Supporting Information for

Pseudouridines in rRNA helix 69 play a role in loop stacking interactions

Jean-Paul Desaulniers, Yu-Cheng Chang, Raviprasad Aduri, Sanjaya C. Abeysirigunawardena, John SantaLucia, Jr., and Christine S. Chow*

Contents

Contents
Description and schemes
Experimental procedures and characterizations
2,4-Dimethoxy-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pyrimidine, $\mathbf{1}$ 5-Iodo-2,4-dimethoxy-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pyrimidine, 2
5-O-tert-Butyldiphenylsilyl-2,3-O-isopropylidene-D-ribono-1,4-lactone, 3
5-[5'-O-(tert-Butyldiphenylylsilyl)-2',3'-O-isopropylidene-D-ribofuranosyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-2,4-dimethoxypyrimidine, 4
5-[(1R,2S,3R,4S)-5'-O-(tert-Butyldiphenylylsilyl)-2',3'-O-isopropylidene-
1',4'-pentandiol]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-2,4-dimethoxypyrimidine, $\mathbf{5}$
5-[5'-O-(tert-Butyldiphenylylsilyl)-2',3'-O-isopropylidene- β-D-ribofuranosyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-2,4-dimethoxypyrimidine, 6 5 -(β-D-Ribofuranosyl)uracil ($\left[1,3-{ }^{15} \mathrm{~N}\right]$-pseudouridine), 7 $3^{\prime}, 5^{\prime}-O-(1,1,3,3-T e t r a i s o p r o p y l-1,3-d i s i l o x a n e d i y l)-\left[1,3-{ }^{15} \mathrm{~N}\right]-$ pseudouridine, $\mathbf{8}$
$2^{\prime}-O-\left[\operatorname{Bis}\left(2\right.\right.$-acetoxyethoxy)methyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pseudouridine, 9
5'-O-[Benzhydryloxybis(trimethylsilyloxy]-2'-O-[bis(2-acetoxyethoxy)methyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pseudouridine, 10
5'-O-[Benzhydryloxybis(trimethylsilyloxy)silyl]-2'-O-[bis(2-acetoxyethoxy)methyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pseudouridine-3'-(methyl-N,Ndiisopropyl)phosphoramidite, 11

Synthesis, deprotection, and purification of modified RNA oligonucleotides
Temperature-dependent imino ${ }^{1} \mathrm{H}$ NMR spectra
1D imino NOE difference spectroscopy of ${ }^{15} \mathrm{~N} \Psi \Psi \Psi$
$2 \mathrm{D}{ }^{15} \mathrm{~N}$ HMQC spectrum of $\Psi^{15} \mathrm{~N} \Psi \Psi$
Table S2: Key NOEs for $\Psi \Psi \Psi$ RNA from NOESY NMR spectra

We describe the approach for labeling pseudouridine and generate fully ${ }^{15} \mathrm{~N}$-enriched, [$\left.1,3-{ }^{15} \mathrm{~N}\right]$-pseudouridine from relatively inexpensive starting materials. Our synthetic strategy involves coupling a pyrimidine precursor, 5-iodo-2,4-dimethoxy-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$ pyrimidine, to a protected D-ribono-1,4-lactone, followed by reduction to generate β [$\left.1,3-{ }^{15} \mathrm{~N}\right]$-pseudouridine. ${ }^{1}$
$\left[{ }^{15} \mathrm{~N}\right]$-uracil was generated from relatively inexpensive $\left[{ }^{15} \mathrm{~N}\right]$-urea according to a literature procedure. ${ }^{2}\left[{ }^{15} \mathrm{~N}\right]$-uracil reacted with phosphorus oxychloride and N, N dimethylaniline. ${ }^{3}$ The crude 2,4-dichloro-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pyrimidine was treated with sodium methoxide in methanol for 48 h at room temperature to yield $\mathbf{1}$ in 83% yield. Compound 2 was iodinated under standard conditions with N-iodosuccinimide in TFA/TFAA in 92% yield. ${ }^{3} \quad$ 5-O-tert-butyldiphenylsilyl-2,3-O-isopropylidene-D-ribono-1,4-lactone $\mathbf{3}$ was generated in two steps by reacting commercially available D-ribono-1,4-lactone with acetone in $\mathrm{H}_{2} \mathrm{SO}_{4}$ to generate 2,3-O-isopropylidene-D-ribono-1,4-lactone. This product was sufficiently pure without further purification for $5-O$ protection using tertbutyldiphenylsiloxylchloride with imidazole to yield compound $\mathbf{3}$ in 72% yield from 2.

Reagents and Conditions: (i) a) POCl_{3}, N, N-dimethylaniline, $100^{\circ} \mathrm{C}, 3 \mathrm{~h}$; b) $\mathrm{NaOCH}_{3}, \mathrm{CH}_{3} \mathrm{OH}, 2$ days, 83%. (ii) N-iodosuccinimide, TFA/TFAA, $5 \mathrm{~h}, 92 \%$.

Lactone $\mathbf{3}$ was added to a solution of $\mathbf{2}$ in THF after lithium-halogen exchange with tert-butyllithium to afford $\mathbf{4}$ in 77% yield. ${ }^{4}$ Stereoselective reduction of $\mathbf{4}$ using ZnCl_{2} and L-selectride gave diol 5 in 90% yield. Compound 5 was treated under Mitsunobu conditions with DIAD and triphenyl phosphine to afford 6 in 75% yield. ${ }^{1}$ Methyl groups on the pyrimidine ring were removed by refluxing with NaI and acetic acid for 35 min . Deprotection of the isopropylidene and tert-butyldiphenylsilyl groups under acidic conditions ($9: 1 \mathrm{TFA}: \mathrm{H}_{2} \mathrm{O}$) gave [$\left.1,3-{ }^{15} \mathrm{~N}\right]$-pseudouridine in 96% yield over two steps. ${ }^{5}$

5'-O-silyl-2'-O-orthoester phosphoramidite chemistry was employed for RNA synthesis. ${ }^{6,7}$ For this purpose, a $5^{\prime}-O-\mathrm{BzH}-2^{\prime}-O-\mathrm{ACE}-\left[1,3-{ }^{15} \mathrm{~N}\right]-$ pseudouridine phosphoramidite was synthesized. Compound $\mathbf{8}$ was treated with tris(2acetoxyethoxy)orthoformate in the presence of pyridinium p-toluenesulfonate and 4-(tert-butyldimethylsilyloxy)-3-penten-2-one (TBDMS-acac) for 2'-O-ACE protection. This reaction requires $55^{\circ} \mathrm{C}$ and increasing equivalents of TBDMS-acac and ACE for

[^0]successful product conversion. The $3^{\prime}, 55^{\prime}$-TIPDS group was deprotected using a combination of HF in TMEDA at $0^{\circ} \mathrm{C}$ to yield 9 in 65% yield. Compound 9 was reacted with BzHCl and diisopropylamine at $0{ }^{\circ} \mathrm{C}$ to afford $\mathbf{1 0}$ in 65% yield. Finally phosphoramidite synthesis was completed by the addition of methyl tetraisopropylphosphorodiamidite and 1 H -tetrazole to generate $5^{\prime}-\mathrm{O}-\mathrm{BzH}-2^{\prime}-\mathrm{O}-\mathrm{ACE}-[1,3-$ $\left.{ }^{15} \mathrm{~N}\right]$-pseudouridine phosphoramidite 11 in 52% yield.

Reagents and Conditions: (i) a) acetone, $\mathrm{H}_{2} \mathrm{SO}_{4}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 5 \mathrm{~h}$; b) TBDPSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}$, 85% for two steps. (ii) THF, $-72{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 76 \%$. (iii) a) $\mathrm{ZnCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-72{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; b) L-selectride, -72 ${ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 90 \%$. (iv) PPh_{3}, DIAD, THF, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 24 \mathrm{~h}, 75 \%$. (v) a) $\mathrm{NaI}, \mathrm{CH}_{3} \mathrm{COOH}, 35 \mathrm{~min}$; b) TFA: $\mathrm{H}_{2} \mathrm{O}$ (9:1), $1 \mathrm{~h}, 96 \%$.

10
11

Reagents and Conditions: (i) $\mathrm{TIPDSCl}_{2}$, pyridine, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 12 \mathrm{~h}, 94 \%$. (ii) a) tris(2acetoxyethyl)orthoformate, pyridinium p-toluenesulfonate, 4-(tert-butyldimethylsilyloxy)-3-penten-2-one, dioxane, $55^{\circ} \mathrm{C}, 12 \mathrm{~h}$; b) TEMED-HF, $\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 65 \%$. (iii) BzH-Cl, diisopropylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 65 \%$. (iv) methyl tetraisopropylphosphorodiamidite, tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 52 \%$.

Experimental procedures and characterization

2,4-Dimethoxy-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pyrimidine (1)

$\left[1,3-{ }^{15} \mathrm{~N}\right]$-uracil ($1.00 \mathrm{~g}, 8.77 \mathrm{mmol}, 1.0 \mathrm{eq}$) reacted with $5 \mathrm{~mL} \mathrm{POCl}_{3}$ and $3 \mathrm{~mL} \mathrm{~N}, \mathrm{~N}$ dimethylaniline under argon at $100{ }^{\circ} \mathrm{C}$ for 3 h . After TLC showed product conversion, the reaction was quenched with ice and extracted with ether. The organic layer was evaporated to yield a yellow solid. In a separate flask, $\mathrm{Na}(1.21 \mathrm{~g}, 52.63 \mathrm{mmol}, 6.00 \mathrm{eq})$ was added to 20 mL of dry methanol at $0{ }^{\circ} \mathrm{C}$. After H_{2} effervescence ceased, the yellow solid was added and allowed to stir at room temperature for 2 days. The reaction was quenched with $30 \% \mathrm{NaOH}$, extracted with ether and purified on silica gel using 33% ethyl acetate in hexanes to yield an organic liquid 1 in 83% yield (1.03 g). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 8.13(\mathrm{dd}, 1 \mathrm{H}, J$ $=5.5,6.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 53.62,53.65,101.99,158.19$, $165.38(\mathrm{dd}, 1 \mathrm{C}, J=9.3 \mathrm{~Hz}), 171.37\left(\mathrm{~d}, 1 \mathrm{C}, J=9.3 \mathrm{~Hz}\right.$), ESI-MS (ES $\left.{ }^{+}\right) m / z$ calcd for $\mathrm{C}_{6} \mathrm{H}_{8}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ 142.1, found $143.0\left(\mathrm{MH}^{+}\right)$.
${ }^{1}$ H NMR Spectrum
vanty 500 spotracat tor

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR Spectrum

onity 500 epectrometar
pulee seguence: e2pul

ESI-MS Spectrum

5-Iodo-2,4-dimethoxy-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pyrimidine (2)

A solution of trifluoroacetic anhydride (0.7 mL) with trifluoroacetic acid (3.5 mL) was slowly added to compound $1(0.50 \mathrm{~g}, 3.52 \mathrm{mmol}, 1.0 \mathrm{eq})$. The clear solution was stirred under argon for several minutes. 1.012 g of N -iodosuccinimide ($4.49 \mathrm{mmol}, 1.3$ eq) was added to mixture to afford a dark brown color solution. The reaction was refluxed for ca. 5 hours, after which point, TLC showed proper product conversion. The reaction was quenched by the slow addition of 5% sodium bicarbonate, extracted over chloroform, and washed with sodium thiosulfate. The organic layer was dried and purified on silica gel using a $10-20 \%$ ethyl acetate gradient in hexanes to yield $\mathbf{2}$ in 92% yield (0.87 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 8.39(\mathrm{~d}$, $1 \mathrm{H}, J=11.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 54.97,55.01,55.10,68.87$, 164.65, 165.36, $168.67(\mathrm{~d}, 1 \mathrm{C}, J=7.5 \mathrm{~Hz}$); ESI-MS (ES $) ~ m / z$ calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{I}^{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ 267.9, found $268.9\left(\mathrm{MH}^{+}\right)$.
${ }^{1}$ H NMR Spectrum

Pulse sequence: e2pul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13}$ C NMR Spectrum

Mercury $\mathbf{4 0 0}$ apectrcaeter
Pulse Sequence: :2pul

ESI-MS Spectrum

5-O-tert-Butyldiphenylsilyl-2,3-O-isopropylidene-D-ribono-1,4-lactone (3)

D-ribono-1,4-lactone ($4.80 \mathrm{~g}, 32.75 \mathrm{mmol}, 1.0 \mathrm{eq}$) was treated with 100 mL acetone and $1.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h then at room temperature for 3 h . The reaction was quenched with $5 \% \mathrm{NaHCO}_{3}$ and extracted with ethyl acetate to yield 2,3-O-isopropylidene-D-ribono-1,4-lactone in 90% yield $(5.55 \mathrm{~g}, 29.51 \mathrm{mmol})$. This product was dissolved in 30 mL dry dichloromethane followed by imidazole ($4.41 \mathrm{~g}, 64.92 \mathrm{mmol}$, $2.2 \mathrm{eq})$ and tert-butyldiphenylsilylchloride ($8.31 \mathrm{~mL}, 32.46 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added dropwise slowly to a stirred solution at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred overnight, and quenched with $5 \% \mathrm{NaHCO}_{3}$, extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified on silica gel with a $15-25 \%$ ethyl acetate gradient in hexanes to yield $\mathbf{3}$ as a white solid (85% yield over two steps, 11.78 g). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $1.03,1.05,1.06(3 \mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, 1 \mathrm{H}, J=12.0,1.5 \mathrm{~Hz}), 3.90$ (dd, 1H, $J=11.8,2.5,2.0 \mathrm{~Hz}$), $4.56(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.88(\mathrm{~d}$, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 7.38-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 19.04,25.57,26.52,26.73,63.52,75.80,78.40,82.30,113.13,127.67,127.98$, $130.16,131.51,132.32,134.76,135.40,135.58,174.08$; ESI-MS (ES ${ }^{+}$) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si} 426.2$, found $449.1\left(\mathrm{M}+\mathrm{Na}^{+}\right), 465.1\left(\mathrm{M}+\mathrm{K}^{+}\right), 875.2\left(2 \mathrm{M}+\mathrm{Na}^{+}\right), 891.2$ $\left(2 \mathrm{M}+\mathrm{K}^{+}\right)$.
${ }^{1}$ H NMR Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR Spectrum

5-[5'-O-(tert-Butyldiphenylylsilyl)-2',3'-O-isopropylidene-d-ribofuranosyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$ --2,4-dimethoxypyrimidine (4) (α and $\beta ; 7: 1$)

A 1.7 M solution of tert-butyllithium ($2.20 \mathrm{~mL}, 3.74 \mathrm{mmol}, 2.0 \mathrm{eq}$) in pentane was added dropwise to a stirred solution of 5 -iodo-2,4-dimethoxy-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pyrimidine 2 $(0.50 \mathrm{~g}, 1.87 \mathrm{mmol}, 1.0 \mathrm{eq})$ in anhydrous THF $(10 \mathrm{~mL})$ at $-72^{\circ} \mathrm{C}$ under argon for 30 min . After stirring at room temperature for 5 min , the reaction was cooled to $-72{ }^{\circ} \mathrm{C}$ for 20 min. Compound $3(0.88 \mathrm{~g}, 2.05 \mathrm{mmol}, 1.1 \mathrm{eq})$ in THF (5 mL) at $-72^{\circ} \mathrm{C}$ was transferred slowly to the reaction by cannula. Stirring was continued at $-72^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched by the addition of water $(10 \mathrm{~mL})$ and warmed slowly to room temperature for 30 min . The reaction mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford an orange oil. The product was purified by flash chromatography using a $25-40 \%$ ethyl acetate gradient in hexanes to give $4(0.81 \mathrm{~g}, 76 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCD}_{3}\right) \delta(\mathrm{ppm}) 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 63 \mathrm{H}), 1.23(\mathrm{~s}, 21 \mathrm{H}), 1.26(\mathrm{~s}, 21 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 11 \mathrm{H}), 3.92(\mathrm{dd}, 12 \mathrm{H}, J=11.2,4.8 \mathrm{~Hz}), 3.98(\mathrm{~m}, 24 \mathrm{H}), 4.03(\mathrm{~s}$, $21 \mathrm{H}), 4.30(\mathrm{~m}, 7 \mathrm{H}), 4.37(\mathrm{~m}, 7 \mathrm{H}), 4.73(\mathrm{~m}, 3 \mathrm{H}), 4.87(\mathrm{~m}, 14 \mathrm{H}), 7.40(\mathrm{~m}, 51 \mathrm{H}), 7.66(\mathrm{~m}$, $34 \mathrm{H}), 8.48(\mathrm{~d}, 7 \mathrm{H}, J=12.0 \mathrm{~Hz}), 8.58(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCD}_{3}\right)$ $\delta(\mathrm{ppm}) 19.43,25.42,25.88,26.86,27.03,27.15,39.88,54.20,54.45,54.49,55.03$, 64.00, 65.73, 81.67, 82.21, 82.59, 84.33, 86.58, 87.47, 100.50, 105.76, 112.79, 114.11, $115.69,127.97$, $128.16,128.20,130.05,130.28,130.42,132.43,132.50,133.28,135.83$, $136.01,156.87,157.10,157.81,165.34,165.45,168.35,168.44 ;{ }^{15} \mathrm{~N}$ NMR (500 MHz , CDCl_{3}) $\delta(\mathrm{ppm})$-142.7, -144.1, -152.6, -153.2; ESI-MS (ES $) ~ \mathrm{~m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{38}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si} 568.2$, found $569.2\left(\mathrm{MH}^{+}\right), 1137.2\left(2 \mathrm{MH}^{+}\right)$.

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008
${ }^{1}$ H NMR Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

${ }^{15} \mathrm{~N}$ NMR Spectrum
 onity 500 spectroneter

Pulse sequence: s2pul

ESI-MS Spectrum

5-[(1R,2S,3R,4S)-5'-O-(tert-Butyldiphenylylsilyl)-2',3'-O-isopropylidene-1',4'-pentandiol]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-2,4-dimethoxypyrimidine (5).

A 1.0 M solution of $\mathrm{ZnCl}_{2}(1.90 \mathrm{~mL}, 1.90 \mathrm{mmol}, 1.50 \mathrm{eq})$ in diethyl ether was added dropwise to a solution of $4(0.720 \mathrm{~g}, 1.27 \mathrm{mmol}, 1.0 \mathrm{eq})$ in anhydrous DCM $(75 \mathrm{~mL})$ at $72{ }^{\circ} \mathrm{C}$ under argon. After stirring for 30 min , a 1.0 M solution of L-selectride (4.81 mL , $4.81 \mathrm{mmol}, 2.53 \mathrm{eq}$) in THF was added slowly over 30 min . The reaction was then allowed to warm to room temperature and stirred for 16 h . The reaction was quenched by addition of $\mathrm{EtOH}(2 \mathrm{~mL})$, water (2 mL), $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{~mL})$, and $5 \mathrm{~N} \mathrm{NaOH}(2 \mathrm{~mL})$. After workup, the crude product was purified by flash chromatography using a $35-50 \%$ ethyl acetate gradient in hexanes to give $5(0.650 \mathrm{~g}, 90 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.08(\mathrm{~m}, 9 \mathrm{H}), 1.31(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.91\left(\mathrm{dd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.99(\mathrm{~m}, 6 \mathrm{H}), 4.25$ $(\mathrm{m}, 2 \mathrm{H}), 4.37\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.31(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{~m}$, $4 \mathrm{H}), 8.38(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 19.55,25.61$, 27.03, 27.07, 54.28, 54.98, 64.82, 65.50, 69.89, 75.68, 78.17, 108.86, 128.10, 128.30, $130.14,130.18,133.08,135.74,135.80,157.07,157.77,{ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) -142.9, -153.4, -153.7; ESI-MS (ES ${ }^{+}$) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{40}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si} 570.3$, found $571.2\left(\mathrm{MH}^{+}\right), 593.2\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

```
\({ }^{1}\) H NMR Spectrum
```


Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008

ESI-MS Spectrum

5-[5'-O-(tert-Butyldiphenylylsilyl)-2',3'-O-isopropylidene- β-d-ribofuranosyl]-[1,3$\left.{ }^{15} \mathrm{~N}\right]$-2,4-dimethoxypyrimidine (6).

Diisopropyl azodicarboxylate ($0.370 \mathrm{~mL}, 1.93 \mathrm{mmole}, 2.01 \mathrm{eq}$) was added to a stirred solution of $5(0.550 \mathrm{~g}, 0.964 \mathrm{mmol}, 1.0 \mathrm{eq})$ and triphenylphosphine $(0.510 \mathrm{~g}, 1.93 \mathrm{mmol}$, $1.05 \mathrm{eq})$ in anhydrous THF (60 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction was allowed to warm to room temperature slowly and stirred for 24 h . The solvent was removed under reduced pressure. The residue was then purified with flash chromatography using a 20 35% ethyl acetate gradient in hexanes to give $6(0.461 \mathrm{~g}, 75 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.13\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.65\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}\right.$, $\left.J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.72\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $(\mathrm{m}, 6 \mathrm{H}), 7.68(\mathrm{~m}, 4 \mathrm{H}), 8.30(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 19.48, 21.86, 25.91, 27.07, 27.86, 54.28, 54.32, 55.08, 64.19, 80.56, 81.76, 84.86, 85.43, 113.37, 114.50, 127.95, 129.97, 130.01, 133.36, 133.41, 135.85, 135.88, 157.12; ${ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-142.09,-152.99$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{29}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 495.1736$, found 495.1737 .
${ }^{1}$ H NMR Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Pulee sequence: e2pul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

High-Res MS NMR Spectrum

5-(β-d-Ribofuranosyl)uracil ([1,3- $\left.{ }^{15} \mathrm{~N}\right]$-Pseudouridine) (7)

To a solution of $6(0.35 \mathrm{~g}, 0.63 \mathrm{mmol}, 1.0 \mathrm{eq})$ in glacial acetic acid (15 mL) was added sodium iodide ($0.38 \mathrm{~g}, 2.53 \mathrm{mmol}, 4.0 \mathrm{eq}$) and heated to reflux for 35 min . The reaction mixture was poured onto ice and the resulting aqueous layer extracted with chloroform ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with saturated solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} for several times and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to afford a light-yellow oil. A white solution was obtained after TFA/ $\mathrm{H}_{2} \mathrm{O}(9 / 1,10 \mathrm{~mL})$ added to this light-yellow oil. Stirring was continued for 1 h . TFA and water were evaporated under reduced pressure in hot water bath. The product was washed with chloroform for several times to give $7(0.15 \mathrm{~g}, 96 \%)$ as a light-yellow powder. mp $211-212{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta(\mathrm{ppm}) 3.56(\mathrm{dd}$, $\left.J_{1}=13.0 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta(\mathrm{ppm}) 61.60,70.92,73.45,79.27,83.46,110.59$, 141.54, 141.63, 165.36; ${ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta(\mathrm{ppm})$-209.13, -234.91; ESI-MS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{6} 246.1$, found $247.0\left(\mathrm{MH}^{+}\right), 269.0\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
${ }^{1}$ H NMR Spectrum

${ }^{13} \mathrm{C}$ NMR Spectrum
 Onity 500 apectrceeter

${ }^{15} \mathrm{~N}$ NMR Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

ESI-MS Spectrum

$3^{\prime}, 5$ '-O-(1,1,3,3-Tetraisopropyl-1,3-disiloxanediyl)-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pseudouridine (8)

To a round-bottom flask, $7(0.12 \mathrm{~g}, 0.47 \mathrm{mmol}, 1.0 \mathrm{eq})$ was azeotroped with benzene for 2 h . This compound was dissolved in 10 mL of distilled pyridine at $0^{\circ} \mathrm{C}$. After 20 $\mathrm{min}, 1,3$-dichloro-1,1,3,3-tetraisopropyldisiloxane ($0.16 \mathrm{~mL}, 0.51 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added dropwise and left to stir at $0{ }^{\circ} \mathrm{C}$ for 1 h and overnight at room temperature. The following day, the reaction was dried under reduced pressure, and the product was purified on silica gel using 50% ethyl acetate in hexanes to isolate $\mathbf{8}$ as a white crystalline solid in 94% yield $(0.22 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.01-1.08(\mathrm{~m}, 28 \mathrm{H})$, $3.13(\mathrm{~s}, 1 \mathrm{H}), 3.92-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{dd}, 1 \mathrm{H}, J=5.8,2.0 \mathrm{~Hz})$, $4.73(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 10.07(\mathrm{~d}, 1 \mathrm{H}, J=91 \mathrm{~Hz}), 10.30(\mathrm{~d}, 1 \mathrm{H}, J=97.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 12.52,12.65,13.01,13.34,16.90,16.99,17.01,17.11,17.26$, $17.30,17.39,61.18,70.74,74.52,79.99,80.81,112.72(J=3.4 \mathrm{~Hz}) 138.91(J=6.7 \mathrm{~Hz})$, 152.63, 163.15; ${ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$-214.61, -245.66; ESI-MS (ES ${ }^{+}$) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{38}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2} 488.2$, found $511.2\left(\mathrm{M}+\mathrm{Na}^{+}\right), 527.1\left(\mathrm{M}+\mathrm{K}^{+}\right)$.
${ }^{1}$ H NMR Spectrum

Pulee sequence: s2pul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

ESI-MS Spectrum

$\mathbf{2}^{\prime}$-O-[Bis(2-acetoxyethoxy)methyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]$-pseudouridine (9)

Compound $8(0.22 \mathrm{~g}, 0.44 \mathrm{mmol})$ and a sample of $3^{\prime}, 5{ }^{\prime}-O-(1,1,3,3$-tetraisopropyl-1,3-disiloxanediyl)-pseudouridine ($0.22 \mathrm{~g}, 0.44 \mathrm{mmol}$) were dissolved in 5 mL of anhydrous 1,4-dioxane to give a solution of $50 \%{ }^{15} \mathrm{~N}$-enriched compound ($0.430 \mathrm{~g}, 0.882 \mathrm{mmol}, 1.0$ eq). $\operatorname{Tris}(2$-acetoxyethoxy)orthoformate $(1.65 \mathrm{~g}, 5.11 \mathrm{mmol}, 5.8 \mathrm{eq})$ and pyridinium p toluenesulfonate ($0.04 \mathrm{~g}, 0.8 \mathrm{mmol}, 0.4 \mathrm{eq}$) were then added to give a clear solution. The reaction was stirred for 1 h at room temperature, and then 4-(tert-butyldimethylsilyloxy)-3-penten-2-one ($0.91 \mathrm{~g}, 3.35 \mathrm{mmol}, 3.8 \mathrm{eq}$) was added. The solution was stirred and heated to $55^{\circ} \mathrm{C}$ with a condenser overnight. The reaction mixture was monitored by TLC and showed efficient product conversion. $N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine (TMEDA; $0.11 \mathrm{~g}, 0.93 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added and stirred for 15 min at room temperature. The crude mixture was evaporated and the intermediate was partially purified on silica gel to yield a partially purified intermediate. The intermediate was dissolved in 1.78 mL of $\mathrm{CH}_{3} \mathrm{CN}$, and cooled to $0^{\circ} \mathrm{C}$ to give solution A. To a separate flask, solution B was prepared at $0{ }^{\circ} \mathrm{C}$ by the addition of $\mathrm{CH}_{3} \mathrm{CN}(1.78 \mathrm{~mL})$, TMEDA $(0.66 \mathrm{~mL})$, and 48% aq. HF $(0.10 \mathrm{~mL})$. Solution B was stirred for 10 min at $0{ }^{\circ} \mathrm{C}$. Solution B was transferred dropwise to solution A by cannula. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , and TLC showed proper product conversion. The solvent was evaporated, and the crude product was purified by flash chromatography on silica gel with 1% TMEDA in a $33-88 \%$ EtOAc in hexanes gradient to give 9 as a pale yellow oil in 65% yield $(0.26 \mathrm{~g}, 0.57 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 2.038(\mathrm{~s}, 3 \mathrm{H}), 2.043(\mathrm{~s}$, $3 \mathrm{H}), 3.66-3.83(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.21(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, 1 \mathrm{H}, J=4.5), 5.44(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $21.02,62.47,62.85,63.04,63.28,63.41,65.83,65.96,71.96,77.71,79.34,85.65,111.63$, $113.15,138.98,150.17,162.94,171.25 ;{ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$-213.02, 241.93; ESI-MS (ES ${ }^{+}$) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{26}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{12} 464.1$ and $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{12} 462.1$, found $485.0\left(\mathrm{M}+\mathrm{Na}^{+}\right), 487.0\left(\mathrm{M}\left({ }^{15} \mathrm{~N}\right)+\mathrm{Na}^{+}\right)$.

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008
${ }^{1}$ H NMR Spectrum
onity 500 apectroneter

Pulee seguence: azpul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

${ }^{15} \mathrm{~N}$ NMR Spectrum

onity 500 spectrometer
Pulae seguence: :2pul

ESI-MS Spectrum

5'-O-[Benzhydryloxybis(trimethylsilyloxy]-2'-O-[bis(2-acetoxyethoxy)methyl]-[1,3${ }^{15} \mathrm{~N}$]-pseudouridine (10)

Solution A was made by the addition of $9(0.24 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.0 \mathrm{eq})$ in 2.9 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.11 mL of distilled diisopropylamine to yield a clear yellow solution. The solution was cooled to $0{ }^{\circ} \mathrm{C}$. To another flask, solution B was made by adding diisopropylamine ($0.26 \mathrm{~mL}, 1.23 \mathrm{mmol}$) dropwise to benzhydryloxybis(trimethylsiloxy)silyl chloride ($1.30 \mathrm{~g}, 3.08 \mathrm{mmol}$, 5.9 eq) in 1.23 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C} .0 .35$ mL of solution $B(0.5 \mathrm{eq})$ was added to solution A dropwise, and every $10 \mathrm{~min}, 0.25 \mathrm{eq}$ aliquots were added. The reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$ and product formation monitored by TLC. Upon completion, the reaction was quenched with $5 \% \mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified on silica gel with $33-50 \% \mathrm{EtOAc}$ in hexanes to give $\mathbf{1 0}$ as a clear oil in 65% yield $(0.29 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $9 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}), 3.83-3.90(\mathrm{~m}, 4 \mathrm{H}), 4.07-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.28(\mathrm{~m}, 4$ H), $4.91(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz})$, $8.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.43,20.85,60.90,62.60,62.71$, $63.08,63.16,68.28,77.60,78.96,81.83,112.37,112.88,126.33,126.44,126.57,127.66$, $127.71,128.31,128.36,128.49,138.16,143.77,143.89,150.28,162.54,170.99 ;{ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$-213.66, -243.49; ESI-MS (ES ${ }^{+}$) m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{54}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{Si}_{3} 852.3$ and $\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{Si}_{3}$ 850.3, found $889.2\left(\mathrm{M}+\mathrm{K}^{+}\right)$, 891.1 $\left(\mathrm{M}\left({ }^{15} \mathrm{~N}\right)+\mathrm{K}^{+}\right)$.

Pulse Sequence: :2pul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR Spectrum

Pulee seguencet e2pul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008

ESI-MS Spectrum

5'-O-[Benzhydryloxybis(trimethylsilyloxy)silyl]-2'-O-[bis(2-acetoxyethoxy)methyl]-[1,3- $\left.{ }^{15} \mathrm{~N}\right]-$ pseudouridine-3'-(methyl- N, N-diisopropyl)phosphoramidite (11)

Compound $10(0.17 \mathrm{~g}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in 2.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this stirring solution, $1 H$-tetrazole $(0.03 \mathrm{~g}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$, and methyl tetraisopropyl phosphorodiamidite ($0.16 \mathrm{~mL}, 0.54 \mathrm{mmol}, 2.8 \mathrm{eq}$) was added and the reaction stirred overnight. The next day, TLC showed proper product conversion, and the reaction was quenched with $5 \% \mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The product was purified on silica gel with 10% TEA in a 25 -33% acetone in hexanes gradient to afford 11 as a colorless oil ($0.10 \mathrm{~g}, 0.10 \mathrm{mmol}$) in 52% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ (mixture of diastereomers) 0.03-0.05 $(3 \mathrm{~s}, 18 \mathrm{H}), 1.162,1.167,1.175,1.180(4 \mathrm{~s}, 12 \mathrm{H}), 2.05,2.06(2 \mathrm{~s}, 6 \mathrm{H}), 3.34,3.36(\mathrm{dd}, 3 \mathrm{H}, J$ $=5.0 \mathrm{~Hz}), 3.55-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.93(\mathrm{~m}, 5 \mathrm{H}), 4.05-4.31(\mathrm{~m}, 8 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.66$ $(\mathrm{s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.44(\mathrm{~d}$, $1 \mathrm{H}, J=1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ (mixture of diastereomers) 1.46, 20.87, 20.91, 24.52, 24.57, 24.68, 24.74, 42.81, 42.90, 43.00, 50.06, 60.46, 60.58, 60.98, $62.20,63.39,63.47,63.61,63.69,70.05,70.39,70.54,77.35,77.90,80.16,80.61,111.75$, $111.89,112.69,126.25,126.30,126.52,127.55,127.73,127.80,128.42,128.47,128.51$, $138.20,143.685,143.76,143.97,150.36,162.29,170.98 ;{ }^{15} \mathrm{~N}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) (mixture of diastereomers) -211.83, -238.36; ${ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ (mixture of diastereomers) -71.37, -70.14; ESI-MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{~N}^{15} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{PSi}_{3} 1013.4$ and $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{PSi}_{3}$ 1011.4, found $1050.3\left(\mathrm{M}+\mathrm{K}^{+}\right), 1052.3$ $\left(\mathrm{M}\left({ }^{15} \mathrm{~N}\right)+\mathrm{K}^{+}\right)$; Anal. calcd for $50 \% \mathrm{C}_{44} \mathrm{H}_{70} \mathrm{~N}^{15} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{PSi}_{3}$ and $50 \% \mathrm{C}_{44} \mathrm{H}_{70} \mathrm{~N}_{2}{ }^{15} \mathrm{NO}_{16} \mathrm{PSi}_{3}$: C, 52.16; H, 6.96; N, 4.25. Found C, 51.99; H, 6.95; N, 4.20.
${ }^{1}$ H NMR Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR Spectrum

Unity 500 apectroneter

Pulee sequence: e2pul

${ }^{31}$ P NMR Spectrum
mercury 400 epectroseter
Pulae Sequence: e2pul

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

ElementalAnalysis

Synthesis, Deprotection, and Purification of Modified RNA Oligonucleotides

RNAs were synthesized on $1.0 \mu \mathrm{~mol}$ scales using polystyrene supports as described previously. The sequences of the three RNAs are as follows, with the numbering based on the full-length E. coli 23S rRNA: 5'$\mathrm{G}_{1906} \mathrm{GCCG}^{15} \mathrm{~N} \Psi_{1911} \mathrm{AAC}_{1915} \mathrm{~A}_{1917} \mathrm{AACGGUC}_{1924}-3^{\prime}$ (referred to as ${ }^{15} \mathrm{~N} \Psi \Psi \Psi$; the names of the RNAs correspond to the nucleotides at positions 1911, 1915, and 1917, respectively), and $5^{\prime}-\mathrm{G}_{1906} \mathrm{GCCG} \Psi_{1911} \mathrm{AAC}^{15} \mathrm{~N}_{1915} \mathrm{~A}_{1917} \mathrm{AACGGUC}_{1924}-3^{\prime}\left(\Psi^{15} \mathrm{~N} \Psi \Psi\right)$, and $5^{\prime}-\mathrm{G}_{1906} \mathrm{GCCG} \Psi_{1911} \mathrm{AAC}^{15} \mathrm{~N} \Psi_{1915} \mathrm{~A} \Psi_{1917} \mathrm{AACGGUC}_{1924}-3^{\prime}\left(\Psi \Psi^{15} \mathrm{~N} \Psi\right)$, where ${ }^{15} \mathrm{~N} \Psi$ refers to the a $\left[1,3-{ }^{15} \mathrm{~N}\right]$ pseudouridine insertion site. The crude RNAs were deprotected using 100 mM NaOAc buffer (pH 3.8) and heating the solution at $60^{\circ} \mathrm{C}$ for 30 min . The RNAs were purified on a Xterra MS C18 column ($2.5 \mu \mathrm{~m}, 10 \times 50 \mathrm{~mm}$, Waters, MA) using HPLC. The eluent was 0.1 M TEAA buffer, pH 7.0 with a 7 to 11% linear gradient of acetonitrile over 17 minutes at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. Following HPLC purification, the RNAs were ethanol precipitated with NaOAc , and dialyzed for 3 days against RNase-free, double-deionized water.

RNA concentrations were calculated using Beer's law and single-stranded extinction coefficient (Σ) was calculated to be $188,860 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$ for each RNA. The extinction coefficient for uridine $\left(1.0 \times 10^{4} \mathrm{~cm}^{-1} \mathrm{M}^{-1} \text { at } \mathrm{pH} 7.0\right)^{8}$ was used for pseudouridine because the nearest-neighbor extinction coefficient is unknown.

For NMR sample preparation, the RNA was dissolved in $200 \mu \mathrm{~L} 90 \% \mathrm{H}_{2} \mathrm{O}$ and 10% $\mathrm{D}_{2} \mathrm{O}$ containing a buffer which contained NMR buffer ($30 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ sodium phosphate and 0.5 mM Na 2 EDTA, at pH 6.5). This solution was heated to $90^{\circ} \mathrm{C}$ for 2 minutes, and slowly cooled to room temperature for proper hairpin annealing. The solution was added to an NMR Shigemi tube, and residual RNA left in the centrifuge tube was washed with $80 \mu \mathrm{~L}$, and added to NMR Shigemi tube to yield a final volume of $280 \mu \mathrm{~L}$. The RNA concentrations for the RNAs were determined to be in the range from $0.5-1.0 \mathrm{mM}$.

[^1]
Temperature-dependent imino ${ }^{1} \mathrm{H}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra for $\Psi^{15} \mathrm{~N} \Psi \Psi, \Psi^{15} \mathrm{~N} \Psi \Psi$, and $\Psi \Psi{ }^{15} \mathrm{~N} \Psi$ were obtained on a Varian Unity 500 MHz spectrometer at $3,10,15,21$ and 37 . Table 1 illustrates the chemical shifts of the imino region $(9-15 \mathrm{ppm})$ at $3^{\circ} \mathrm{C}$.

Table S1: Imino chemical shift resonances of ${ }^{15} \mathrm{~N} \Psi \Psi \Psi, \Psi^{15} \mathrm{~N} \Psi \Psi$, and $\Psi \Psi{ }^{15} \mathrm{~N} \Psi$.

	${ }^{15} \mathrm{~N} \Psi \Psi \Psi$	$\Psi{ }^{15} \mathrm{~N} \Psi \Psi$	$\Psi \Psi^{15} \mathrm{~N} \Psi$
G1922	13.5	13.5	13.5
$\Psi 1911 \mathrm{~N} 3 \mathrm{H}$	13.1	13.1	13.1
G1910	12.8	12.8	12.8
G1921	12.4	12.5	12.4
U1923	12.1	12.1	12.1
G1907	11.8	11.8	11.8
$\Psi 1917 \mathrm{~N} 3 H$	11.1	11.1	11.2
$\Psi 1915 \mathrm{~N} 1 \mathrm{H}$	10.7	10.8	10.7
$\Psi 1915 \mathrm{~N} 3 H$	10.4	10.4	overlap with 10.3
$\Psi 1911 \mathrm{~N} 3 H$	10.3	10.3	10.3

Temperature-dependent spectra of ${ }^{15} \mathrm{~N} \Psi \Psi \Psi$ are shown below.

1D imino NOE difference spectroscopy of ${ }^{15} \mathrm{~N} \Psi \Psi \Psi$

1D imino NOE difference spectra of ${ }^{15} \mathrm{~N} \Psi \Psi \Psi$ were obtained at $3{ }^{\circ} \mathrm{C}$ on a Unity Varian 500 MHz spectrometer. Asterisks indicate irradiated protons and arrows show NOEs.

2D ${ }^{15}$ N HMQC of $\Psi^{15} N \Psi \Psi$

A $2 \mathrm{D}{ }^{15} \mathrm{~N}$ HMQC spectrum of $\Psi^{15} \mathrm{~N} \Psi \Psi$ was obtained at $3{ }^{\circ} \mathrm{C}$ on a Bruker 700 MHz spectrometer. $\Psi_{1915} \mathrm{~N} 1$ was assigned to 135 ppm , based on its correlation with the triplet at 10.7 ppm . The triplet at 10.7 was assigned to $\Psi_{1915} \mathrm{~N} 1 \mathrm{H}$ because of a strong NOE at $7.4 \mathrm{ppm}\left(\Psi_{1915} \mathrm{H} 6\right) . \Psi_{1915} \mathrm{~N} 3$ was assigned to 159 ppm , because it correlates to a broad proton peak at $10.4 \mathrm{ppm}\left(\Psi_{1915} \mathrm{~N} 3 \mathrm{H}\right)$.

Table S2：Key NOEs involving pseudouridines observed in $\Psi \Psi \Psi ~ H 69 ~ R N A ~(5 '-~$ GGCCGYAACЧA sodium phosphate， pH 7 buffer．The results are consistent with strong stacking of C1914 with $\Psi 1915$ and tri－nucleotide stacking of A1916，$\Psi 1917$ ，and A1918．

Protons	NOE intensity ${ }^{\text {a }}$
צ1915H6－C1914H6	weak
$\Psi 1915 \mathrm{H} 6-\mathrm{C} 1914 \mathrm{H} 1^{\prime}$	weak
Ч1915H6－C1914H2＇	medium
Ч1915H6－C1914H3＇	strong
世1915H6－A1916H8	very weak
世1915H1＇－A1916H8	weak
世1915H2＇－A1916H8	weak
世1915H6－A1916H2	medium
世1917H6－A1916H8	weak
¥1917H6－A1918H8	medium
¥1917H6－A1916H2	weak
צ1917H6－A1916H1＇	weak
世1917H1＇－A1916H1＇	weak
世1917H6－A1916H2＇	strong
世1917H1＇－A1916H2	weak
世1917H2＇－A1916H2	weak
世1917H3＇－A1916H2	weak
世1917H1＇－A1918H8	weak
$\Psi 1917 \mathrm{H} 2$＇－A1918H8	medium
世1917H3＇－A1918H8	strong
$\Psi 1917 \mathrm{H} 1^{\prime}-\mathrm{A} 1918 \mathrm{H} 1^{\prime}$	weak
世1917H2＇－A1918H1＇	weak

${ }^{\text {a }}$ NOE intensities are listed as strong（ $2-3 \AA$ ），medium（2－4 \AA ）and weak（ $3-5 \AA$ ），and very weak（3－6 \AA ）distance restraints．

[^0]: ${ }^{1}$ S. Hanessian and R. Machaalani, Tetrahedron Lett., 2003, 44, 8321.
 ${ }^{2}$ J. SantaLucia, Jr., L. Shen, Z. Cai, H. Lewis and I. Tinoco, Jr. Nucleic Acids Res., 1995, 23, 4913.
 ${ }^{3}$ A. Wada, H. Yasuda, S. Kanatomo, Synthesis, 1988, 10, 771.
 ${ }^{4}$ P. J. Grohar and C. S. Chow, Tetrahedron Lett., 1999, 40, 2049.
 ${ }^{5}$ J. J. Chen, J. C. Drach and L. B. Townsend, J. Org. Chem., 2003, 68, 4170.
 ${ }^{6}$ (a) S.A. Scaringe, Methods Enzymol. 2000, 317, 3. (b) S. A Scaringe,. F. E Wincott and, M.H. Caruthers J. Am. Chem. Soc. 1998, 120, 11820.
 ${ }^{7}$ M Meroueh,. P. J. Grohar, J. Qiu,. J. SantaLucia, Jr. S. A. Scaringe and C.S. Chow Nucleic Acids Res. 2000, 28, 2075.

[^1]: ${ }^{8}$ Richards, E. G. In Handbook of Biochemistry Molecular Biology: Nucleic Acids; Fasman, G. D., Ed.; CRC Press: Cleveland, OH, 1975, 596-599.

