₃N), 3.35 (3H, s, CH₃N), 2.62 (1H, d, *J* = 16.9 Hz, NCH₂COO), 2.15 (1H, td, *J* = 11.3, 3.5 Hz, 2.50 Hz, CH₃N), 2.62 (1H, d, *J* = 16.9 Hz, NCH₂COO), 2.15 (1H, td, *J* = 11.3, 3.5 Hz, 2.50 Hz, CH₃N), 2.62 (1H, d, *J* = 16.9 Hz, NCH₂COO), 2.15 (1H, td, *J* = 11.3, 3.5 Hz, 2.50 Hz

8-Ph-Men-H), 2.03-1.68 (3H, m, 8-Ph-Men-H), 1.56-1.38 (1H, m, 8-Ph-Men-H), 1.33-0.84 (3H, m, 8-Ph-Men-H), 1.28 (3H, s, 8-Ph-Men-CH₃), 1.16 (3H, s, 8-Ph-Men-CH₃), 0.91 (3H, d, J = 6.8 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 163.3, 152.0, 130.7, 128.2, 125.4, 125.2, 124.0, 76.8, 67.1, 59.8, 51.0, 50.4, 49.2, 41.2, 39.3, 34.1, 31.2, 30.6, 25.9, 21.9, 21.6; IR (film) 3448, 2956, 2924, 1736, 1598, 1456, 1400, 1242, 1204, 1130, 1090, 1030, 992, 952, 908, 886, 768, 730, 702 cm⁻¹; Anal. Calcd for C₂₃H₃₈BrNO₃: C, 60.52; H, 8.39; N, 3.07. Found: C, 60.32; H, 8.21; N, 3.08.

2-Dimethylaminopent-4-enoic acid (-)-8-phenylmenthol ester (20): 3:2 mixture of stereoisomers; colorless oil;

¹H NMR (CDCl₃, 270 MHz) δ 7.32-7.10 (5H, m, Ph), 5.79-5.59 (1H, m, CH₂C<u>H</u>=CH₂), 5.15-4.96 (2H, m, CH₂CH=C<u>H</u>₂), 4.81 (0.6H, td, *J* = 10.8, 4.3 Hz, COOCH), 4.79 (0.4H, td, *J* = 10.5, 4.6 Hz, COOCH), 2.68 (0.6H, t, *J* = 7.2 Hz, NCHCOO), 2.41 (0.4H, t, *J* = 7.4 Hz, NCHCOO), 2.36 (3.6H, s, (CH₃)₂N), 2.31-1.87 (4H, m, C<u>H</u>₂CH=CH₂ and 8-Ph-Men-H), 2.16 (2.4H, s, (CH₃)₂N), 1.75-1.39 (3H, m, 8-Ph-Men-H), 1.33 (1.8H, s, 8-Ph-Men-CH₃),

1.29 (1.2H, s, 8-Ph-Men-CH₃), 1.22 (1.8H, s, 8-Ph-Men-CH₃), 1.19 (1.2H, s, 8-Ph-Men-CH₃), 1.15-0.75 (3H, m, 8-Ph-Men-H), 0.88 (1.2H, d, J = 5.9 Hz, 8-Ph-Men-CH₃), 0.86 (1.8H, d, J = 6.2 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 171.8, 170.4, 151.8, 151.5, 135.1, 134.9, 128.0, 127.9, 125.43, 125.35, 125.1, 125.0, 116.9, 116.8, 75.0, 74.8, 66.4, 66.1, 50.3, 50.1, 42.6, 41.8, 41.5, 41.4, 39.8, 39.6, 34.6, 34.5, 34.1, 33.4, 31.33, 31.26, 28.1,

26.84, 26.76, 26.5, 26.3, 24.7, 21.81, 21.76; IR (film) 3056, 2952, 2864, 2784, 1722, 1640, 1600, 1494, 1454, 1370, 1266, 1224, 1170, 1094, 1048, 1030, 982, 912, 764, 700 cm⁻¹; Anal. Calcd for C₂₃H₃₅NO₂: C, 77.27; H, 9.87; N, 3.92. Found: C, 76.98; H, 9.91; N, 3.84.

$\textit{N-(4'-tert-Butoxycarbonylbenzyl)-N,N-dimethyl-N-\{1-[(-)-8-phenylmenthyloxycarbonylbut-3-en-1-yl]}\}}$

ammonium bromide (15): 3:2 mixture of stereoisomers; white solid; ¹H NMR (CDCl₃, 270 MHz) δ 8.04 (0.8H, d, J = 8.1 Hz, Ar-H), 8.03 (1.2H, d, J = 8.1 Hz, Ar-H), 7.72 (0.8H, d, J = 8.1 Hz, Ar-H), 7.71 (1.2H, d, J = 8.1 Hz, Ar-H), 7.21-6.96 (4.4H, m, Ar-H), 6.88 (0.6H, t, J = 7.3 Hz, Ar-H), 5.57-5.15 (5H, m, CH₂C<u>H</u>=C<u>H</u>₂ and CH₂Ar), 4.84 (0.6H, td, J = 10.7, 4.1 Hz, COOCH), 4.77 (0.4H, td, J = 10.8, 4.1 Hz, COOCH), 3.50-3.16 (2H, m, NCHCOO and C<u>H</u>₂CH=CH₂), 3.46 (1.8H, s, CH₃N), 3.45 (1.2H, s, CH₃N), 3.23 (1.2H, s, CH₃N), 3.21 (1.8H, s, CH₃N), 2.89-2.74 (0.4H, m, CH₂CH=CH₂),

2.70-2.56 (0.6H, m, CH₂CH=CH₂), 2.21-0.80 (8H, m, 8-Ph-Men-H), 1.64 (3.6H, s, *t*-Bu), 1.62 (5.4H, s, *t*-Bu), 1.20 (3H, s, 8-Ph-Men-CH₃), 1.12 (1.8H, s, 8-Ph-Men-CH₃), 1.10 (1.2H, s, 8-Ph-Men-CH₃), 0.89 (1.2H, d, J = 6.5 Hz, 8-Ph-Men-CH₃), 0.87 (1.8H, d, J = 6.5 Hz, 8-Ph-Men-CH₃); ¹³C NMR (CDCl₃, 68 MHz) δ 166.3 (0.6C), 165.4 (0.4C), 164.59 (0.4C), 164.55 (0.6C), 151.2 (0.6C), 150.8 (0.4C), 134.21 (0.6C), 134.18 (0.4C), 133.3 (1.2C), 133.1 (0.8C), 130.6 (0.8C), 130.1 (1.0C), 130.0 (1.2C), 129.6 (0.6C), 129.3 (0.4C), 127.8 (1.2C), 127.7 (0.8C), 125.4 (0.6C), 125.3 (0.4C), 125.1 (0.8C), 125.0 (1.2C), 122.3 (0.4C), 120.9 (0.6C), 81.84 (0.4C), 81.79 (0.6C), 79.8 (0.4C), 79.0 (0.6C), 70.2 (0.4C), 69.9 (0.6C), 40.7 (0.4C), 39.4 (0.4C), 39.3 (0.6C), 34.09 (0.6C), 34.05 (0.4C), 31.7 (0.6C), 31.3 (0.4C), 31.23 (0.6C), 31.20 (0.4C), 29.3 (0.6C), 27.6 (0.4C), 26.5 (0.4C), 26.3 (0.6C), 25.2 (0.4C), 23.9 (0.6C), 21.5 (1.0C); IR (film) 2960, 2868, 1716, 1614, 1476, 1444, 1418, 1392, 1370, 1296, 1196, 1166, 1118, 990, 928, 846, 766, 734, 700 cm⁻¹; Anal. Calcd for C₃₅H₅₀BrNO₄: C, 66.87; H, 8.02; N, 2.23. Found: C, 67.15; H, 8.17; N, 2.24.