# **Supporting Information for**

# Solid Phase Fluorescent Labeling of Peptides

Alan R. Katritzky, \*<sup>a</sup> Megumi Yoshioka, <sup>a</sup> Tamari Narindoshvili, <sup>a</sup> Alfred Chung, <sup>b</sup>

and Jodie V. Johnson<sup>c</sup>

<sup>a</sup>Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville, FL 32611-7200, USA <sup>b</sup>PROTEOMICS, Interdisciplinary Center for Biotechnology Research University of Florida, Gainesville, FL 32611-1376, USA <sup>c</sup>Department of Chemistry, University of Florida,

Gainesville, FL 32611-7200, USA

katritzky@chem.ufl.edu

### **Table of contents**

| 1. | General Procedure for 2, 4, 7, 9                                              | .S2 |
|----|-------------------------------------------------------------------------------|-----|
| 2. | Characterization data of <b>2</b> , <b>4</b> , <b>7</b> , <b>8</b> , <b>9</b> | S2  |
| 3. | HPLC profiles of <b>10-17</b>                                                 |     |
| 4. | Fluorescence emission spectra of 10, 11, 14, 16 and 17                        | S13 |
| 5. | Absorption and fluorescence emission spectra of 15                            | 514 |

General procedure for the preparation of 2, 4, 7, 9: Thionyl chloride (0.14 g, 1.2 mmol) was added to a solution of 1*H*-benzotriazole (0.48 g, 4.0 mmol) in dry DCM (15 mL) at 20 °C and the reaction mixture was stirred for 20 min. To the reaction mixture was added 1, 3, 6, 8 (1.0 mmol), respectively, and the mixtures were stirred for 2 h at 20 °C. The white precipitate formed during the reaction was filtered off, the filtrate was diluted with additional DCM (80 mL) and the solution was washed with 6M HCl (3 × 50 mL) (for 2, 4, 9), with sat. Na<sub>2</sub>CO<sub>3</sub> soln. (3 × 50 mL) (for 7), brine (50 mL), and dried over MgSO<sub>4</sub>. Removal of the solvent under reduced pressure gave 2, 4, 7, 9 which were recrystallized from DCM-hexanes.

**4-(2-Benzotriazol-1-yl-2-oxoethyl)-7-methoxy-chromen-2-one, Mca-Bt 2:** Microcrystals (0.26 g, 78 %). mp 125.0-126.0 °C. <sup>1</sup>H NMR (300Hz, CDCl<sub>3</sub>)  $\delta$  3.88 (s, 3H), 4.87 (s, 2H), 6.41 (s, 1H), 6.84-6.92 (m, 2H), 7.52-7.63 (m, 2H), 7.65-7.74 (m, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  38.4, 55.8, 101.2, 112.3, 112.8, 114.3, 114.7, 120.5, 125.5, 126.8, 130.9, 131.0, 146.4, 147.0, 155.6, 160.5, 163.0, 167.3. HRMS calcd. for [C<sub>18</sub>H<sub>13</sub>N<sub>3</sub>O<sub>4</sub>+Na]<sup>+</sup>, 358.0798; found, 358.0784.

(S)-(9H-Fluoren-9-yl)methyl-1-(1H-benzo[d][1,2,3]triazol-1-yl)-6-(2-(7-methoxy-2-oxo-2H-chromen-4-yl)acetamido)-1-oxohexan-2-ylcarbamate( $N^{\alpha}$ -Fmoc-L-Lys(Mca)-Bt)Lys(Mca)-Bt)4: Microcrystals (0.45g, 65 %). mp 144.0-146.0 °C. <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  1.37-1.53 (m, 4H), 1.78-2.00 (m, 2H), 3.00-3.12 (m, 2H), 3.65 (s, 2H), 3.83 (s, 3H), 3.83-3.90 (m, 1H), 4.18-4.28 (m, 1H), 4.29-4.38 (m, 2H), 6.23 (s, 1H), 6.90-7.00 (m, 2H), 7.32 (t, J = 7.1 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 7.4 Hz, 2H), 7.81 (t, J = 7.7 Hz, 1H), 7.89 (d, J = 7.4 Hz, 2H), 8.19-8.32 (m, 3H);<sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  23.1, 28.4, 30.2, 38.6, 46.6, 54.3, 55.9, 55.9, 65.1,

100.9, 112.1, 112.6, 112.8, 114.0, 120.2, 120.3, 125.3, 126.5, 126.9, 127.1, 127.7, 130.5, 131.3, 140.8, 143.8, 145.4, 151.2, 155.0, 156.5, 160.2, 162.4, 167.5, 172.2. HRMS calcd. for [C<sub>39</sub>H<sub>35</sub>N<sub>5</sub>O<sub>7</sub>+Na]<sup>+</sup>, 708.2428; found, 708.2455.

{(*S*)-1-(Benzotriazole-1-carbonyl)-5-[(2-oxo-2*H*-chromene-3-carbonyl)-amino]pentyl}-carbamic acid 9*H*-fluoren-9-ylmethyl ester ( $N^{\alpha}$ -Fmoc-L-Lys(Cc)-Bt) 7: White microcrystals (0.53 g, 82 %); mp 113.0–115.0°C (lit. <sup>36</sup> mp 113.0–115.0°C ), <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>): δ 1.49-1.68 (m, 4H), 1.82-2.08 (m, 2H), 3.22-3.40 (m, 2H), 4.18-4.38 (m, 1H), 4.38-4.42 (m, 2H), 5.42-5.53 (m, 1H), 7.28-7.35 (m, 2H), 7.25-7.46 (m, 3H), 7.46-7.52 (m, 2H), 7.61 (t, *J* = 7.4Hz, 1H), 7.64-7.82 (m, 4H), 7.87 (d, *J* = 6.7 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 1H), 8.23 (d, *J* = 9.6 Hz, 1H), 8.28-8.32 (m, 2H), 8.70 (t, *J* = 5.5 Hz, 1H), 8.80 (s, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): 23.1, 28.4, 30.3, 46.6, 54.3, 65.9, 114.0, 116.1, 118.5, 119.0, 120.2, 125.1, 125.3, 126.8, 127.1, 127.6, 130.2, 130.6, 131.2, 134.0, 140.7, 143.7, 143.7, 145.3, 147.3, 153.8, 156.4, 160.3, 161.1, 172.1. Found: C, 69.01; H, 4.76; N, 11.03. Calcd. for C<sub>37</sub>H<sub>31</sub>N<sub>5</sub>O<sub>6</sub>: C, 69.26; H, 4.87; N, 10.91%.

#### (S)-6-(((9H-Fluoren-9-yl)methoxy)carbonylamino)-2-(2-oxo-2H-chromene-3-

carboxamido)hexanoic acid ( $N^{a}$ -(Cc)-L-Lys(Fmoc)-OH) 8: Solid of 5 (0.16 g, 0.5 mmol) was added in one portion to a solution of  $N^{e}$ -Fmoc-L-lysine (0.20 g, 0.5 mmol) in MeCN-H<sub>2</sub>O (5 mL : 3 mL), in the presence of Et<sub>3</sub>N (0.70 mL, 0.5 mmol). The reaction mixture was then stirred at 20 °C for 30 min. 6M HCl aq. (2 mL) was then added and the MeCN was removed under reduced pressure. The obtained residue was dissolved in DCM (50 mL), and the organic extract was washed with 6M HCl aq. (50 mL), brine (50 mL), and dried over with MgSO<sub>4</sub> .Evaporation of the solvent gave microclystals **8** (0.21 g, 79 %) which was recrystallized from DCM-hexanes. mp 87.9-89.9 °C. <sup>1</sup>H NMR (300

MHz, DMOS-*d*<sub>6</sub>):  $\delta$  1.26-1.49 (m, 4H), 1.71-1.95 (m, 2H), 2.92-3.02 (m, 2H), 4.15-4.20 (m, 1H), 4.24-4.38 (m, 2H), 4.50 (q, *J* = 5.5Hz, 1H), 7.23-7.46 (m, 7H), 7.65 (d, *J* = 7.1 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.85 (d. *J* = 7.1 Hz, 2H), 7.98 (d, *J* = 7.7 Hz, 1H), 8.89 (s, 1H), 9.07 (d, *J* = 7.4 Hz, 1H), 13.00 (br s, 1H); <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  29.0, 31.2, 46.7, 52.3, 65.2, 116.2, 118.2, 118.4, 120.1, 125.1, 125.2, 127.0, 127.6, 130.4, 134.3, 140.7, 143.9, 148.0, 154.0, 156.1, 160.6, 160.7, 172.9. Found: C, 68.59; H, 5.57; N, 4.97. Calcd. for C<sub>31</sub>H<sub>28</sub>N<sub>2</sub>O<sub>7</sub>: C, 68.88; H, 5.22; N, 5.18

(*S*)-(9*H*-Fluoren-9-yl)methyl-6-(1*H*-benzo[d][1,2,3]triazol-1-yl)-6-oxo-5-(2-oxo-2*H*chromene-3-carboxamido)hexylcarbamate ( $N^{\alpha}$ -(Cc)-L-Lys(Fmoc)-Bt) 9: Microcrystals (0.46 g, 71 %). mp 106.9–108.9 °C. <sup>1</sup>H NMR (DMOS-*d*<sub>6</sub>)  $\delta$  1.41-1.62 (m, 4H), 1.97-2.25 (m, 2H), 2.94-3.09 (m, 2H), 4.11-4.29 (m, 3H), 5.89-6.01 (m, 1H), 7.22-7.56 (m, 7H), 7.56-7.71 (m, 3H), 7.71-7.89 (m, 4H), 7.96 (d, *J* = 7.7 Hz, 1H), 8.19-8.36 (m, 2H), 8.84-8.92 (m, 1H), 9.40 (d, *J* = 6.9 Hz, 1H); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>) 22.4, 28.9, 31.0, 31.1, 46.7, 53.0, 65.2, 114.0, 116.3, 118.1, 118.4, 120.1, 120.3, 125.1, 125.3, 126.9, 127.0, 127.6, 130.5, 130.7, 131.2, 134.5, 140.7, 145.4, 148.2, 154.0, 156.1, 160.5, 161.6, 170.9. HRMS calcd. for [C<sub>37</sub>H<sub>31</sub>N<sub>5</sub>O<sub>6</sub>+Na]<sup>+</sup>, 664.2167; found, 664.2125.

## **HPLC** profiles



# Peptide 10: H-L-Ala-L-Lys(N<sup>e</sup>-Mca)-NH<sub>2</sub>



Top; The profile of peptide 10 after purification.

HRMS calcd. for  $[C_{21}H_{28}N_4O_6+H]^+$ , 433.2082; found, 433.2103.







Top; the profile of peptide 11 after purification.

HRMS calcd. for  $[C_{21}H_{28}N_4O_6+H]^+$ , 389.1819; found, 389.1825.



**Figure S3: Bottom;** the profile of crude peptide **12** (H-L-Pro-L-Phe-L-Lys(*N*<sup>*\varepsilon*</sup>-Cc)-NH<sub>2</sub>)

Top; the profile of peptide 12 after purification.

HRMS calcd. for  $[C_{30}H_{35}N_5O_6+H]^+$ , 562.2660; found, 562.2680.



Figure S4: Bottom; the profile of crude peptide 13 (H-L-Trp-L-Lys( $N^{e}$ -Cc)-L-Met-L-Phe-NH<sub>2</sub>)

Top; The profile of peptide 13 after purification.

HRMS calcd. for [C<sub>41</sub>H<sub>47</sub>N<sub>7</sub>O<sub>7</sub>S+H]<sup>+</sup>, 782.3300; found, 782.3328.





Figure S5: Bottom; the profile of crude peptide 14 (H-L-Lys( $N^{e}$ -Cc)-L-Pro-Gly-L-Leu-L-Met-L-Trp-NH<sub>2</sub>)

Top; the profile of peptide 14 after purification.

HRMS calcd. for  $[C_{45}H_{59}N_9O_9S+H]^+$ , 902.4229; found, 902.4212.

| <b>Table S</b> | 1: MS/MS | sequence of | peptide 14 |
|----------------|----------|-------------|------------|
|----------------|----------|-------------|------------|

|                         |            | MW =   | 901.4 | [M+F  | i]+ =      | 902.4      |            |                  |
|-------------------------|------------|--------|-------|-------|------------|------------|------------|------------------|
| b-ions-H <sub>2</sub> O |            |        |       |       |            | 681.3      | 867.4      |                  |
| a-ions (loss of CO)     |            | 273.1  | 370.2 | 427.2 | 540.3      | 671.3      | 857.4      |                  |
| b-ions                  | N-<br>term | 301.1  | 398.2 | 455.2 | 568.3      | 699.3      | 885.4      | C-<br>term       |
| Residue                 | Н          | K(der) | Р     | G     | L          | М          | W          | -NH <sub>2</sub> |
| Residue<br>mass         | 1.0        | 300.1  | 97.05 | 57.02 | 113.0<br>8 | 131.0<br>4 | 186.0<br>8 | 16.0             |
| v jong                  |            | 000 4  | 000.0 |       | 110 2      | 225.2      | 204 1      |                  |
| y-ions                  |            | 902.4  | 602.3 | 505.3 | 440.3      | 330.Z      | 204.1      |                  |



Figure S6: Bottom; the profile of crude peptide 15 (H-L-Phe-L-Leu-L-Lys(N<sup>a</sup>-Cc)-NH<sub>2</sub>)

Top; the profile of peptide 15 after purification.

HRMS calcd. for [C<sub>31</sub>H<sub>39</sub>N<sub>5</sub>O<sub>6</sub>+H]<sup>+</sup>, 578.2973; found, 578.2987.



Figure S7: Bottom; the profile of crude peptide 16 ((Cc)-L-Leu-L-Leu-NH<sub>2</sub>).

Top; The profile of peptide 16 after purification.

HRMS calcd. for  $[C_{22}H_{29}N_3O_5+H]^+$ , 416.2180; found, 416.2223.

### Peptide 17: (Mca)-L-Leu-L-Leu-NH<sub>2</sub>





Top; The profile of peptide 17 after purification.

HRMS calcd. for  $[C_{24}H_{33}N_3O_6+Na]^+$ , 460.2442; found, 460.2455.



Figure S9: Fluorescence emission spectra of 10,  $\lambda_{ex} = 323$  nm, 11  $\lambda_{ex} = 294$  nm, 14  $\lambda_{ex} = 290$  nm in MeOH.



Figure S10: Fluorescence emission spectra of 16,  $\lambda_{ex} = 413$  nm and 17,  $\lambda_{ex} = 383$  nm in

MeOH



**Figure S11:** Absorption and fluorescence emission spectra of **15**,  $\lambda_{Abs.} = 299$  nm and  $\lambda_{Em}$ 

= 407 nm in MeOH