Chemistry and Folding of Photomodulable Peptides -Stilbene and Thioaurone-type Candidates for Conformational Switches

Máté Erdélyi, ^{ab} Miranda Varedian,^b Christian Sköld,^a Ida B. Niklasson,^a Johanna Nurbo,^a Åsa Persson,^a Jonas Bergquist ^c and Adolf Gogoll*^b

^aDept. of Medicinal Chemistry, Uppsala University, Box 574, 751 23 Uppsala, Sweden. ^bDept. of Biochemistry and Organic Chemistry, Uppsala University, Box 576, 751 23 Uppsala, Sweden. ^cDept. of Physical and Analytical Chemistry, Uppsala University, Box 599, 751 24 Uppsala, Sweden. Fax: 46 18 4713818; Tel: 46 18 4713822; E-mail: adolf.gogoll@biorg.uu.se

Table S1 Amide proton temperature coefficients 4 Scheme S1: Hydrogen bonds in selected low energy conformers 5
Figure S 1: ¹ H NMR spectrum of compound E-1 (300.0 MHz, CD ₃ OD/CH ₃ OH (1:1) solution, 25°C).
Figure S 2: ¹ H NMR spectrum of compound E-2 (499.9 MHz, CD ₃ OD/CH ₃ OH (1:1) solution, solvent
suppression used, 25°C)
Figure S 3: ¹³ C NMR spectrum of compound E-2 (75 MHz, CD ₃ OD/CH ₃ OH (1:1) solution, 25°C)8
Figure S 4: ¹ H NMR spectrum of compound E-3 (499.9 MHz, CD ₃ OD/CH ₃ OH (1:1) solution, solvent
suppression used, 25°C)
Figure S 6: ¹ H NMR spectrum of compound Z-4 (499.9 MHz, DMSO-dc solution, 25°C) 11
Figure S 7: ¹ H NMR spectrum of compound photostationary mixture of \mathbf{F} -4 and 7 -4 (499.9 MHz
DMSO-d ₆ solution, 25°C)
Figure S 8: ¹ H NMR spectrum of compound Z-5 (499.9 MHz, DMSO-d ₆ solution, 25°C)
Figure S 9: ¹ H NMR spectrum of compound photostationary mixture of E-5 and Z-5 (499.9 MHz, DMSO-d ₆ solution, 25°C)
Figure S 10: ¹ H NMR spectrum of compound Z-6 (499.9 MHz, DMSO-d ₆ solution, 25°C)15
Figure S 11: ¹ H NMR spectrum of compound photostationary mixture of E-6 and Z-6 (499.9 MHz, DMSO-d ₆ solution, 25°C)
Figure S 12: ¹ H NMR spectrum of compound Z-7 (499.9 MHz, DMSO-d ₆ solution, 25°C)
Figure S 13: ¹ H NMR spectrum of compound photostationary mixture of E-7 and Z-7 (499.9 MHz, DMSO-d ₆ solution, 25°C)
Figure S 14: ¹ H NMR spectrum of compound 8 (499.9 MHz, CD ₃ OD/CH ₃ OH (1:1) solution, solvent
suppression used, 25°C)
Figure S 15: ¹³ C NMR spectrum of compound 8 (75 MHz, CDCl ₃ solution, 25°C)20
Figure S 16: ROESY spectrum of compound 8 (499.9 MHz, CDCl ₃ solution, 25°C)21
Figure S 17: ¹ H NMR spectrum of compound 10 (399.8 MHz, DMSO-d ₆ solution, 25°C)22
Figure S 18: ¹³ C NMR spectrum of compound 10 (75 MHz, DMSO-d ₆ solution, 25°C)23
Figure S 19: NOESY spectrum of compound 10 (399.8 MHz, DMSO-d ₆ solution, 25°C)24
Figure S 17: ¹ H NMR spectrum of compound 12 (270.2 MHz, CDCl ₃ solution, 25°C)25
Figure S 18: ¹³ C NMR spectrum of compound 12 (67.9 MHz, CDCl ₃ solution, 25°C)
Figure S 17: ¹ H NMR spectrum of compound 13 (399.9 MHz, CD ₃ OD solution, 25°C)27
Figure S 18: ¹³ C NMR spectrum of compound 13 (100.5 MHz, CD ₃ OD solution, 25°C)28
Figure S 17: ¹ H NMR spectrum of compound 14 (270.2 MHz, CDCl ₃ solution, 25°C)29
Figure S 18: ¹³ C NMR spectrum of compound 14 (67.9 MHz, CDCl ₃ solution, 25°C)
Figure S 17: ¹ H NMR spectrum of compound 16 (270.2 MHz, CDCl ₃ solution, 25°C)31
Figure S 18: ¹³ C NMR spectrum of compound 16 (67.9 MHz, CDCl ₃ solution, 25°C)
Figure S 17: ¹ H NMR spectrum of compound 17 (399.9 MHz, CDCl ₃ solution, 25°C)
Figure S 18: ¹³ C NMR spectrum of compound 17 (100.6 MHz, CDCl ₃ solution, 25°C)
Figure S 17: ¹ H NMR spectrum of compound 19 (399.8 MHz, CDCl ₃ solution, 25°C)
Figure S 18: ¹³ C NMR spectrum of compound 19 (100.5 MHz, CDCl ₃ solution, 25°C)
Figure S 20: ¹ H NMR spectrum of compound 40 (499.9 MHz, CD ₃ OD/CDCl ₃ (3:1) solution, 25°C).

Figure S 21: ¹ H NMR spectrum of compound 43 (270.2 MHz, CDCl ₃ solution, 25°C)	.38
Figure S 22: ¹³ C NMR spectrum of compound 43 (67.9 MHz, CDCl ₃ solution, 25°C)	. 39
Figure S 23: ¹ H NMR spectrum of compound 44 (300 MHz, CDCl ₃ solution, 25°C)	.40
Figure S 24: ¹³ C NMR spectrum of compound 44 (75 MHz, CDCl ₃ solution, 25°C).	.41
Figure S 25: ¹ H NMR spectrum of compound 45 (270.2 MHz, CDCl ₃ solution, 25°C)	42
Figure S 26: ¹ H NMR spectrum of compound 46 (399.8 MHz, acetone-d ₆ solution, 25°C)	.43
Figure S 27: ¹³ C NMR spectrum of compound 46 (100.5 MHz, acetone-d ₆ solution, 25°C)	.44

Residue	DMSO	MeOH	DMSO	MeOH
	trans-1		cis-1	
NH ^{Ph/Gly}	5.2	6.3	5.1	6.8
NH ^{CH3}	4.4	6.6	4.2	6.9
NH ^{Ala}	49	6.9	57	9.0
NH ^{Val}	57	7 1	59	74
	trans-2	7.1	cis-2	1.7
NH ^{Ph/CH2}	5.2	7.1	6.5	7.4
NH ^{CH3}	5.1	7.5	7.1	7.8
NH ^{Ala}	6.0	91	8.6	9.9
NH ^{Val}	5.4	7.7	7.2	9.4
	trans-3		cis-3	
NH ^{Ph/CH2}	5.5	7.5	5.7	8.2
NH ^{CH3}	5.6	7.5	5.3	7.6
NH ^{Ala}	5.7	7.2	5.6	8.7
NH ^{Val}	5.3	7.8	5.8	8.3
	Z-4, DMSO		E-4, DMSO	
NH ^{Ala}	4.7		4.7	
NH ^{thio}	5.2		5.1	
NH^{Val}	5.5		7.3	
	Z-5, DMSO		E-5, DMSO	
NH ^{Ala}	4.7		4.7	
NH ^{thio}	5.2		5.3	
NH ^{Val}	5.4		5.1	
	Z-6, DMSO		E-6, DMSO	
NH ^{Ala}	5.1		5.1	
NH ^{thio}	5.2		5.8	
NH^{Val}	5.5		5.6	
NH ^{Cap}	4.4		4.5	
	Z-7, DMSO		E-7, DMSO	
NH ^{Ala}	5.1		4.9	
NH ^{thio}	5.2		5.5	
NH ^{val}	5.5		5.0	
NH ^{Cap}	4.5		4.5	
	DMSO	MeOH	H₂O	CDCI₃
<i>c</i> :	8			
NH ^{Gly}	4.2	6.5	5.5	5.7
NH ^{CH3}	3.8	3.6	5.5	7.3
NH ^{Ala}	3.2	3.4	5.1	7.2
NH^{Val}	5.0	6.1	2.0	6.8
	10		_	
NH ^{Ph-CH2}	5.6			
NH ^{CH3}	4.8	Many		
NH ^{Ala}	6.8	conton-		
NH ^{Val}	6.0	mations		

Table S1 Amide proton temperature coefficients (ppb/K) in DMSO-d₆, CH₃OH:CD₃OD (1:1), H₂O:D₂O (1:1), and CDCl₃ solution.

Scheme S1. Hydrogen bonds (dashed lines in structure formulae, green dashed lines in modelled figures) in selected low energy conformers of the photoswitchable petidomimetics. Structure formulae are drawn to show the hydrogen bonds, not the spatial arrangement. For clarity, only a single low-energy conformer is shown.

Figure S 1: ¹H NMR spectrum of compound E-1 (300.0 MHz, CD_3OD/CH_3OH (1:1) solution, 25°C).

Figure S 2: ¹H NMR spectrum of compound E-2 (499.9 MHz, CD_3OD/CH_3OH (1:1) solution, solvent suppression used, 25°C).

Figure S 4: ¹H NMR spectrum of compound **E-3** (499.9 MHz, CD_3OD/CH_3OH (1:1) solution, solvent suppression used, 25°C).

Figure S 5: ¹³C NMR spectrum of compound **E-3** (75 MHz, CD₃OD/CH₃OH (1:1) solution, 25°C).

Figure S 6: 1 H NMR spectrum of compound Z-4 (499.9 MHz, DMSO-d₆ solution, 25°C).

Figure S 7: ¹H NMR spectrum of compound photostationary mixture of **E-4** and **Z-4** (499.9 MHz, DMSO- d_6 solution, 25°C).

Figure S 8: ¹H NMR spectrum of compound **Z-5** (499.9 MHz, DMSO- d_6 solution, 25°C).

Figure S 9: ¹H NMR spectrum of compound photostationary mixture of **E-5** and **Z-5** (499.9 MHz, DMSO- d_6 solution, 25°C).

Figure S 10: ¹H NMR spectrum of compound **Z-6** (499.9 MHz, DMSO-d₆ solution, 25° C).

Figure S 11: ¹H NMR spectrum of compound photostationary mixture of **E-6** and **Z-6** (499.9 MHz, DMSO- d_6 solution, 25°C).

Figure S 12: ¹H NMR spectrum of compound **Z-7** (499.9 MHz, DMSO-d₆ solution, 25° C).

Figure S 13: ¹H NMR spectrum of compound photostationary mixture of E-7 and Z-7 (499.9 MHz, DMSO- d_6 solution, 25°C).

Figure S 14: ¹H NMR spectrum of compound **8** (499.9 MHz, CD_3OD/CH_3OH (1:1) solution, solvent suppression used, 25°C).

Figure S 16: ROESY spectrum of compound 8 (499.9 MHz, CDCl₃ solution, 25°C).

Figure S 17: ¹H NMR spectrum of compound **10** (399.8 MHz, DMSO-d₆ solution, 25°C).

Figure S 18: ¹³C NMR spectrum of compound **10** (75 MHz, DMSO-d₆ solution, 25°C).

M. Erdélyi, M. Varedian, C. Sköld, I. B. Niklasson, J. Nurbo, Å. Persson, A. Gogoll

S24

Figure S 20: ¹H NMR spectrum of compound **12** (270.2 MHz, CDCl₃ solution, 25°C).

Figure S 21: 13 C NMR spectrum of compound **12** (67.9 MHz, CDCl₃ solution, 25°C).

Figure S 22: ¹H NMR spectrum of compound **13** (399.9 MHz, CD₃OD solution, 25°C).

Figure S 23: ¹³C NMR spectrum of compound **13** (100.5 MHz, CD₃OD solution, 25°C).

Figure S 24: ¹H NMR spectrum of compound 14 (270.2 MHz, CDCl₃ solution, 25°C).

Figure S 25: ¹³C NMR spectrum of compound **14** (67.9 MHz, CDCl₃ solution, 25°C).

Figure S 26: ¹H NMR spectrum of compound **16** (270.2 MHz, CDCl₃ solution, 25°C).

Figure S 27: ¹³C NMR spectrum of compound **16** (67.9 MHz, CDCl₃ solution, 25°C).

Figure S 28: ¹H NMR spectrum of compound **17** (399.9 MHz, $CDCl_3$ solution, 25°C).

Figure S 29: ¹³C NMR spectrum of compound **17** (100.6 MHz, CDCl₃ solution, 25°C).

Figure S 30: ¹H NMR spectrum of compound **19** (399.8 MHz, CDCl₃ solution, 25°C).

Figure S 31: ¹³C NMR spectrum of compound **19** (100.5 MHz, CDCl₃ solution, 25°C).

Figure S 32: ¹H NMR spectrum of compound **40** (499.9 MHz, CD₃OD/CDCl₃ (3:1) solution, 25°C).

Figure S 33: ¹H NMR spectrum of compound **43** (270.2 MHz, CDCl₃ solution, 25°C).

Figure S 34: ¹³C NMR spectrum of compound **43** (67.9 MHz, CDCl₃ solution, 25°C).

Figure S 35: ¹H NMR spectrum of compound **44** (300 MHz, CDCl₃ solution, 25°C).

Figure S 36: ¹³C NMR spectrum of compound **44** (75 MHz, CDCl₃ solution, 25°C).

Figure S 37: ¹H NMR spectrum of compound **45** (270.2 MHz, CDCl₃ solution, 25°C).

Figure S 38: ¹H NMR spectrum of compound **46** (399.8 MHz, acetone- d_6 solution, 25°C).

Figure S 39: 13 C NMR spectrum of compound **46** (100.5 MHz, acetone-d₆ solution, 25°C).